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Abstract: Carboxymethylcellulose (CMC) is a nontoxic and biodegradable polysaccharide, which can
potentially replace the frequently used hazardous depressants in Cu—Mo separation. However, a lack
of understanding of the interaction mechanism between the CMC and the minerals has hindered its
application. In the present study, it is found that 50 mg-L~! CMC can inhibit chalcopyrite entirely in
the pH range 4-6, while having little effect on molybdenite. The results also showed that the inhibition
effect of the depressant for chalcopyrite enhanced with the increase of the degree of substitution
(DS) and molecular weight (M) of CMC. The low DS and high M, of CMC were detrimental to the
Cu—-Mo separation flotation. Furthermore, CMC adsorption was found to be favored by a positive
zeta potential but hindered by the protonation of the carboxyl groups. An electrochemical study
showed that CMC inhibited 92.9% of the electrochemical reaction sites of chalcopyrite and greatly
reduced the production of hydrophobic substances. The XPS and FTIR measurements displayed that
the chemisorption was mainly caused by Fe** on the chalcopyrite surface and the carboxyl groups in
the CMC molecular structure.
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1. Introduction

Molybdenum (Mo) is one of the most important rare metals. It is a widely used additive in steel
alloys, high-temperature alloys, and other materials [1,2]. Mo usually occurs as molybdenite (MoS,)
and is usually associated with copper sulfide ores such as chalcopyrite (CuFeS,) [3,4]. Mo concentrate
is commonly obtained as a by-product from copper ore by a two-stage froth flotation technique [5].
The first stage produces a copper and molybdenum bulk concentrate, and the second stage separates
Mo from the copper sulfide by selective flotation. As molybdenite is inherently more floatable
than chalcopyrite [6], chalcopyrite is inhibited by a depressant that selectively hinders the collector
adsorption to chalcopyrite or increases the hydrophilicity of chalcopyrite during the separation.
The most routinely used chalcopyrite depressants are inorganic reagents such as sodium sulfide [7-10],
sodium thioglycolate [11,12] and sodium cyanide [13]. These reagents are extremely toxic and applied
in high amounts, which are harmful to both humans and the environment. Owing to the increasingly
stringent control regulations against environmental pollution, the need to replace such toxic and
hazardous depressants with more environment-friendly chemicals is gaining urgency.

Naturally occurring polysaccharides such as starch, dextrin, cellulose, and guar gum have
been reported as candidate selective depressants in the recovery of valuable metals from bulk
concentration [14,15]. These polymers are not only nontoxic but also biodegradable and relatively
inexpensive. In numerous laboratory investigations, sulfide minerals such as galena [16-18] and
pyrite [19-22] have been successfully depressed. Many studies have considered the feasibility of
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polysaccharides as a chalcopyrite depressant in Cu-Mo separation flotation, including ATDT [23],
DMTC [24], tannin [25], chitosan [26], and so on. Carboxymethylcellulose (CMC), a natural
polysaccharide which is widely used as a talc depressant and food additive [27-29], might be suitable
for this purpose. CMC is known to inhibit chalcopyrite under certain conditions [30,31]. However,
the interaction mechanism between CMC and the chalcopyrite surface has rarely been investigated.
The general interaction between polysaccharides and sulfide ores is highly controversial and needs
resolving in many further studies. The present study assessed the efficiency of CMC as a depressant of
chalcopyrite in Cu-Mo differential flotation and elucidated the underlying interaction mechanism.

2. Materials and Methods

2.1. Materials

Figure 1a shows the molecular structure of CMC. The molecular weight (M,,) and degree of
substitution (DS) of this common polysaccharide are 50,000-300,000 and 0.5-1.5, respectively. CMC was
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Sodium ethyl-xanthate
(SEX), used as a collector, was obtained from Tieling Flotation Reagent Co., Ltd. (Liaoning, China).
Pure mineral samples of chalcopyrite and molybdenite were obtained from Taobao. The samples
were crushed, handpicked, and dry-ground in a porcelain ball mill (GCHQM-2L, Nanjing, China).
The X-ray fluorescence (Shimadzu-XRF1800, Shimadzu, Kyoto, Japan) and X-ray powder diffraction
analysis (Bruker-D8 Discover, Bruker, Mannheim, Germany) results are shown in Table 1 and
Figure 1b, respectively.
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Figure 1. (a) Molecular structure of CMC; (b) X-ray diffraction spectra of chalcopyrite and molybdenite.

Table 1. X-ray fluorescence results of chalcopyrite and molybdenite (mass fraction, %).

Element Cu Fe S Mo Si (0]
Chalcopyrite 33.7 32.3 32.2 0.6 12
Molybdenite 40.2 58.8 0.5 0.5

2.2. Micro-Flotation Experiment

In order to accurately study the effects of CMC on chalcopyrite and molybdenite, pure minerals
were used. The floatabilities of the single and mixed minerals were measured in a suspended flotation
cell (XFGCII5-35, Jinlin Exploration Machinery Plant, Changchun, China). The mass fraction of particle
size less than 74 pum of chalcopyrite and molybdenite were 82.4% and 78.7%, respectively. The mineral
suspension was prepared by adding 25 g of mineral powder to 100 mL of solution while using a stirrer
to agitate. The pH of the mineral suspension was first adjusted to the desired value (2, 4, 6, 8, 10, 12)
with concentrated NaOH or H,SO4 stock solution. The prepared CMC solution was added to the
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desired concentration while conditioned for 5 min. The flotation was initiated by air inflation at a flow
rate of 100 mL-min~! for 3 min.

2.3. Adsorption of CMC on Chalcopyrite and Molybdenite

Adsorption measurements were conducted using the batch depletion method. A particle size
of less than 38 um was used for adsorption tests. A 10 wt % pure mineral suspension was prepared
and separated into individual vials. Solutions of the same polymer dosage (10 wt %) were added to
mineral suspensions of different pH values (2-12, in 1-unit increments). The resulting suspensions
were tumbled for 20 min (simulated the process of flotation). After tumbling, the suspensions were
centrifuged at, and the polymer concentration of the supernatant was determined by a total carbon
analyzer (Shimadzu TOC-V, Shimadzu, Kyoto, Japan).

2.4. Zeta Potential Measurements

The zeta potential of the mineral samples was measured using an electrophoresis instrument
(POWEREACH JC94H2, Xiamen McLaren Jingruike Instrument Co., Ltd., Xiamen, China). The samples
were ground to 2 um-diameter particles under an inert gas with a ball mill (Alc Minerals Technology
1.5 L, Alc Minerals Technology Co., Ltd., Jinhua, China). In each test, 50 mg of the mineral was
added to a beaker containing 50 mL of 0.1 mol-L~! KCl solution and the suspension was stirred for
5 min. The pH of the suspension was adjusted to the desired value using 0.1 mol-L~! H,SO4 and
0.1 mol-L~! NaOH.

2.5. Electrochemical Tests

Electrochemical measurements were performed using a conventional three-electrode system.
The reference, counter, and working electrodes were a saturated calomel electrode, a 1-cm?
platinum-foil electrode, and a mineral electrode, respectively. Prior to each test, the surface of the
chalcopyrite electrode was polished dry with a 5000-grit diamond-carbide paper. The effect of CMC
on chalcopyrite was evaluated by cyclic voltammetry and a Tafel plot.

2.6. Infrared Spectrum Measurements

Single minerals (1.0 g) were added to the desired amount of solution and magnetically
stirred for 30 min. After settling on the laboratory bench for another 30 min, the samples were
added to the differential pH solutions and CMC and then filtered. The solid was obtained using
a vacuum-drying method and subjected to infrared spectrum measurements by Fourier-transform
infrared (FTIR) spectrometry.

2.7. X-ray Photoelectron Spectroscopy Measurements

In preparation for X-ray photoelectron spectroscopy (XPS) analysis, chalcopyrite (5 g) was mixed
with 50 mg-L~! CMC in a 200 mL beaker at pH 5. The slurry was filtered, conditioned in an incubator
at 25 °C for 30 min, and then washed with 200 mL distilled water. Finally, the sample was dried in
a vacuum desiccator and subjected to XPS analysis. All XPS measurements were conducted within
12 h of the sample preparation to minimize oxidation.

3. Results and Discussion

3.1. Micro-Flotation of Single Mineral Tests

In the absence of CMC, the recoveries of chalcopyrite and molybdenite exceeded 80% (Figure 2a).
Both minerals were easily recovered by flotation in xanthate solution. The recovery was slightly
decreased at pH below 4 because xanthate decomposes under very acidic conditions. The addition of
50 mg-L~! CMC completely inhibited chalcopyrite floatability in the 4-6 pH range. Outside of this
range, the chalcopyrite recovery rapidly increased. In all pH tests, CMC addition slightly affected
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molybdenite flotation. The results confirm the feasibility of CMC as a depressant of chalcopyrite in
Cu-Mo differential flotation.

3.2. The Effect of DS and Mw

The important parameters of CMC are the degree of substitution (DS) and the molecular
weight (My). As shown in Figure 2b, increasing the DS and My, improved the inhibition of CMC to
chalcopyrite flotation. When DS was 1.5 and M,y was 300,000, the chalcopyrite recovery was 11.3%.
The molybdenite recovery increased with increasing DS and decreased with increasing M,,. Low DS
and high M,, degraded molybdenite flotation, whereas high DS and high Mw favored chalcopyrite
inhibition. To optimize the separation, CMC with DS = 1.5 and M,, = 200,000 was selected as the
depressant of Cu-Mo differential flotation.
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Figure 2. (a) Effects of pH and (b) molecular weight (with varying degree of substitution) on
chalcopyrite and molybdenite flotation in the CMC system.

3.3. Flotation of Chalcopyrite—Molybdenite Mixed Minerals

Figure 3a shows the flotation test results of the artificial chalcopyrite-molybdenite mixture.
The recovery and grade of the copper decreased as the CMC concentration increased up to 60 mg-L~!.
Above this level, the copper recovery and grade were slightly affected by CMC concentration.
Molybdenite was not inhibited by CMC, except at high concentrations, where a slight decrease was
noted. The Mo grade was also slightly decreased at CMC concentrations above 60 mg-L~!. At high
concentrations, CMC might increase pulp viscosity [32]. Some molybdenite remained as tailings and
some chalcopyrite was mixed in the concentrate. The best CMC concentration for separating Cu and
Mo was 60 mg-L~!. The recovery and grade of Mo were 80% and 44.7%, respectively.

3.4. Adsorption of CMC to Chalcopyrite and Molybdenite

Figure 3b plots the adsorption densities of CMC on chalcopyrite and molybdenite as functions of
pH. The CMC was weakly adsorbed to molybdenite (<1 mg-m~2) at pH values less than 10. At higher
pH, the adsorption was slightly increased (to nearly 2 mg-m~2) possibly because the surface oxidation
favored CMC adsorption to molybdenite. CMC was strongly adsorbed to chalcopyrite (adsorption
density > 15 mg-m~2) in the pH range 4-6. The adsorption density decreased at pH values below
4. The carboxyl groups in the CMC were the anchor points for the adsorption. The CMC molecule
partially protonates at pH below 4 (-COO™ to -COOH) and is fully protonated below pH 2 [33].
This protonation likely contributed to the decrease in adsorption at a very acidic pH value [34].
The adsorption density also decreased at pH values above 6. Many previous studies suggested that
zeta potential was changed.
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Figure 3. (a) Effect of CMC concentration on the Cu-Mo mixed minerals separation flotation;
(b) adsorption of CMC on the chalcopyrite and molybdenite.

3.5. Zeta Potential Measurements

The zeta potentials of chalcopyrite in the presence and absence of CMC were plotted as functions
of pH in Figure 4a. The species of Fe (Figure 5a) and Cu (Figure 5b) in solution were calculated
using the CHEAQS program (P2017.3, Wilko Verweij, Amsterdam, Netherlands). The zeta potential
of chalcopyrite became more negative as the pH increased from 3 to 11. In the absence of CMC,
the isoelectric point (IEP) was between pH 6 and pH 7, consistent with the measurements of other
researchers [35,36]. In the presence of 50 mg-L~! CMC, the zeta potential of chalcopyrite decreased
from that of the no-CMC case (especially in the 4-8 pH range), indicating that many CMC molecules
were adsorbed to the surfaces of chalcopyrite particles. This can be explained by the many carboxylic
groups in the CMC molecular structure at pH above 3.8 [37]. Electrostatic interaction took an important
role in the CMC adsorption. According to the CHEAQS calculation, iron cations appeared at pH values
below 8 and dominated at pH values below 6. Meanwhile, copper cations appeared at pH levels below
12 and dominated at pH values below 10.5. The CMC carboxylic groups reacted with the cations on
the chalcopyrite surface by electrostatic interaction, as shown in Figure 4b.
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Figure 4. (a) pH dependence of the zeta potential of chalcopyrite in the absence and presence of CMC;
(b) electrostatic adsorption mechanism of CMC on chalcopyrite.
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Figure 5. Species of (a) ferric ions in solution and (b) copper ions in solution.
3.6. Electrochemical Study

Many studies have strongly supported the flotation of sulfide minerals in electrochemical
processing. Figure 6a shows the Tafel plots of the chalcopyrite electrode in 0 and 50 mg-L~! CMC
solution. The inhibition efficiency (IE) was calculated from the corrosion current density as follows [38]:

1R = Lo —Leorr 4
I;OVV
where I%,, and I are the corrosion current densities of chalcopyrite in 0 and 50 mg-L~!
CMC, respectively. The corrosion current densities were 1.3 x 107> and 9.2 x 10~7 A-cm~? in
CMC =0 mg-L~! and CMC =50 mg-L~!, respectively. The IE% of CMC was 92.9%, which means
that most of the reaction sites on chalcopyrite were inhibited by CMC.

Figure 6b shows the cyclic voltammetry results of the chalcopyrite electrode in 0 and 50 mg-L ™!
CMC solution. Two anodic peaks appeared—one at 0.3 V (peak Al) and the other at 0.6 V
(peak A2). Cathodic peaks were observed at 0.08 V (peak C1) and —0.4 V (peak C2). In previous
studies, the Al peak was attributed to reactions (1) and (2) below [39,40]. Reaction (1) generates
an intermediate product CuS* along with Fe**, which undergoes a precipitation reaction with CMC.
The surface-inhibitor film on chalcopyrite reduced the current density of the oxidation peak Al. As the
potential increased, the intermediate product CuS* and inner chalcopyrite were oxidized via reactions
(3) and (4). The newly generated Fe*>" and Cu?* ions further precipitated with CMC, causing a sharp
decline in the current density from peak A2. The cathodic peaks C1 and C2 may be associated with
reactions (5) and (6), respectively. Since the oxidation reactions inducing peaks Al and A2 were
inhibited by CMC, the current densities at peaks C1 and peak C2 were low. The CMC molecule is
hydrophilic and the chalcopyrite surface is covered with CMC. The inhibition mechanism of CMC
chemisorption on chalcopyrite flotation is shown in Figure 7a.

CuFeS, = CuS* + Fe** +S + 3e~ (1)
S+H,0=5S04> +e +H" )
CuS* = Cu®* + S+ 2e” (3)
CuFeS, = Cu®* + Fe3" + 25 + 5e~ (4)
Fe3* + e~ = Fe?* (5)

S+2 =8> (6)
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Figure 6. (a) Tafel plots and (b) cyclic voltammetry diagrams of chalcopyrite in the absence (black) and
presence (red) of CMC.

3.7. FTIR Analysis

Infrared spectroscopy can reveal the interaction between chalcopyrite and CMC. The FTIR
spectra of chalcopyrite in the presence and absence of CMC are shown in Figure 7b. The main
CMC groups are “OH (3431, 1126, and 1047 cm 1), -COOH (3431 and 1607 cm 1), and -CH,— (2916,
1331, and 1425 cm 1) [22,39]. The broad band of chalcopyrite centered around 3430 cm ! is probably
attributable to the -OH of Fe-OH. The peaks at 475 and 645 cm ™! are the bending vibrations of
the hydroxyl groups of lepidocrocite, reported as the main oxide of pyrite [40,41]. After the CMC
treatment, the spectrum of chalcopyrite exhibited many new peaks. The stretching vibration peaks
of -CH,-OH (1047 cm~!) and -C(HR)-OH (1126 cm™1) were merged into a single narrow peak
(1134 cm~1). The absorption peak of the carboxyl groups shifted to the right (from 1607 to 1636 cm™~1!).
The in-plane bending vibrations of -C-H (at 1131 and 1425 cm ') were greatly weakened. Groups
containing lone electron pairs (C~-OH and COOH) participated in the chelation of Cu?* and Fe?*.
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Figure 7. (a) Mechanism of the CMC-inhibited electrochemical reaction of chalcopyrite; (b) FTIR
spectra of chalcopyrite in the absence (black) and presence (red) of CMC, the CMC spectrum is shown
in blue.

3.8. XPS Measurements

Figure 8 illustrates the XPS spectra of Cu 2p, Fe 2p, S 2p, and C 1s in the absence and presence of
CMC. In the XPS spectrum of Cu 2p (Figure 8a), the binding energies of Cu 2p and Cu 2p, in the absence
of CMC are centered at approximately 932.4 eV and 952.2 eV, respectively [42,43]. The intensities of
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these peaks obviously declined after CMC addition because the chalcopyrite surface was covered with
CMC molecules. The Fe on the chalcopyrite surface existed mainly in the forms of CuFeS, and FeO-OH,
as shown in Figure 8b. The existence of Fe3* sites in chalcopyrite was confirmed around 719 eV [44,45].
After the CMC treatment, the peak at 719 eV disappeared, indicating that Fe** had reacted with the
CMC. SO4%~ was abundant on the surface and no S° was found (Figure 8c). This suggests that S% was
unstable and quickly oxidized to SO42~. A CuS signal was found at approximately 162 eV. Before
the CMC treatment, some carbohydrate (C—O) was present on the chalcopyrite surface, and C=0
was absent (Figure 8d). After treatment with CMC, large amounts of C-O and C=0O were found
on the surface. These results demonstrate the efficacy of carboxylic-containing carbohydrate as
a chalcopyrite depressant.
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Figure 8. XPS analyses of chalcopyrite elements before (black) and after (red) treatment with CMC.
(a) Cu 2p; (b) Fe 2p; (c) S 2p; (d) C 1s.

4. Conclusions

Chalcopyrite was entirely inhibited by 50 mg-L~! CMC in the 4-6 pH range, with minor effects
on molybdenite flotation. The efficacy of CMC as a chalcopyrite depressant increased with increasing
DS and M,,. Low DS and high M,, were detrimental to molybdenite flotation. The separation flotation
of artificial mixed minerals yielded Mo with a grade of 44.7%. CMC adsorption was favored by
a positive zeta potential and hindered by carboxyl group protonation. CMC inhibited 92.9% of
the electrochemical reaction sites on the chalcopyrite surface, and the production of hydrophobic
substances was very low. The inhibition was mostly attributed to Fe>* on the chalcopyrite surface and
to carboxyl groups in the CMC molecular structure.
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