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Abstract: Magnetite is a common accessory phase in various types of ore deposits. Its trace
element content has proven to have critical implications regarding petrogenesis and as guides in the
exploration for ore deposits in general. In this study we use LA-ICP-MS (laser ablation-inductively
coupled plasma-mass spectrometry) analyses of trace elements to chemically characterize magnetite
from the Pagoni Rachi Cu–Mo–Re–Au porphyry-style prospect, Thrace, northern Greece. Igneous
magnetite mostly occurs as euhedral grains, which are commonly replaced by hematite in fresh to
propylitic-altered granodiorite porphyry, whereas, hydrothermal magnetite forms narrow veinlets or
is disseminated in sodic/potassic-calcic altered (albite + K-feldspar + actinolite + biotite + chlorite)
granodiorite porphyry. Magnetite is commonly associated with chalcopyrite and pyrite and locally
exhibits martitization. Laser ablation ICP-MS analyses of hydrothermal magnetite yielded elevated
concentrations in several trace elements (e.g., V, Pb, W, Mo, Ta, Zn, Cu, and Nb) whereas Ti, Cr, Ni,
and Sn display higher concentration in its magmatic counterpart. A noteworthy enrichment in Mo,
Pb, and Zn is an unusual feature of hydrothermal magnetite from Pagoni Rachi. High Si, Al, and
Ca values in a few analyses of hydrothermal magnetite imply the presence of submicroscopic or
nano-inclusions (e.g., chlorite, and titanite). The trace element patterns of the hydrothermal magnetite
and especially the decrease in its Ti content reflect an evolution from the magmatic towards the
hydrothermal conditions under decreasing temperatures, which is consistent with findings from
analogous porphyry-style deposits elsewhere.
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1. Introduction

Magnetite (Fe3O4), a mineral of the spinel group, is a common constituent in a wide variety
of rock types and ore deposits. It forms under very different physicochemical conditions, which
may extend from crystallization of silicate and sulfide melts at high magmatic temperatures, up to
precipitation from hydrothermal fluids in low temperature environments [1]. Its chemistry is a function
of various factors like sulfur and oxygen fugacity (f S2, f O2), temperature, cooling rate, silica activity,
and melt/fluid composition (e.g., [1–5]). The sensitivity of magnetite to these parameters, results in
variable concentrations of minor and trace elements including, Al, Ti, Mg, Mn, Zn, Cr, V, Ni, Co, and
Ga [6].

Analytical methods such as laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS), allow us to analyze a wide range of trace elements in magnetite at very low detection
limits (e.g., [7–9]). As magnetite is commonly found in many rocks and ore deposits, its trace elements
content is of particular interest to geoscientists. Many studies revealed that certain enrichments and/or
depletions in minor and trace elements reflect different mineralization styles and host rocks [5,7,10–16]
This fact favors the use of magnetite chemistry both as a promising petrogenetic indicator and as an
exploration tool.

Statistical interpretation of the trace element geochemistry of magnetite from different styles
of mineralization, coupled with petrographic interpretations and elemental ratios, allowed the
establishment of discriminant diagrams: Dupuis and Beaudoin [7] were among the first who correlated
the composition of magnetite to its origin and formation conditions (e.g., magmatic vs. hydrothermal)
and to different major deposit types (e.g., iron oxide copper-gold vs. porphyry deposits). They used
the plots of Ca + Al + Mn versus Ti + V and of Ti + V versus Ni/(Cr + Mn), to distinguish the average
composition of magnetite from iron oxide copper-gold (IOCG), Kiruna type iron oxide-apatite (IOA),
skarn, banded iron formation (BIF), porphyry-Cu, Fe–Ti–V, and Ni–Cu–PGE deposits. These diagrams
proved to be potentially useful in identifying magnetite of unknown origin, however it must be noted
that magnetite can display a broad compositional variation, within a single deposit. In this context,
Dare et al. [1] used the Ti, Ni, and Cr concentration of magnetite as a means to distinguish between
hydrothermal and magmatic magnetite. By studying the composition of magnetite in porphyry-Cu
and skarn deposits in the SW United States, Nadoll et al. [13,14] suggested that the compositional
boundary between the two types of deposits is highly transitional. More recently, Canil et al. [15] used
principal component analysis to suggest that the composition of magnetite from porphyry Cu–Au–Mo
deposits in British Columbia is a function of temperature, oxygen fugacity, and nature/composition
of the hydrothermal fluids. Based on detailed textural characterization and high-resolution in situ
compositional analyses, Wen et al. [17] proposed that a V/Ti versus Fe diagram should be used
to discriminate between pristine igneous magnetite, re-equilibrated magnetite, and hydrothermal
magnetite. Finally, Pisiak et al. [18], via the use of linear discriminant analysis, calculated discriminant
factors based on the composition of magnetite in barren and ore-related igneous rocks as well as
hydrothermal magnetite, suggesting that the method was a useful tool when exploring for ore-related,
magnetite-bearing intrusions.

Porphyry-type deposits, are not generally exposed at the surface and so, one aspect of exploring
for such deposits has used potential indicator minerals such as apatite, epidote, garnet, and tourmaline
as a guide (e.g., [19–22]). However, the chemical composition of igneous and hydrothermal magnetite
and its association with the porphyry deposit subtypes and the magmatic affinity of the host intrusive
rocks remains poorly constrained. Recently Huang et al. [16] have tried to establish the potential
relationships among the composition of magnetite, the geochemical signature of the host rock, and the
porphyry deposit sub-types.

Magnetite, despite being common in numerous geological environments in Greece, has been
poorly studied to date. In this study, we make the first attempt to evaluate the composition of
magmatic and hydrothermal magnetite from a porphyry-style mineralization, namely the Pagoni Rachi
Cu–Mo–Re–Au prospect in north-eastern Greece. The trace element composition of magnetite was
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used to monitor the physicochemical conditions of ore formation and to identify possible relations
between the magnetite chemistry and the geochemical affinities of the host rock. Finally, we try
to identify possible chemical fingerprints in the hydrothermal magnetite that could point towards
ore-grade mineralized zones, in an attempt to establish a new exploration tool for porphyry-style
deposits and prospects in Greece, and elsewhere.

2. Geological Setting

The Hellenides, comprise an elongated (more than 500 km long) mountain belt in Greece, which
corresponds to a segment of the Alpine-Himalayan orogenic chain (e.g., [23]). They resulted from the
still ongoing collision between the African and Eurasian plates, which began in the Late Jurassic, above
the N-dipping Hellenic trench [24]. This collision produced a pile of SW-vergent thrusted nappes
comprising three continental blocks (namely Rhodope, Adria, and Pelagonia) and their spatially related
oceanic domains (now represented by the Vardar and Pindos ophiolitic suites) [25–29].

Lithologies of the Rhodope Massif (Figure 1 [30,31]) record a long and rather complex
tectonometamorphic history [32]. Recent studies by Kydonakis et al. [28,29] of the tectonometamorphic
evolution of the Rhodope Massif suggested that it comprises three major lithological units/sub-domains:
(a) the Northern Rhodope Domain; (b) the Southern Rhodope Core Complex including the
Kerdylion unit of the former Serbo-Macedonian Massif, and (c) the Chalkidiki Block, adjacent
to the Serbo-Macedonian Massif, but excluding the Kerdylion unit.
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Figure 1. Geological map of NE Greece (after Voudouris et al., [30]; Mavrogonatos et al., [31]). The
white diamond marks the location of the study area.

The Northern Rhodope Domain, which occupies most of the NE part of Greece (Figure 1), consists
of (a) a structurally lower high-grade gneissic basement derived from Permo-Carboniferous protoliths,
subdivided into the Arda, Biala Reka-Kechros, and Kesebir-Kardamos migmatitic domes; (b) an
intermediate unit of high-metamorphic grade basement rocks, whose protoliths yield two age intervals
(Neoproterozoic to Ordovician and Permo-Carboniferous to Early Cretaceous); and (c) a structurally
upper and low metamorphic grade unit known as Circum-Rhodope Belt, including several sub-units
(e.g., Drymos-Melia, Makri) as well as the Evros ophiolite [33–35].
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Exhumation of the deep-seated lithologies in the Rhodope Massif took place at 40–35 Ma [26,35,36]
and the second, at ~35 Ma [35]. Activation of major detachment faults resulted in the exhumation
of deep lithologies, thus forming the metamorphic core complexes, and in the opening of several
E-W trending, structurally-controlled basins [25,37]. Syn-extensional sedimentation resulted in the
formation of thick clastic rock sequences (transgressive conglomerates, sandstones/claystones and
limestones). Contemporaneous asthenospheric upwelling triggered by crustal thinning, generated
magmatic rocks of Eocene to Miocene age, with a pronounced post-subduction signature [38–40].
These magmatic rocks are characterized by calc-alkaline to shoshonitic and ultra-potassic affinities,
and display a mafic to felsic compositional range [38,41–43].

Subsequent hydrothermal alteration of the magmatic and/or the sedimentary rocks led to the
formation of significant metallic mineralization, mainly in the Rhodope (Thrace), and to a lesser extent
the Serbo-Macedonian (Chalkidiki) domains [39,42,44,45].

The metallogenic province of Thrace hosts a plethora of porphyry- and epithermal-style deposits
and prospects (see Melfos and Voudouris [44]; Voudouris et al. [45]), which are enriched in a variety of
elements, including precious and critical metals (e.g., Au, Ag, Re, Te, Se, In, Ga, and Ge). A number of
porphyry style deposits has been recognized in the broader area with the most important of them being
the Konos Hill [31,46–49], the Pagoni Rachi [50–52], and the Maronia [53] Cu–Mo–Re–Au systems,
as well as the recently discovered porphyry Mo prospect in the Aisymi-Leptokarya area [45,54].
Epithermal-style mineralization in the area include, among others, the important Viper [55] and Perama
Hill [56] Au–Ag deposits, as well as the St. Philippos [51–57] and Pefka [58] polymetallic deposits that
have been exploited in the past.

3. Materials and Methods

Ten polished thin sections of magnetite-bearing samples and host rocks were studied by optical
and a JEOL JSM 5600 (JEOL Ltd., Tokyo, Japan) scanning electron microscope (SEM) equipped with
back-scattered imaging capabilities, at the Department of Mineralogy and Petrology of the University of
Athens, Greece. Major and minor elements quantitative analyses on magnetite from three representative
samples were carried out at the “Eugen F. Stumpfl” Laboratory, University of Leoben, Austria, using a
Jeol Superprobe JXA 8200 (JEOL Ltd., Tokyo, Japan) wavelength-dispersive electron microprobe (WDS).
Analytical conditions were as follows: 20 kV accelerating voltage, 10 nA beam current, and 1 µm
beam diameter. Peak and backgrounds counting times were 20 s and 10 s for major and 40 s and 20 s
for minor and trace elements, respectively. The MgKα, AlKα, SiKα, CaLα, TiKα, VKα, CrKα, FeKα,
MnLα, NiLα, and ZnKα X-ray lines were used, with respect to the following standards: corundum for
Al, wollastonite for Si and Ca, rutile for Ti, synthetic V for V, chromite for Mg and Cr, natural pyrite
for Fe, rhodonite for Mn, NiS for Ni, and natural sphalerite for Zn. Corrections were applied using
the PAP online program [59]. Laser ablation ICP-MS analyses of the same samples were conducted
at the Institute of Mineralogy, University of Münster, Germany, with a pulsed 193 nm ArF excimer
laser (Analyte G2, Photon Machines). A repetition rate of 10 Hz and an energy of ~4 J/cm2 were used
throughout the entire session. The beam spot diameter was set to 35 µm. Trace element analysis has
been carried out with an Element 2 mass spectrometer (ThermoFisher). Forward power was 1250 W
and reflected power <1 W, gas flow rates were 1.2 L/min for He carrier gas, 0.9 L/m and 1.2 L/m for the
Ar-auxiliary and sample gas, respectively. The argon cooling gas flow rate was set to 16 L/min. Before
starting an analysis, the system was calibrated to a NIST 612 reference glass measuring 139La, 232Th,
and 232Th16O to get stable signals and high sensitivity, as well as low oxide rates (232Th16O/232Th <

0.1%) during ablation. A total of 26 elements (25Mg, 27Al, 29Si, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co,
60Ni, 63Cu, 66Zn, 69Ga, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 118Sn, 137Ba, 178Hf, 181Ta, 182W, and 208Pb)
were quantitatively analyzed using the NIST 612 glass as an external standard while stoichiometric
Fe (97% wt.% FeO) was the internal standard, since total concentration of minor elements is <3 wt.%
(cf. Milani et al. [60]). Run time of the single ablation pattern was 60 s (20 s for background and 40 s
for peak after switching the laser on). Concentrations of measured elements were calculated using
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the Glitter software [61,62]. Standard reference glasses BHVO-2G and BIR1-G were analyzed in order
to monitor for precision and accuracy during the course of this study. The results from these glasses
match the published range of concentrations (standard deviation in the range of 5%), given in the
GeoReM database (version 23, [63]).

4. Results

4.1. Geology and Description of the Pagoni Rachi Prospect

The Pagoni Rachi Cu–Mo–Re–Au porphyry prospect lies ca. 18 km NNE of Alexandroupolis.
First described by Arikas [64], the Pagoni Rachi porphyry system occurs in an Oligocene granodiorite
porphyritic body, which intrudes a Tertiary volcanosedimentary sequence (Figures 1 and 2). This
sequence consists of conglomerates, marls, sandstones, and volcaniclastic material (e.g., tuffs) of
Priambonian age. It is in turn overlain by volcanic (lava domes and flows) and/or pyroclastic rocks. The
northern part of the study area is occupied by a large quartz monzodiorite intrusion, which crosscuts
both the volcano-sedimentary sequence and the granodiorite porphyry. The monzodiorite exhibits a
medium-grained to porphyritic texture, consisting of plagioclase and various amounts of pyroxene,
amphibole, biotite, quartz, and opaques. Radiometric dating for the monzodiorite yielded ages of
31.9 ± 0.5 Ma (Rb/Sr on biotite, [38]). Recently, Perkins et al. [65] provided further geochronological
data for the magmatic intrusion in the Kirki area (32.05 ± 0.07 Ma, U–Pb on zircon).Minerals 2019, 9, x FOR PEER REVIEW 6 of 20 
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Figure 2. Geological (a) and alteration (b) map of the Pagoni Rachi prospect.

Late, NNW-trending microgranite porphyry dikes (Figure 2) crosscut the aforementioned
magmatic rocks and comprise the final intrusive stage in the area [51]. These dikes display a
porphyritic texture and are composed of coarse-grained resorbed quartz and feldspar phenocrysts; the
latter were commonly replaced by sericite, due to pervasive phyllic alteration.

The granodiorite porphyry that hosts the porphyry-style Cu–Mo–Re–Au mineralization is
composed of plagioclase, amphibole, biotite, titanite, and scarce resorbed quartz phenocrysts
(quartz-eyes), set in a microlitic matrix of quartz, orthoclase, plagioclase, and abundant opaque
minerals, mainly magnetite. Mineralization occurs in a very dense quartz stockwork and is associated
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with extensive hydrothermal alteration of the granodiorite host (Figure 2b). Late-stage, N- and
NW-trending epithermal-style veins crosscut the porphyry mineralization and are associated with
argillic (quartz-sericite-carbonates), and, rarely, advanced-argillic (quartz-kaolinite-sericite) alteration
selvages, leading to partial telescoping of the porphyry system.

Porphyry-style mineralization has been attributed to four paragenetic stages [51]: (a) early
sodic/potassic-calcic alteration associated with magnetite + bornite + chalcopyrite + molybdenite
+ native gold + quartz veins (M-type veins,) and contemporaneous, distal propylitic alteration;
(b) sodic/potassic alteration with pyrite + chalcopyrite + molybdenite + quartz veins (B-type);
(c) sericitic alteration with pyrite + chalcopyrite + molybdenite veins (D-type) that also contain native
gold along with an important suite of Ag-, Bi-,Te-, and Se-bearing minerals; and (d) argillic alteration
with base and precious metal epithermal-style veins (E-type) rich in Au, Ag, and Te. Mineralogical
similarities of these veins suggest that they may share a genetic relationship with the D-type veins.
Bulk ore chemical analyses of surface samples showed that the system is significantly enriched in Cu
(up to 0.5 wt.%), Mo (up to 2000 ppm), Au (up to 5 ppm), and Re (up to 20 ppm). The extreme rhenium
enrichment of the Pagoni Rachi system reflects the presence of the rare sulfide rheniite and Re-rich
molybdenite [50,51].

4.2. Modes of Magnetite Occurrence (Petrography)

Following the textural and morphological criteria proposed by McQueen and Cross [66]
and Nadoll et al. [14], magnetite in the Pagoni Rachi porphyry-style mineralization occurs in two
distinct types:

The first type, hereafter called as magmatic magnetite, occurs in fresh to propyliticaly altered
granodiorite porphyry (Figure 3a–c). Primary magnetite (Figure 4a–d) usually forms relatively large
(up to 0.2 cm), euhedral to subhedral crystals (octahedral, cubo-octahedral habits) that are randomly
scattered in the matrix of the rock, and which exhibit a characteristic porphyritic texture (Figure 4).
It comprises the most abundant opaque accessory phase (approx. 5% modal) and is associated with
the primary silicate minerals of the granodiorite. Commonly propylitic alteration is present; in this
case magnetite is set in a matrix of relict primary minerals replaced by variable amounts of secondary
epidote, albite, actinolite, chlorite, and calcite (Figure 4a,b).

In such cases, magnetite is commonly replaced by hematite (martitization, Figure 4b) in the
periphery of the crystals or along fractures. Rare exsolution lamellae (trellis-type) of ilmenite, typical for
magmatic magnetite (cf. Wen et al. [17]) were identified (Figure 4d), at places also replaced by hematite.

The second type of magnetite is secondary (hereafter called “hydrothermal”) and (Figures 3c–f
and 5) is only found in the central part of the studied porphyry mineralization and is associated with
sodic-potassic/calcic alteration. Its modal abundance (more than 10%) is significantly higher compared
to its magmatic counterpart in the fresh to propylitic-altered granodiorite.
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Figure 4. Transmitted (a) and reflected (b–d) light microphotographs of magmatic magnetite from
fresh to propylitic-altered granodiorite porphyry: (a) magnetite (Mag) grain, set in a propylitic matrix
consisting of plagioclase replacing feldspar (Fsp), actinolite (act), epidote (ep), quartz (Qz), calcite (Cal),
and chlorite (chl), (crossed-polarized light); (b) the same grain as in (a). Note the partial replacement of
magnetite by hematite (Hem); (c) subhedral magnetite grain; and (d) euhedral magnetite grain showing
minor exsolution lamellae of ilmenite (Ilm).

Hydrothermal magnetite forms a complex network of dark-colored veinlets set in a greenish to
brown-colored matrix of secondary minerals. Moreover, magnetite may also be present in granular
wavy to locally straight-sided quartz veins (A-type), which lack alteration selvages. Rarely, aggregates
of magnetite occur in the sodic-potassic/calcic altered matrix.

This style of alteration (sodic-potassic/calcic) has totally obliterated the igneous porphyritic texture
of the granodiorite and resulted in its complete recrystallization. It is composed of variable amounts
of secondary albite, orthoclase, biotite, actinolite, and chlorite. The veinlets (M-type) are commonly
very narrow (less than 0.5 cm), irregular in shape and discontinuous, but there are also cases where
straight-sided veinlets were identified.

Magnetite in the veins is commonly anhedral, has a grain size that does not exceed a few tens of
microns, and may contain (sub-) microscopic inclusions of silicates (e.g., titanite) and/or sulfides (e.g.,
chalcopyrite). It is associated with variable amounts of orthoclase, biotite, albite, chlorite, actinolite, and
quartz (Figure 5a–b). Minor chalcopyrite and pyrite accompany magnetite in the veins (Figure 5c–e)
along with minor amounts of bornite, gold, and molybdenite. In places, replacement features occurred
(martitization) whereas exsolution lamellae were absent.
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Figure 5. Transmitted (a,b) and reflected (c–f) light microphotographs of hydrothermal magnetite
from M-type veinlets cross-cutting sodic-calcic/potassic altered granodiorite porphyry: (a,b) subhedral
to anhedral magnetite grains forming aggregates set in a matrix consisting of albite and orthoclase
(Fsp), epidote (Ep), biotite (bt), chlorite (Chl), and quartz (Qz; plane- and crossed-polarized light,
respectively); (c–e) Subhedral to anhedral magnetite associated with hematite (Hem), pyrite (Py), and
chalcopyrite (Ccp).

4.3. Chemical Composition of Magnetite

Analytical data from both magmatic and hydrothermal magnetite are shown in Tables 1 and 2 for
the Electron Probe Microanalyses (EPMA) and LA-ICP-MS analyses, respectively. Chemical differences
between the two types of magnetite are displayed in covariation plots of Figure 6.

Electron probe micro-analyses of magmatic magnetite show that Ti was the major impurity,
reaching up to 2.77 wt.% TiO2 (average 1.41 wt.%). Despite this relatively broad range, no zoned
structure was observed. Silica (up to 0.52 wt.%) and Ca (up to 0.34 wt.% CaO) were the next most
abundant elements. The majority of other divalent (e.g., Mg and Mn) and trivalent (e.g., Al and Cr)
cations that could be incorporated into the structure of magnetite were mostly very close to, or below
detection limits, with the exception of V, with values of up to 0.28 wt.% V2O3.
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Table 1. EPMA data of magmatic and hydrothermal magnetite from the Pagoni Rachi prospect.

Sample KM81 KM68 KM74

Type Magmatic (n = 15) Hydrothermal (n = 29) Hydrothermal (n = 30)

(wt %) avg min max avg min max avg min max

MgO 0.01 bdl 0.03 0.01 bdl 0.24 0.01 bdl 0.88
CaO 0.05 0.02 0.34 0.04 bdl 0.07 0.03 bdl 0.23
MnO 0.01 bdl 0.18 0.01 bdl 0.10 0.01 bdl 0.32
FeOtot 97.10 95.44 98.69 97.94 96.88 98.40 98.11 97.03 99.19
TiO2 1.41 1.05 2.77 0.39 0.20 0.78 0.47 0.11 1.13

Al2O3 0.04 bdl 0.58 0.16 0.22 0.46 0.05 bdl 0.17
SiO2 0.06 bdl 0.52 0.07 bdl 0.30 0.05 bdl 0.18
Cr2O 0.02 0.01 0.08 0.02 bdl 0.04 0.01 bdl 0.06
NiO 0.01 bdl 0.04 0.01 bdl 0.06 0.02 bdl 0.07
ZnO 0.01 bdl 0.05 0.04 0.03 0.18 0.01 bdl 0.03
V2O 0.16 bdl 0.28 0.21 0.05 0.32 0.22 0.09 0.33
Total 97.70 98.04 99.13 98.87 97.01 99.41 98.85 94.71 99.28

n = number of analyses; tot = total; avg = average value; min = minimum value; max = maximum value; bdl =
below detection limit.

Table 2. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data of magmatic
and hydrothermal magnetite from the Pagoni Rachi prospect.

Sample KM81 KM68 KM74

Type Magmatic (n = 12) Hydrothermal (n = 15) Hydrothermal (n = 15)

(ppm) avg min max avg min max avg min max

Mg 1271 612 2678 2643 550 6896 2043 451 3613
Al 5679 4112 7845 5131 3354 5977 4676 2002 6808
Si 3120 991 8521 3376 1338 6247 4481 1982 6679
Ca 1755 740 4125 1386 980 2065 2749 910 4158
Sc 3 2 4 4 1 18 12 4 23
Ti 20,179 9915 22,545 3202 1200 4852 2419 1305 11,517
V 561 395 770 1777 1622 1968 1784 1077 3079
Cr 329 221 454 20 16 25 23 14 28
Mn 316 224 412 1047 637 2199 954 412 2672
Co 22 19 27 12 3 21 7 4 14
Ni 23 19 31 16 12 21 16 14 19
Cu 5 2 8 56 bdl 156 21 bdl 152
Zn 51 33 79 189 1417 2163 2926 1860 4004
Ga 15 9 22 17 11 35 34 31 40
Rb 3 2 5 2 bdl 7 4 bdl 19
Sr 6 4 8 11 2 30 18 bdl 72
Y 10 4 14 11 1 53 1 bdl 10
Zr 15 4 24 1 bdl 10 4 bdl 23
Nb 4 1 9 8 bdl 55 10 bdl 40
Mo 1 bdl 2 4 1 9 3 1 6
Sn 64 36 99 13 5 39 35 26 41
Ba 6 2 11 5 3 8 4 bdl 11
Hf 0.3 bdl 1.2 0.2 bdl 1 0.4 bdl 2
Ta bdl bdl 1 1 bdl 7 1 bdl 3
W 2 1 4 6 bdl 44 3 bdl 9
Pb 21 12 36 49 10 128 6 bdl 20

n = number of analyses; avg = average value; min = minimum value; max = maximum value; bdl = below
detection limit.

On the other hand, hydrothermal magnetite contained significantly less TiO2 (up to 0.78 wt.%
and 1.13 wt.% in the two samples respectively) compared to the magmatic one, but had relatively
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elevated contents of Mg, Mn, and V (values up to 0.88 wt.% MgO, 0.32 wt.% MnO, and 0.33 wt.% V2O3,
respectively). Most of the other trace elements were close to or below the detection limit of the method
(Table 1). Zonation features were not observed.

Laser ablation-inductively coupled plasma mass-spectrometry analyses yielded comparable
results to those obtained through EPMA: Ti values in the two hydrothermal magnetite-bearing samples
that reach up to 4852 ppm and 11,517 ppm Ti (average values 3202 ppm and 2419 ppm respectively),
and were much smaller compared to those in magmatic magnetite, which contained up to 22,545 ppm
(average 9915 ppm). Alumina, Si, and Ca values are up to 7845 ppm (average 4112 ppm), 8521 ppm
(average 991 ppm), and 4125 ppm (average 740 ppm) respectively. It must be noted that the maximum
values in these elements corresponded to the same analytical spots, which might reflect the presence of
sub-millimetric or nano-scale silicate inclusions at subsurface during ablation (cf. Deditius et al. [67]).

The average Mg content of the two types of magnetite was approximately the same (612 ppm
for magmatic magnetite and 451 ppm and 550 ppm for the two hydrothermal magnetite samples.
Maximum values were much higher (up to 2678 ppm in the magmatic sample and 6896 ppm and 3613
ppm in the two hydrothermal samples.

Vanadium was enriched in the hydrothermal magnetite. Maximum values ranged between 1968
ppm (average 1622 ppm) and 3079 ppm (average 1077 ppm) in the two samples, whereas maximum
values in the magmatic magnetite was 770 ppm (average 395 ppm).

A similar trend was the case for most trace elements (Table 2): hydrothermal magnetite was
enriched in high-field strength elements (e.g., Nb, Hf, Ta, and W) and metals (e.g., Cu, Zn, and Mo).

On the other hand, some elements were preferably enriched in the magmatic magnetite: the Co of
magmatic magnetite was slightly higher (up to 27 ppm) than that of the hydrothermal ones (up to 21
ppm). Other enriched elements were Cr (up to 454 ppm in magmatic; and up to 28 ppm in hydrothermal
magnetite respectively), Ni (up to 31 ppm in magmatic and up to 21 ppm in hydrothermal magnetite),
and Sn (up to 99 ppm in magmatic and up to 41 ppm in hydrothermal magnetite).

Differences in the concentrations observed between EPM and LA-ICP-MS analyses for elements
like Ti, Mg, Cr, Ca, and Si was attributed to the variation of the beam-size of the two methods, especially
when exsolved phases or micro-inclusions were present in the magnetite. Furthermore, elevated
contents acquired by LA-ICP-MS analyses (e.g., values of Si, Ca, Ti, and Al) might suggest that at least
some of the very high concentrations was due to unavoidable submicroscopic or nano-scale inclusions
of silicates.

5. Discussion

Magnetite is a common mineral in porphyry deposits. Magnetite of magmatic origin is commonly
disseminated in the unaltered intrusive rocks or partly as a relict in propylitic alteration that surrounds
the mineralized center [14,18]. The composition of magnetite seems to be a function of several factors
including temperature, f S2 and/or f O2, cooling rate, melt composition, and element partitioning
between co-precipitating phases [1,2,12,13,16,68]. Available experimental data on igneous magnetite
have shown that its composition depends mainly on the temperature of crystallization, the f S2 and
f O2 conditions, and buffering between melt and the host rock [69–71]. For instance, an increase in
oxygen fugacity would reduce the solubility of Ti in magnetite and consequently cause oxy-exsolution
of ilmenite (cf. Wen et al. [17]).

In contrast, hydrothermal magnetite is usually common in early, high-temperature stages
associated with potassic alteration assemblages at the cores of the systems [13–15,18]. Here, elemental
availability in the hydrothermal fluid seems to be a critical component that determines its composition,
combined with temperature, sulfur and oxygen fugacities, and fluid-rock interaction [13]. Although
present in the majority of the porphyry-style deposits, there seems to be a greater abundance of
magnetite in gold-rich deposits, a feature that could be attributed to the generation of such deposits by
more oxidizing magmas [72,73]. Iron in the porphyry environment is usually thought to be transported
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as a chloride complex in a magmatic vapor (FeCl2) and magnetite is considered to precipitate as a
result of volatile exsolution at relatively high temperature and pressure conditions [74].

5.1. Fingerprinting Magmatic and Hydrothermal Processes

The Ti versus Ni/Cr discrimination diagram of Dare et al. [1] distinguishes the two types of
magnetite in the Pagoni Rachi prospect (Figure 6a), as magmatic magnetite has high Ti and low Ni/Cr
values compared to its hydrothermal counterpart. Furthermore, the Ti versus Al plot, proposed by
Canil et al. [15], also distinguishes the studied magnetite, but mostly based on Ti content, since their Al
content is relatively constant (Figure 6b) in both magmatic and hydrothermal magnetite.

The significant enrichment of V in magnetite of the Pagoni Rachi prospect is a feature previously
described from other porphyry deposits elsewhere (e.g., [14,15,18]). Vanadium in the Pagoni Rachi is
present in both types of magnetite, but its concentration is higher in the hydrothermal grains (Figure 6c).
Vanadium is characterized by significant mobility even in low temperature hydrothermal fluids [75].
Its presence, commonly is in the trivalent state, since it has a similar ionic radius to Fe3+ [69], is a
function of oxygen fugacity of the hydrothermal fluid as well as of the presence of any other co-existing
minerals with magnetite, which can also incorporate V3+ (e.g., ilmenite and biotite). Since V is enriched
in the hydrothermal type of magnetite from Pagoni Rachi, its availability in the hydrothermal fluid
could be strengthened by dissolution of V-rich magmatic magnetite. This procedure could result
in reprecipitation of newly-formed hydrothermal magnetite that has partly inherited features of its
magmatic counterpart, as described by Wen et al. [17]. The two types of magnetite in the Pagoni Rachi
prospect are partly discriminated in the plot of Ca + Al + Mn versus Ti + V plot (Figure 6d), although
it should be noted here that composition of magnetite regardless of its origin in the prospect overlaps
the genetic fields defined by Dupuis and Beaudoin [7] and Nadoll and Koenig [76].

Figure 7 graphically represents the chemical composition of magmatic and hydrothermal magnetite
analyzed during the present study. In Figure 7a, the average composition of the two varieties of
magnetite from Pagoni Rachi, normalized to bulk composition of the continental crust, plot along
with the compositional range of high-temperature hydrothermal magnetite of Dare et al., [1]. With
the exception of Ti, Sn, and Cr, most elements are enriched in the hydrothermal magnetite. The
concentrations of Si and Ca from both types of magnetite in the Pagoni Rachi prospect are higher
than those reported by Dare et al. [1] for hydrothermal magnetite. In general, magmatic magnetite
is depleted in both elements, since they are considered to be incompatible, when igneous magnetite
crystallizes from silicate melts [12].
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Figure 6. Covariation plots of magmatic (red symbols) and hydrothermal (green symbols) magnetite
from the Pagoni Rachi porphyry prospect: (a) Ti versus Ni/Cr ratio (fields after Dare et al. [1]); (b) Til
versus Al (fields after Canil et al. [15]); (c) V versus Al; and (d) Ca + Al + Mn versus Ti + V (fields after
Dupuis and Beaudoin [7] and Nadoll and Koenig [76]).
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Figure 7. Chemical variation diagrams of magmatic (red) and hydrothermal (green) magnetite
from the Pagoni Rachi porphyry prospect (values in ppm): (a) Multi-element plot of average trace
element composition of magmatic and hydrothermal magnetite, normalized to bulk continental crust
(values after Rudnick and Gao [77]; grey field represents the compositional range of high-temperature
hydrothermal magnetite, after Dare et al. [1]) and (b) box and whisker plot of various trace elements
in magmatic (red boxes) and hydrothermal (green boxes) magnetite for the Pagoni Rachi porphyry
prospect, analyzed by LA-ICP-MS. The upper and lower margins of the boxes represent the upper
and lower 75% and lower 25% of the data respectively. The whiskers represent upper and lower
threshold values (95% of the data), while median values are shown as thick black lines inside the boxes.
Open circles and stars represent extreme values. Maximum values of Si, Al, Mg, and Ca attributed to
inclusions have been excluded.

On the other hand, hydrothermal magnetite may carry significant amounts of Si and Ca, as both
elements are highly mobile during hydrothermal alteration. Silicon- and Ca-rich magnetite have been
reported from several deposits, commonly skarns (e.g., [78]). In the case of the Pagoni Rachi porphyry
prospect, significant Si-Ca mobility during alteration has been well documented, as hydrothermal
magnetite is accompanied by Ca-rich mineral assemblages (e.g., hydrothermal actinolite, Voudouris et
al. [50,51]). Moreover, very high values of these two elements, when they correlate along high Ti values
(Figure 8) are likely due to the presence of nano-scale inclusions of titanite (cf. Deditius et al. [67]).
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Magnesium and less commonly Mn can be enriched in hydrothermal magnetite, due to extensive
fluid-rock interactions [79,80]. Such interactions enriched both elements in the studied magnetite and
could easily be explained by the mafic component of the hosting granodioritic intrusion.

With the exception of Zr and Hf, which displayed relatively constant concentrations both in
magmatic and hydrothermal magnetite, other high-field strength elements were preferably enriched in
the hydrothermal magnetite (Figure 7b). As most of these elements were incompatible in magnetite,
they were relatively immobile and tend to be incorporated in late magmatic magnetite. Their solubility
in hydrothermal fluids is restricted [81–83]. However, the enrichment of elements like W, Mo, Ta, and
Nb in the hydrothermal magnetite could indicate that it precipitated from a hydrothermal fluid that
derived from a felsic intrusion and contained a significant amount of such elements. Large variation
in their concentration could imply that they were incorporated in the magnetite grains following an
inhomogeneous distribution.

The copper content of magmatic magnetite was very low, but a significant enrichment was present
in the hydrothermal variety. Copper-rich magnetite is common in many porphyry-style deposits, with
extreme values of a few thousands of ppm (e.g., magnetite from Mt Polley porphyry deposit, [18]), but
its origin is still a matter of debate, as the presence of nano-scale inclusions of copper sulfides cannot
be ruled out (e.g., [84]).

Lead enrichment is an important feature of magnetite from Pagoni Rachi. Minor amounts of Pb
were present in the magmatic magnetite, and could be explained by its weakly compatible behavior
(DPb = 1.4 in magmatic magnetite). The Pb content rose significantly in the hydrothermal type of
magnetite: given the fact that Pb is a chalcophile element, and is preferably incorporated in coexisting
Fe–Cu sulfides (e.g., [1]), its presence in hydrothermal magnetite suggests enrichment of this element
in the parental hydrothermal fluid, that is exsolved from a felsic magmatic source, as also described by
Huang et al., [16].

Another notable feature of the studied magnetite is their enrichment in Sn, which is obvious
in both types of magnetite but is larger in the igneous magnetite. Analogous enrichment of Sn in
porphyry-related magnetite was reported previously from the Endako porphyry-Mo deposit [85],
which is hosted in granitoids, which are notably more felsic compared to the granodiorite hosting the
Pagoni Rachi prospect.

5.2. Genetic Considerations—Implications for Exploration

Although hosted in an intermediate magmatic body with high-K calc-alkaline affinity, the Pagoni
Rachi porphyry prospect was characterized by a number of features that point towards a genetic relation
to a more evolved, felsic intrusive phase. This inquiry has already been stated by Voudouris et al. [51],
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who discussed the possibility of a genetic relationship between the porphyry system and a buried
granitic intrusion similar to that exposed at the nearby St. Philippos deposit. Furthermore, the
presence of fluorite as a gangue mineral in the quartz porphyry veins of the Pagoni Rachi [51], as
well as the enrichment of F and Cl in secondary biotite (C. Mavrogonatos unpublished data) from the
sodic/potassic-calcic alteration of the system, also suggest a strong affinity with a halogen-enriched
hydrothermal fluid derived from a felsic magma.

High-field strength elements, which are enriched in secondary magnetite, suggest elevated mobility
during hydrothermal alteration. Such enrichment has been described previously from fluoride-rich
magmatic systems, especially of alkaline character [86]. Moreover, as has been shown by experimental
studies, even the presence of a minor amount of base metals like Mn and Zn in hydrothermal magnetite,
reflects an elevated concentration of these elements in chloride-rich hydrothermal fluids, which suggest
an enrichment caused by fluid-rock interactions [78,79].

Significant porphyry-style mineralization hosted in microgranite, has already been described
from the Thrace metallogenic district, thus documenting a genetic link between porphyry-style
prospects and the microgranitic magmatism (e.g., the Maronia porphyry Cu–Mo–Re–Au [53] and
the Aisymi-Leptokarya porphyry Mo [45,54] systems). The existence of microgranitic bodies in the
Pagoni Rachi area, as well as the presence of F-rich phases in advanced argillic alteration assemblages
in epithermal-style mineralization [31,48,49], locally superimposed on the porphyry-style ores in
the broad area, is also compatible with a deep, large-scale microgranitic intrusion, which could (at
least partly) control the alteration styles and contribute to the metal endowment of the Pagoni Rachi
porphyry prospect.

Further studies of trace elements in magnetite from other deposits and prospects in the district will
increase our knowledge concerning their distribution during ore formation and will help to determine
a trace element pattern that could be used as a vector towards ore-grade mineralized centers in the
Thrace metallogenic district.

6. Conclusions

Magnetite occurs as two modes of occurrence in the Pagoni Rachi porphyry Cu–Mo–Re–Au
prospect. The first, recognized as magmatic-type, is present in fresh to propylitic-altered granodiorite
porphyry, peripherally to the mineralized center of the system. The second type of magnetite, which
is of hydrothermal origin, is found in the core of the system, associated with sodic/potassic-calcic
alteration of the host rock. Magmatic magnetite forms subhedral to euhedral grains, with sizes up to
0.2 cm. In places, rare trellis-type exsolution lamellae of ilmenite may occur. Hydrothermal magnetite
occurs as narrow veinlets (M-type) or within sinuous quartz veins (A-type), forming fine, anhedral
grains. It is associated with various amounts of secondary biotite, K-feldspar, and/or albite, actinolite,
and chlorite.

Trace element analyses revealed significant differences in the composition of the two types of
magnetite. Magmatic magnetite from Pagoni Rachi, similar to magmatic magnetite from intrusions
related to ore deposits elsewhere, was characterized by elevated concentrations of Ti, Cr, Ni, and Sn.
In contrast, high-field strength elements and metals were preferably enriched in the hydrothermal
magnetite. In addition, enrichment in Zn, Pb, W, Ta, and Mo was a distinctive feature of the Pagoni
Rachi hydrothermal magnetite. Very high values of Si, Ca, Mg, and Al might indicate submicroscopic
and/or nano-scale inclusions in hydrothermal magnetite.

The trace elements pattern of the hydrothermal magnetite could be further tested as an exploration
tool towards ore-grade mineralization in other fertile intrusions in NE Greece, which share similar
genetic features to Pagoni Rachi (e.g., causative intrusion and metal endowment, similar alteration
assemblages, etc.).
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