
minerals

Review

Assessment of Bioleaching Microbial Community
Structure and Function Based on Next-Generation
Sequencing Technologies

Shuang Zhou 1, Min Gan 2,*, Jianyu Zhu 2,* , Xinxing Liu 2 and Guanzhou Qiu 2

1 School of Public Health, Changsha Medical University, Changsha 410219, China; longzej@sina.cn
2 Key Laboratory of Biohydrometallurgy of Ministry of Education,

School of Minerals Processing and Bioengineering, Central South University,
Changsha 410083, China; lpdouzi@163.com (X.L.); zhongnanchw@163.com (G.Q.)

* Correspondence: ganmin0803@sina.com (M.G.); zhujy@csu.edu.cn (J.Z.)

Received: 4 September 2018; Accepted: 30 November 2018; Published: 17 December 2018 ����������
�������

Abstract: It is widely known that bioleaching microorganisms have to cope with the complex
extreme environment in which microbial ecology relating to community structure and function varies
across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still
a challenge. To address this challenge, numerous technologies have been developed. In recent years,
high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular
RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial
ecology. The next-generation sequencing technology allowing processing DNA sequences can produce
available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to
predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our
understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted
phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity
in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to
profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high
efficiency in quantifying the changing expression level of each transcript under different conditions.
It has been demonstrated as a powerful tool for dissecting the relationship between genotype and
phenotype, leading to interpreting functional elements of the genome and revealing molecular
mechanisms of adaption. This review aims to describe the high-throughput sequencing approach
for bioleaching environmental microorganisms, particularly focusing on its application associated
with challenges.

Keywords: high-throughput sequencing technology; RNA-seq; acidophiles; bioleaching; microbial
community structure and function

1. Introduction

In the last decade, biomining-related bacteria as participators in the bioleaching processes have
been intensively studied due to their importance in applications in the metal extraction from minerals.
Leaching systems are considered a typical extreme environment, as they are often highly acidic
(typically pH < 3) and usually contain increasing concentrations of iron, zinc, copper, and various
other heavy metals [1]. Particularly, during bioleaching of mineral concentrates, heavy metals
accumulate in the leaching solution. Metals are the metabolic requirements for microorganisms when
they maintain the proper concentrations, but beyond certain concentrations they become toxic to
the microorganism, mainly as a result of their ability to denature protein molecules [2]. However,
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bioleaching microorganisms can better adapt to the most inhospitable environment. They play key
roles as sulfur and/or iron oxidizers to efficiently enhance the dissolution of low-grade minerals
in bioleaching systems (Figure 1A1). In addition, bioleaching is a complex process concerning
the relationship of microbes with environmental factors (Figure 1A2) and the interaction between
bioleaching microorganisms (Figure 1B) [3]. At present, the construction of acidophiles community
and controlling bioleaching conditions have been piloted and demonstrated to accelerate dissolution
and researchers continue to make progress in the mechanism studies for acidophilic microorganisms
to solubilize ores [4–6]. Understanding the structure, functions, activities, and dynamics of microbial
communities in bioleaching environments is important for the purpose of improving bioleaching
rates [7–9].
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Figure 1. (A1). Model for contact leaching catalyzed by biomining-related bacteria playing key roles
as sulfur and/or iron oxidizers to enhance the dissolution of minerals. (A2). Proposed schematic
diagram of interactions between substrates, abiotic drivers, biodiversity and ecosystem functions in
a bioleaching system. (B). Concept model of roles of microorganisms involved in biogeochemical Fe &
S cycling with C & N fixation/cycling and their interaction in bioleaching system. Reproduced with
permission from Pablo Cardenas et al. [3], published by Elsevier, 2016.
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A huge microbial diversity with wide metabolic potential that is influenced both by interactions
with other bacteria and with the variable environment exists in most bioleching systems [7,10].
To elucidate the functional response of microbial communities to changing environmental conditions
has been challenging [11,12]. To address this challenge, numerous technologies have been
developed (Figure 2). Cultivation-independent genomic approaches have significantly promoted
our understanding of ecology and diversity of microbial communities in the environment. Function
genes and 16S rRNA based molecular technologies—including fluorescence in situ hybridization
(FISH), denaturing gradient gel electrophoresis (DGGE), quantitative real-time polymerase chain
reaction (qRT-PCR), stable isotope probing (SIP) and related technologies (nanoscale secondary ion
mass spectrometry, NanoSIMS), microarray and proteomics—have been developed to analyze the
microbial community structure and gene diversities in various environments.

Stable isotope probing (SIP) has been used as probes or tracers to study dynamic
processes/mechanisms in complex biological systems. It partly enhances our understanding of
how individual microbial taxa affect ecosystem processes like element cycling by analyzing microbial
diversity of intact assemblages. However, it is a qualitative technique capable of identifying some
of the organisms that utilize a substrate, not a quantitative one capable of exploring the full range
of variation in isotope incorporation among microbial taxa [13]. NanoSIMS in combination with
stable isotope probing was applied to analyze and image biological samples, which helps us
better understand biological processes happening in complex systems. However, compared with
high-resolution microscopy techniques—such as scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and atomic force microscopy (AFM)—NanoSIMS do not reveal either
detailed surface structures or subcellular structures. Thus some topographical or morphological
information may not be gained for specific biological questions [14]. Proteomics to characterize
proteins differentially expressed by various types of cell or cells subjected to different environmental
conditions is an important tool to understand microbe mineral interaction and characterization of
microbial biodiversity. In leaching processes, iron oxidation and sulfur reduction by bioleaching
microbes occur mainly in the extracellular space. In agreement with this, several proteomics studies
revealed protein-associated molecules present in the extracellular polymeric substance (EPS) layers
that are able to accumulate sulfur and enhance the bioleaching of metal sulphides [15]. Researchers
determined the differential response in the proteome of the acidophilic halophile, Acidihalobacter
prosperus DSM 14174 (strain V6) at low and high chloride ion level, to thus understand the mechanism
of tolerance to high chloride ion stress in the presence of low pH [16]. Through protein identification,
stressing factors during chalcopyrite biomining were elucidated and new light was shed on resistance
systems deployed by Leptospirillum ferriphilumT [17]. Though proteomics provides direct information of
the dynamic protein expression, giving us a global analysis, it should be combined with genomics and
bioinformatics to systematically analyze all expressed cellular components so that a comprehensive
picture of biology can be possibly grasped. Those methods mentioned above are useful for less
diverse communities to some extent microbial diversity and couple microbial taxonomy diversity with
diversified functions may not be reflected integrally due to low throughput.
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Since the dawn of genetics, our view of the extent and complexity of microbe has been
altered [18]. Increased gene-based tools have made it possible for researchers to study natural microbial
communities’ structure and gene expression profiles through analysis of nucleic acids directly extracted
from environmental samples [19,20]. DNA microarrays have provided scientists with the capability to
simultaneously investigate thousands of fragments in a single experiment. The overwhelming wealth
of knowledge generated by microarrays has created entirely new fields of research [21]. Over the years,
hybridization-based microarray technologies as the dominant approaches have been instrumental
in exploring gene expression. Proven outcomes of hybridization-based microarray approaches have
accurately allowed deduction and quantification of the transcriptome [22–24]. Hybridization-based
methods are typically dependent on incubation of fluorescently labeled cDNA with probes fixed onto
solid surfaces (custom-made microarrays or commercial high-density oligo microarrays) [21]. Updated
microarrays, for instance, tiling microarrays with probes representing the genome at a high density,
can be used to map transcribed regions at a relatively high resolution and uncover novel transcripts.
Ever since its first utilization in 1995 [25], microarrays have been widely used in transcriptomics by
providing a high flux and relatively inexpensive access to genome-scale information, other than tiling
arrays that interrogate genomes at high resolution. Nevertheless, microarray technology is generated
with some inherent limitations [26–29], which include the dependence on preexisting knowledge about
genome sequence, high levels of background noise as a result of cross hybridization, saturation of
signals for high-abundant transcripts, and a narrow dynamic range of evaluating gene expression
levels. Additionally, it is difficult to compare expression levels of different tests and sophisticated
methods of normalization are needed.
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Equally revolutionary technologies are currently emerging in the form of new methods of
sequencing, termed massively parallel sequencing (MPS, also called next-generation/high- throughput
sequencing) [30,31]. The intrinsic problems characterized with microarray methods were conquered
with the introduction of high-throughput DNA sequencing technologies, which opened up new
horizons for our understanding of bacterial gene expression and regulation by allowing RNA
analysis through cDNA sequencing on a large scale [32]. DNA-based high-throughput sequencing
metagenomics have been applied to reveal microbial communities in marine water [33], soil [34],
activated sludge [35], human and animal guts [36,37], and animal waste [38]. However, questions of
how natural bacterial assemblages respond to perturbations in environmental conditions are better
answered by analysis of community mRNA than genomic DNA. RNA-Seq that directly sequences
the cDNA is not limited to detecting the transcripts that accord with known genomic sequence.
Therefore, identification, characterization, and quantification of new splice variants are allowed
by RNA-Seq [39]. Additionally, RNA-Seq approach possesses other advantages over microarray
technology, including low background signal, the inexistence of the ceiling for quantification and
thus a much larger dynamic range of expression levels over which transcripts can be detected [40].
In the last few years, high-throughput RNA sequencing technologies have been added to the toolbox
of microbial ecology and used to characterize the functional response of microbial communities to
changing environmental conditions [41–43]. This approach allows the determination of the most
highly transcribed genes of a community, thus providing first insights into community function under
a specific set of environmental parameters.

Recently, the active development of next-generation sequencing (NGS) technology-based
sequencing approaches has enabled comprehensive sequencing analysis of cellular RNA and
DNA within the reach of most laboratories. The goals of this review are (1) to briefly introduce
next-generation sequencing technologies; (2) to present the adoption of RNA-seq approach for
complete genome, microbial community, and transcriptomes characterization; and (3) to describe some
challenges confronted with sequencing technologies, and analyze the perspectives in light of rapid
evolution of sequencing technologies.

2. NGS for Addressing the Challenge of Analyzing the Microbial Ecology in Bioleaching
Environments

This review does not intend to describe sequencing technologies in depth, due to the pending
publication of extensive outstanding reviews [30,31,44]. High-throughput sequencing methods were
mainly based on 454 GS FLX (Roche, Basel, Switzerland), Genome Analyzer II (Illumina, San Diego,
CA, USA) and SOLiD (Applied Biosystems, Foster City, CA, USA) platforms (Figure 3). Regardless
of choosing sequencing platforms to address biological questions of interest, the disarmingly simple
principle behind these sequencing methods is that to learn the content of a complex RNA/DNA
sample, one can just sequence it directly without bacterial cloning as a prerequisite. Sequence census
assays that use next-generation sequencing technologies were mainly applied for determining the
sequence content and abundance of mRNAs, noncoding RNAs and small RNAs (RNA-seq) and for
scanning whole genome profiles of chromatin immunoprecipitation (ChIP-seq), methylation sites
(methyl-seq), and DNase I hypersensitivity sites (DNase-seq) [43].

RNA-Seq is another application of high-throughput sequencing and developed in multiple
laboratories. RNA-seq, also called whole transcriptome sequencing, utilizes next-generation
sequencing (NGS) technologies to profile RNA through sequencing cDNA, which is the conversion
of isolated transcripts of interest. The microbial RNA-seq method involves several basic steps
(Figure 3). The starting point is the extraction of RNA samples, followed by optional depletion
of tRNA and rRNA, construction of cDNA libraries, sequencing on a selected massively parallel
deep sequencing platform and the subsequent bioinformatic analysis of cDNA sequencing read
histograms [45]. Over the past few years, this deep-sequencing-based approach has been exploited
to reveal comprehensive insights to eukaryotic transcriptomes from yeast [46,47] to human [48,49] at
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an unprecedented level. Recently, RNA-sequencing technology has been emerging as a developed
tool for studying bacterial transcriptomes [40,50], and it has demonstrated high sensitivity for
genes expressed either at low or very high levels, thus having a much large dynamic range,
and accuracy in transcriptomes quantification and quantization [41,42,50]. In addition, the RNA-Seq
technology permits the delineation of operons and untranslated regions, allowing the improvement
and extension of sequence annotation [51], and the mapping of sequence data is more precise.
This allows transcription to be studied at higher resolution by sequencing, also defining at single
nucleotide resolution the transcriptional boundaries of genes and the expressed single nucleotide
polymorphisms (SNPs) [41–43], thereby also permitting the study of more repetitive regions of
the genome. Additionally, structural information can be used to refine annotated gene structures
or propose novel gene models [51]. Other advantages of RNA-Seq compared to microarrays
are that RNA-Seq data also show high levels of reproducibility for both technical and biological
replicates. Generally, for gene expression analysis, RNA-seq is an advanced alternative solution to
microarrays [52,53].
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2.1. NGS for Genome Analysis

Next-generation DNA sequencing is dramatically accelerating biological insight to microbial
life in many environments. Herein, we highlight progress in genomics of microbes from heap
leaching conditions and related acidic mining environments. For better understanding the ecology of
more complex natural environments, microbial ecology studies in model ecosystems are necessary.
Acid mine-related environments have been identified as a model ecosystem, partially on account
of biotic community characteristics in typical extreme environment [54], and it has been researched
broadly because of their importance in application in the biomining industry [55,56]. In leaching
systems, biochemical reactions with the participation of leaching microorganisms, coupled with
chemical reactions, lead to the sulfide mineral dissolution and consequent metal release [57].
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Also noteworthy is the effect of microorganisms to mineral bioleaching. The microbiology of
leaching environments—including physiology of the most common community members, microbial
successions [7,58], the relationship of the population dynamics with environmental factors [59,60],
and the influence of community composition on ecosystem functioning [61,62]—have always been the
target for research on bioleaching processes and mechanisms. Next generation sequencing technology
enables the comprehensive analysis of genomes, which can recover information about their general
characteristics, especially their metabolic potential [3,63].

By March 2016, 157 genomes of acidophiles were included in public databases. Among them,
29 (20%) are from microorganisms in bioleaching heaps or closely related mining environments [3].
These genomes are listed in Table 1. Additionally, there is plenty of relevant research on the
genomics and metagenomics of acidophilic microorganisms from bioleaching heaps or related
biomining environments. Through genomic analysis, genetic and predictive metabolic models of
some microorganisms and the suggestion of ecophysiological interactions during bioleaching were
produced [3].

Table 1. Available genomes of acidophiles associated with bioleaching heaps or related biomining
environments. Reproduced with permission from Pablo Cardenas et al. [3], published by Elsevier, 2016.

Organism NCBI
Accession Source Reference

Acidiplasma cupricumulans BH2 LKBH00000000 Mineral sulfide ore, Myanmar not available

Acidiplasma cupricumulans JCM 13668 BBDK00000000 Industrial-scale chalcocite bioleach heap,
Myanmar not available

Acidiplasma sp. MBA-1 JYHS00000000 Bioleaching bioreactor pulp, Russia not available
Sulfolobus acidocaldarius Ron12/I NC_020247 Uranium mine heaps, Germany [64]

Acidiphilium angustum ATCC 35903T JNJH00000000 Waste coal mine waters, USA not available
Acidiphilium cryptum JF-5 NC_009484 Acidic coal mine lake sediment, Germany not available
Acidiphilium sp. JA12-A1 JFHO00000000 Pilot treatment plant water, Germany [65]

Acidithiobacillus caldus ATCC 51756T CP005986 Coal spoil enrichment culture, UK [66]
Acidithiobacillus caldus SM-1 NC_015850 Pilot bioleaching reactor, China [67]

Acidithiobacillus ferrivorans CF27 CCCS000000000 Abandoned copper/cobalt mine drainage, USA [68]

Acidithiobacillus ferrivorans SS3 NC_015942 Enrichment culture from mine-impacted soil
samples, Russia [69]

Acidithiobacillus ferrooxidans ATCC 23270T NC_011761 Acid, bituminous coal mine effluent, USA [70]
Acidithiobacillus ferrooxidans ATCC 53993 NC_011206 Copper deposits, Armenia not available

Acidithiobacillus sp. GGI-221 AEFB00000000 Mine water, India not available
Acidithiobacillus thiooxidans A01 AZMO00000000 Wastewater of coal dump, China [71]

Acidithiobacillus thiooxidans ATCC 19377T AFOH00000000 Kimmeridge clay, UK [72]
Acidithiobacillus thiooxidans Licanantay JMEB00000000 Copper mine, Chile [73]

Acidithrix ferrooxidans DSM 28176T JXYS00000000 acidic stream draining in abandoned copper
mine, UK [74]

Ferrimicrobium acidiphilum DSM 19497T JQKF00000000 Mine water, UK [75]
Leptospirillum ferriphilum DSM 14647T JPGK00000000 Enrichment culture, Peru [76]

Leptospirillum sp. Sp-Cl LGSH00000000 Industrial bioleaching solution, Chile [77]
“Ferrovum myxofaciens” P3GT JPOQ00000000 Stream draining an abandoned copper mine, UK [78]

Ferrovum sp. JA12 LJWX00000000 Pilot treatment plant water, Germany [79]
Ferrovum sp. Z-31 LRRD00000000 Acid mine drainage water, Germany not available

Ferrovum sp. PN-J185 LQZA00000000 Acid mine drainage water, Germany not available
“Acidibacillus ferrooxidans” DSM 5130T LPVJ00000000 Neutral drainage from copper mine, Brazil [80]
Sulfobacillus acidophilus DSM 10332T NC_016884 Coal spoil heap, UK [81]

Sulfobacillus thermosulfidooxidans CBAR13 LGRO00000000 Percolate solution of a bioleaching heap in
copper mine, Chile not available

Sulfobacillus thermosulfidooxidans Cutipay ALWJ00000000 Naturally mining environment, Chile [82]
Sulfobacillus thermosulfidooxidans DSM 9293T (2506210005) * Spontaneously heated ore deposit, Kazakhstan not available

Bioleaching heap surface Metagenome (4664533.3) # Dexing Copper Mine, China [9]
Bioleaching heap PLS sample Metagenome (4554868.3) # Dexing Copper Mine, China [83]

Bioleaching heap sample Metagenome (4554867.3) # Dexing Copper Mine, China [83]
Acidithiobacillus thiooxidans CLST NZ_LGYM01000020.1 Gorbea salt flat, northern Chile. [84]

Note. T = type strain; * sequence only available in IMG-JGI where the IMG Taxon ID value is provided; # sequence
only available in MG-RAST where the correspondent ID value is provided.

Acidithiobacillus ferrooxidans (A. ferrooxidans), chemolithoautotrophic bacteria can obtain
energy from oxidation of elemental sulfur and ferrous compounds to maintain cell growth.
The gammaproteobacterium A. ferrooxidans is adapted to growth in the extreme environment and
accounts for a considerable part in mine-related contexts. It is commonly recognized as a model
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organism for the investigation of metal sulfide bioleaching [70]. The contribution of A. ferrooxidans to
mineral bioleaching has been widely studied, whereas to gain insight into their biology, bioinformatic
analysis of genome information has been a major route.

Over a decade ago, the genome of A. ferrooxidans ATCC 23270 was sequenced and first published in
draft form [85]. Based on analysis of microbial genomes, reconstruction of amino acid metabolism and
sulfur assimilation [86,87], prediction of fur regulation [88], acyl homoserine lactone production [89],
quorum sensing [90,91], the formation of extracellular polysaccharide [92,93], carbon metabolism and
iron and sulfur oxidation [94–96] were carried out. Furthermore, predictive models of genetic and
metabolic potential of bioleaching bacteria were solidified and extended [3], ascribing to the published
complete genome sequence of A. ferrooxidans in 2008. Generally, the first glimpse of genome of A.
ferrooxidans by sequencing accelerates our understanding of acidophilic life in bioleaching conditions.
However, this information is insufficient to allow a reasonable description of the genetic complexity
and the prediction of metabolic capabilities and interactions with other acidophiles in bioleaching
processes. Therefore, the genomes from A. ferrooxidans as model organism cannot serve as substitutes
for constructing genetic and metabolic models of another bioleaching bacterium [3]. Additionally,
there are other microorganisms involved in bioleaching in addition to A. ferrooxidans. In order to know
the linkage between ecophysiological interactions with ecological functions, it is urgent to study the
nucleotide sequences of another various bacterium. Ever since 2008, the implementation of many
genome sequencing projects on strains has made the draft genomes of other bioleaching bacteria
become exploitable.

Leptospirillum ferriphilum (L. ferriphilum), chemolithoautotrophic, and acidophilic bacteria,
can get energy through Fe2+ oxidation, and they are one of key players in the sulfide mineral
bioleaching system due to their capability of iron oxidization. Four subspecies of Leptospirillum
including Leptospirillum ferrooxidans (L. ferrooxidans), Leptospirillum rubarum (L. rubarum), Leptospirillum
ferrodiazotrophum (L. ferrodiazotrophum), and L. ferriphilum, have been identified. However, limited
knowledge of ways to obtain energy and nutrients for growth, mechanisms for nitrogen fixation,
adsorption of bacteria to mineral surface, and the ability to adapt bioleaching conditions with acidic
pH, high metal concentrations and reactive oxygen species, hinder the understanding of Leptospirillum
that lagged by comparison to the Acidithiobacillus genus. The illumination of metabolic properties
and ecophysiological interactions in leaching systems was blocked, ascribing to the only available
draft genome of the L. ferriphilum strain in spite of already published genomes of L. ferriphilum
strains [17]. Stephan Christel centered on in-depth analysis of characterization of this organism’s
metabolic potential via sequencing the L. ferriphilumT DNA and reconstructed the model of the genomic
potential observed in the L. ferriphilumT genome [17]. The genetic information provided by this study
advanced the investigation of the role of L. ferriphilumT in the acid mine and bioleaching processes.

The bacteria leaching of sulphide minerals is a process that needs the involvement of both iron-
and sulfur-oxidizing microorganisms. Acidithiobacillus thiooxidans (A. thiooxidans), sulfur oxidizer,
gains energy through oxidizing elemental sulfur (S◦) and sulfur compounds to support cell growth and
carry out bioleaching processes [95]. Inadequate published data on A. thiooxidans genome limited our
study of its physiology [97]. The advent of NGS allows for sequencing the A. thiooxidans whole genome,
and consequently the construction of a preliminary model of its whole genome. Especially, the genomic
elements related to sulfur oxidation were studied. All these findings accelerated the understanding of
its bioleaching potential and adaptive capacity to ore leaching environment. Three genome sequences
of A. thiooxidans ATCC 19377, A01, and CLST have been published in draft form, which provided
valuable information on general features of A. thiooxidans [71,72,84]. In order to acquire new insights
to the bioleaching characteristics of A. thiooxidans, Dante Travisany [73] conducted a gene study on
A. thiooxidans strain isolated from a Chilean copper mine, and in 2014, a new genome sequence from
Licanantay (DSM17318) was released by them. By genetic comparison analysis with A. thiooxidans
ATCC 19377 and A01, a certain similarity in coding sequences appeared in A. thiooxidans Licanantay.
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Additionally, the unique genes observed in the genome of A. thiooxidans Licanantay suggests its
adaptation to specific extreme environment and its bioleaching potential.

In general, NGS technology allowing processing DNA sequences can produce draft genomic
sequences of more bioleaching bacteria, which provides an opportunity to predict models of genetic
and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of
bioleaching microorganisms.

2.2. NGS for Analysis of Bacterial Diversity Present in the Ore Leaching Environment

Bioleaching microorganisms inhabiting extreme environment are involved in the biochemical
cycling of elements, such as sulfur, iron, and various metals. They play integral and unique roles in
leaching systems, and their structure, interaction, and dynamics to leeching conditions are critical
to mineral dissolution and metal recovery. Gaining insight to microbial community structure and
functions is critical for understanding the bioleaching process and eventually improving leaching
efficiency. To investigate the community structure, searching for more available molecular markers
and techniques has always been a subject of importance. The appropriate molecular marker used
for microbial phylogenetic reconstruction, identification, and classification of strain is the 16S
ribosomal RNA, partially due to its strain specialty and highly conserved sequence and structure [98].
NGS with traits of high throughput, specificity, and relative quantification easily detect more microbial
diversity. Effective high-throughput sequencing that focuses on targeted phylogenetic markers (e.g.,
16S rRNA) [99–101] has been applied to characterize community diversity.

To date, some studies have used this kind of approach to assess the dynamics of bioleaching
microorganisms inhabiting industrial or natural environment. Baker and colleagues [102] applied
metagenomics analyses of acidophilic communities in acid mine drainage (AMD) at Iron Mountain
California, expanding our view from individual genes and cultures to entire communities. Additionally,
metagenome-scale analysis of bioleaching heaps [9,101,103] and acidic hot springs [104] yield insights
into the structure and function of microbial communities, allowing the establishment of correlations
between the occurrence of certain microbes, their activities and the geochemistry of cognate sites [105].
With the 16S rRNA gene sequencing, the shift of microbial communities in leaching heap, leaching
solution (LS), and sediment subsystems in Dexing Copper Mine were examined by Jiaojiao Niu
(Figure 4) [62], showing that Acidithiobacillus, Leptospirillum, and Acidiferrobacter (S and Fe oxidizers)
were dominate strains in leaching heap and leaching solution while Acidiphilium (S and Fe reducer)
were more abundant in the sediment. It indicated that the significant shift in community structures
of subsystems might be a result of different geochemical conditions. NGS-based analyses for the
microbial ecology within acidophilic communities in the Pb/Zn mine in China and low-temperature
AMD waters originating from sulfide mine in Sweden have also be reported. The relative abundance
of ferrivorans-like, A. ferrooxidans-like and A. thiooxidans-like strains has allowed for variability
analyses [106]. All these found that the relative abundance of iron-oxidizing Acidithiobacillus species
varies consistently with changing Fe3+ and Cu2+ concentrations [107], and it was dominant in the
systems with lower ferric to ferrous iron concentrations and pHs above 3. However, sulfur-oxidizing
Acidithiobacillus were dominant species in hot springs with rich sulfide.

In general, the NGS-based method with sufficient sequencing depth allows to capture the genomic
information and ecological roles of low-abundance populations. It provides information concerning
the dynamically shifted microbial communities to geochemical conditions. The advent of sequencing
technologies studying the compositions and dynamics of microbial communities at the rRNA level
has created unprecedented opportunities to reveal the ecology and evolution of extreme acidic
microbial assemblages.
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2.3. NGS for Analysis of Gene Expression in Bioleaching Microorganisms

In extreme ore leaching environments, bioleaching microorganisms mainly have to maintain
a near-neutral intracellular pH, preclude invasion of extraneous nucleic acid substances, respond to
scarce availability of substrates and solvent extraction process, and resist to metal ions (Figure 5).
It is of great importance to know how they thrive and develop in an extreme environment.
Transcriptional analysis helps to fully understand biological processes in bioleaching microorganisms,
such as development, adaptive evolution, and stress response. Unlike static genomes, transcripts
dynamically change with developmental stage, physiological condition, and external environment.
High-throughput mRNA sequencing technologies, termed RNA-seq, can be for both mapping
and quantifying transcriptome and have demonstrated high efficiency in quantifying the changing
expression level of each transcript under different conditions. They are now displacing microarrays
and being exploited for transcriptional analysis as the preferred method. RNA-seq is a powerful tool
for dissecting the relationship between genotype and phenotype, leading to interpreting functional
elements of the genome and revealing the molecular mechanisms of adaption.
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In order to expound adaptation mechanisms of bioleaching microorganisms to the extreme
environment, information from genomic and transcriptomic assays is in demand. Stephan Christel [17]
and colleagues used multi-omics to reveal the lifestyle of the acidophilic, mineral-oxidizing model
species L. ferriphilum. Through RNA transcript sequencing and proteomics, the genes for growth
using Fe2+ as substrate and during chalcopyrite biomining were identified. According to their study,
a previously unrevealed cluster for nitrogen fixation was captured, and metabolic processes including
energy conservation, carbon dioxide fixation, pH homeostasis, metal resistance, oxidative stress
management, chemotaxis and motility, quorum sensing and c-di-GMP, and biofilm formation were
illuminated through analysis of mRNA transcripts. In addition, heavy metal resistance, chemotaxis,
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and motility systems of L. ferriphilumT grown with chalcopyrite were found at higher expression levels
in comparison with those in L. ferriphilumT grown with Fe2+ as substrate, which explained that elevated
exposure of cells grown on minerals to heavy metals and rapid cells attachment to mineral surface.
This study enhanced our understanding of the role of L. ferriphilumT in acid mine and rock drainage as
well as bioleaching processes, and optimization bioleaching conditions for metal extraction.

Many studies on the adaptation mechanisms of bacteria to acid mine drainage have been reported.
However, fewer have been carried out on microorganisms in acid mine drainage at high altitude.
On the basis of transcript analysis using RNA-seq, Tangjian Peng [108] uncovered the adaptation
mechanisms of A. ferrivorans strain YL15 to the acid mine drainage environment in Yulong copper
mine in Southwest China. Many genes of A. ferrivorans strain YL15 residing in low- temperature
condition that are involved in protein synthesis, transmembrane transport, energy metabolism and
chemotaxis were found to show a higher expression level. Additionally, a bacterioferritin Dps (DNA
binding proteins) gene had higher RNA transcript counts at low temperature, which was related to
DNA protection against oxidative stress at low temperature. Through transcriptomic analysis, the cold
adaptation mechanisms of A. ferrivorans strain YL15 were illuminated, and a predictive model of the
adaption of A. ferrivorans strain YL15 to the alpine acid mine drainage environment was proposed.
The valuable information from this study deepens our understanding of adaption mechanism of
bioleaching strain.

There have been relevant studies describing the dynamic of the structure and function of the
microbial community in bioleaching heaps [109,110]. Based on bioinformatics analyses of available
genomes, a proposed preliminary model relates the dynamics with three different pathways of CO2

fixation including Calvin Benson Bassham cycle (CBB), the reductive citric acid cycle (rTCA) and the
3-hydroxypropionate/4-Hydroxybutyrate cycle. However, it is hard to support this presumption due
to lack of proteomic or transcriptomic evidence. Using RNA-seq, Sabrina Marín [111] studied carbon
fixation pathways at the transcriptomic level in a controlled heap-like environment. Transcriptomic
evidence showed that the active CBB and rTCA key genes were detected in the bioleaching
environment, confirming the proposed active function of the regulation system in this bioleaching
condition. These findings promote our understanding of the positive effect of high temperature on
chalcopyrite leaching, thus optimizing bioleaching technology.

It is widely known that bioleaching microorganisms have to cope with complex extreme
environment. Microbial ecology relates to community structure and function, and this varies
across environmental types. However, analyses of microbial ecology of bioleaching bacteria are
still a challenge. NGS technologies provide valuable insights into this aspect of gene expression
profiling and therefore enhance our understanding of ecology and evolution of extreme acidic
microbial assemblages.

3. Challenges and Prospect

The effectiveness of high-throughput sequencing as a tool for the identification of bioleaching
microbial species and gene expression profiling has been demonstrated. However, it is still confronted
with several challenges. First, experimental data can probably not reflect the actual composition of the
sample due to bias introduction by cDNA libraries preparation. Several manipulation stages during
the production of cDNA libraries include reverse transcription, ligation, and random priming. During
reverse transcription, the first strand cDNA as well as the second strand are sometimes synthesized
by enzymes. Inefficient or efficient RNA-RNA or RNA-DNA ligation at some sequences, combined
with uneven coverage caused by random priming, may create different bias in the outcome [112,113].
All these can complicate the use of RNA-Seq in transcript profiling. Second, RNA-Seq faces informatics
challenges resulting from the large amount of data. These data have to be processed for reconstruction
of full transcripts, individual variant analysis, and even quantitation of expression levels for each
transcript and gene, all of which should be assisted by a variety of software and bioinformatics
tools and significant levels of expertise with programming skills. Thus, it is a challenge to analyze
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large datasets produced by the different NGS technologies. Third, in order to definitely meet the
needs of high-throughput sequencing work, the DNA or RNA extracted should be relatively high in
concentration, and this indicates that the genetic analysis based on NGS may be limited because of
small amount of some biological samples. Finally, higher cost for more sequencing depth which is
required for adequate sequence coverage must be taken into consideration.

In spite of these challenges, high-throughput sequencing has already created a tremendous
amount of influences on our understanding of microbial ecology of the leaching environment. It allows
us to investigate the transcription at single-nucleotide resolution, which enriches our knowledge of
microbial diversity, and will undoubtedly show us many different approaches adopted by bioleaching
bacteria to solve problems encountered in their respective niches. As the sequencing technology
develops rapidly and its cost decreases, high-throughput sequencing as culture-independent approach
has opened up new avenues for genomes of complex microbial communities and gene expression,
and it is taking place of microarrays as the preferred method for studying microbial communities and
gene expression profiling, thus helping us understand evolutionary mechanisms and dynamics.

4. Conclusions

With the purpose of improving bioleaching rate, understanding the structure, functions,
activities, and dynamics of microbial communities in bioleaching environments is always of
concern. Next-generation sequencing technologies are dramatically accelerating biological insight
to microbial life in these extreme conditions. Thus, this paper provides a review of describing
the high-throughput sequencing approach, particularly focusing on its application associated with
challenges in understanding bioleaching environmental microorganisms. NGS technology can process
DNA sequences and can produce available draft genomic sequences of more bioleaching bacteria,
which provides an opportunity to predict models of genetic and metabolic potential of bioleaching
bacteria. Moreover, the NGS-based method studying the compositions and dynamics of microbial
communities at the rRNA level, has created unprecedented opportunities to reveal the ecology and
evolution of extreme acidic microbial assemblages. Additionally, it provides valuable insights into this
aspect of gene expression profiling and therefore enhances our understanding of ecology and evolution
of extreme acidic microbial assemblages. In conclusion, in spite of challenges, high-throughput
sequencing has already had a tremendous influence on our understanding of the microbial ecology of
leaching environments.
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AMD Acid Mine Drainage
CBB Calvin–Benson–Bassham cycle
DGGE Denaturing Gradient Gel Electrophoresis
FISH Fluorescence in situ hybridization
LH Leaching Heap
LS Leaching Solution
MPS Massively Parallel Sequencing
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NanoSIMS Nano-scale Secondary Ion Mass Spectrometry
NGS Next-generation sequencing
PLS Pregnant Leach Solution
qRT-PCR quantitative Real-Time Polymerase Chain Reaction
rTCA Reductive Citric Acid Cycle
RICS Reduced Inorganic Sulfur Compounds
SIP Stable Isotope Probing
SNPs Single Nucleotide Polymorphisms
WGS Whole Genome Sequencing
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