

Correction

Correction: Toda, K., et al. Key Factors Affecting Strength Development of Steel Slag-Dredged Soil Mixtures. *Minerals* 2018, *8*(5), 174

Kanako Toda¹, Haruna Sato¹, Nilan Weerakoon¹, Tsubasa Otake², Satoshi Nishimura³ and Tsutomu Sato^{2,*}

- ¹ Graduate School of Engineering, Hokkaido University, 1-3 Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan; knktd@eis.hokudai.ac.jp (K.T.); haruna.s.0413@gmail.com (H.S.); ranjananrw@gmail.com (N.W.)
- ² Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, 1-3 Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan; totake@eng.hokudai.ac.jp
- ³ Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University, 1-3 Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan; nishimura@eng.hokudai.ac.jp
- * Correspondence: tomsato@eng.hokudai.ac.jp; Tel.: +80-011-706-6305

Received: 17 October 2018; Accepted: 17 October 2018; Published: 22 October 2018

The authors wish to make the following corrections to this paper [1]: Toda, K.; Sato, H.; Weerakoon, N.; Otake, T.; Nishimura, S.; Sato, T. Key Factors Affecting Strength Development of Steel Slag-Dredged Soil Mixtures. *Minerals* **2018**, *8*, 174.

1. Change in Main Body Paragraphs

On page 2 of 16, lines 90–91, the sentence "Purified humic acid content was highest in soil D (2.04%) followed by C (1.23%), A (1.02%) and B (0.74%)" should be "Purified humic acid content was highest in soil D (0.30%) followed by B (0.20%), C (0.14%) and A (0.09%)". Consequently, on page 11 of 16, lines 320–322, the sentence "This suggests that the content of humic acids in soils A, B, C and D (0.74–2.04%) is not sufficient to act as a pH buffer" should be "This suggests that the content of humic acids in soils A, B, C and D (0.09–0.30%) is not sufficient to act as a pH buffer".

These changes have no material impact on the conclusions of our paper. We apologize to our readers.

2. Change in Table

Due to mislabeling, replace Table 2:

Table 2. Mineral dissolution rates and surface areas of silica-bearing phases loaded in the geochemical modeling as reactants.

	Mineral Dissolution Rate (mol/cm ² ·s)	Surface Area (cm ² /g)	Reference	Vol %	
				Run 1	Run 2
Quartz	$5.37 imes10^{-15}$	1110	Brady and Walther (1990) [27]	10	10
Albite	$4.17 imes 10^{-15}$	750	Chou and Wollast (1985) [28]	9	9
Smectite	$1.97 imes 10^{-16}$	53,000	Sato et al. (2004) [29]	7	7
Kaolinite	$3.31 imes 10^{-16}$	81,600	Huertas (1999) [30]	6	6
Amorphous Silica	$9.40 imes10^{-9}$	4~5	Niibori et al. (2000) [31]	16	4

with

	Mineral Dissolution Rate (mol/cm ² ⋅s)	Surface Area (cm²/g)	Reference	Vol %	
				Run 1	Run 2
Quartz	$5.37 imes10^{-15}$	1110	Brady and Walther (1990) [27]	10	10
Albite	$4.17 imes10^{-15}$	750	Chou and Wollast (1985) [28]	9	9
Smectite	$1.97 imes10^{-16}$	53,000	Sato et al. (2004) [29]	7	7
Kaolinite	$3.31 imes 10^{-16}$	81,600	Huertas (1999) [30]	6	6
Amorphous Silica	$9.40 imes10^{-12}$	5000 (Adjusted)	Niibori et al. (2000) [31]	16	4

Table 2. Mineral dissolution rates and surface areas of silica-bearing phases loaded in the geochemical modeling as reactants.

Reference

1. Toda, K.; Sato, H.; Weerakoon, N.; Otake, T.; Nishimura, S.; Sato, T. Key Factors Affecting Strength Development of Steel Slag-Dredged Soil Mixtures. *Minerals* **2018**, *8*, 174. [CrossRef]

@ 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).