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Abstract: Chalcopyrite and bornite are two important copper minerals, and they often coexist. In this
study, the co-bioleaching of chalcopyrite and silver-bearing bornite by mixed moderately thermophilic
culture at 50 ◦C was investigated. The bioleaching results show that the extraction percentage of Cu
for co-bioleaching of chalcopyrite (Ccp) and silver-bearing bornite (Bn) (Ccp/Bn = 3:1) was 94.6%.
Compared to bioleaching of chalcopyrite or silver-bearing bornite alone, the Cu extraction percentage
was greatly enhanced when they were bioleached together. The leaching residues were characterized
by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Silver-bearing bornite
dissolved preferentially compared to chalcopyrite, due to galvanic interactions. Simultaneously, Ag+

was released from the silver-bearing bornite into solution. Ag2S formed on the surface because Cu and
Fe in the chalcopyrite were replaced by Ag+, accelerating chalcopyrite dissolution and enrichment of
Ag on the surface of the chalcopyrite.
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1. Introduction

Chalcopyrite (CuFeS2) is a primary copper resource worldwide [1,2], and hydrometallurgy of
chalcopyrite has been attracting more and more research attention [3–6]. Chalcopyrite is difficult
to be leached, though, owing to the passivation of the mineral surface [7–10], which contains
S2

2− [7,11], Sn
2− [7,12], Cu1−xFe1−yS2−z [13,14], Cu5FeS4 [13], CuS [13], CuS2 [15], S0 [11], and

jarosite [11,16], all considered passivation composites. However, Crundwell et al. [17] argued that
the rate of chalcopyrite dissolution is intrinsically slow due to its semiconducting properties, and
is not limited by passivation film. Several studies have been undertaken to improve chalcopyrite
leaching [18–21]. Redox potential, or the ratio of Fe3+/Fe2+, is considered to play a key role in
chalcopyrite leaching [8,9,22–24]. Hiroyoshi et al. [25] found that the leaching of chalcopyrite can
be accelerated by the addition of Fe2+ and Cu2+. The leaching efficiency of chalcopyrite can also be
improved by the addition of pyrite, because of its galvanic interaction [26,27], and also the addition of
silver ions or silver-bearing materials greatly enhances the dissolution of chalcopyrite [28–33]; several
different mechanisms have been proposed for silver-catalyzed chalcopyrite leaching [34–38].

A number of studies have been conducted on the bioleaching of bornite [39–42] because bornite
(Cu5FeS4) is another important Cu-Fe-S mineral [1]. The bioleaching of bornite by Acidithiobacillus
ferrooxidans was evaluated in oxygen uptake and shake flask experiments. Covellite was detected as
a secondary phase [43], and cell action on the surface of the bornite accelerated the leaching rate via
both direct and indirect mechanisms [44]. Recently, the combined effects of chalcopyrite and bornite
during bioleaching have been investigated, and it was found that the bioleaching of chalcopyrite was
enhanced in the presence of bornite [41,45,46].
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Chalcopyrite and bornite are two important Cu-Fe-S minerals, and they often coexist [47–49].
The objective of this research was to investigate the co-bioleaching of chalcopyrite and silver-bearing
bornite using a mixed moderately thermophilic culture at 50 ◦C. The leaching residues were
characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

2. Materials and Methods

2.1. Mineral Samples

The chalcopyrite used in this study was obtained from Tonglvshan Mine, Daye, China. The bornite
samples were purchased from GaoWanTong fossil specimen museum, Guilin, China. High-quality
natural mineral samples were splintered into small fragments using a geological hammer, and then
dry ground with porcelain ball milling. The particle size of the samples used for the bioleaching
experiments was less than −0.074 mm. Chemical analysis of the samples showed that the chalcopyrite
sample consisted of 33.91% Cu, 30.62% Fe, 32.90% S, 0.039% Pb, 0.018% Zn and 6.91 g/t Ag; and the
bornite samples, of 62.38% Cu, 10.55% Fe, 22.60% S, 0.500% Pb, 0.048% Zn and 4635.48 g/t Ag.
Aside from the special notes, all of the percentages (%) in this paper refer to weight percentage (wt %).

2.2. Bioleaching Experiments

The mixed moderately thermophilic culture consisted of Sulfobacillus thermosulfidooxidans, together
with a small amount of Acidithiobacillus caldus and Ferroplasma sp; this culture was an enrichment
from a leaching solution sample at 50 ◦C, and was obtained from Inner Mongolia, China [7]. In each
experiment, 2 g of sample was added into 250 mL flasks containing 100 mL of medium (components:
3.0 g/L (NH4)2SO4, 0.5 g/L K2HPO4, 0.5 g/L MgSO4·7H2O, 0.1 g/L KCl, 0.01 g/L Ca(NO3)2, and
0.02% yeast extract, with a pH of 1.6). The experimental sets are presented in Table 1. The initial
concentration of cells was 1.0 × 107 cells/mL. The flasks were placed in an orbital shaker at 160 rpm
and 50 ◦C. The solution pH was adjusted periodically to 1.6 with diluted sulfuric acid. In addition,
1.0 mL of leaching solution was sampled and analyzed for Cu and Fe using inductively coupled
plasma-atomic emission spectrometer (ICP−AES) (PS−6, Baird, Bedford, MA, USA). The sample
volume was replaced with an equal volume of medium. Water lost to evaporation was supplemented
periodically by adding distilled water until the mass of the flask equaled its initial mass.

Table 1. Leaching experiment sets.

No. CuFeS2 (g) Cu5FeS4 (g) Condition

1 2 0 Sterile control
2 2 0 Bioleaching
3 0 2 Sterile control
4 0 2 Bioleaching
5 0.5 1.5 Bioleaching
6 1.0 1.0 Bioleaching
7 1.5 0.5 Bioleaching

2.3. Electrochemical Test

The electrodes were prepared from high-quality natural chalcopyrite and bornite. The effective
area of the electrode exposed to the solution was 1 cm2. Before each electrochemical test, the surface of
the electrode was polished with 600-grit and 2500-grit metallographic abrasive papers, sequentially,
and then rinsed with deionized water. Electrochemical tests were performed using a conventional
three-electrode electrolytic cell: a counter electrode (graphite rod), a reference electrode (saturated
Ag/AgCl electrode), and a working electrode (chalcopyrite or bornite electrode). The electrolyte
solution consisted of 3.0 g/L (NH4)2SO4, 0.5 g/L K2HPO4, 0.5 g/L MgSO4·7H2O, 0.1 g/L KCl, and
0.01 g/L Ca(NO3)2, pH 1.6. The scan rate of the Tafel polarization was 0.5 mV/s. All tests were
conducted at 50 ◦C.
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2.4. Analytical Techniques

The solution pH was measured with a pH meter (BPP-922, BELL Analytical Instruments (DaLian)
Co., Ltd., Dalian, China) and the solution potentials were measured with a Pt electrode with reference to
a saturated Ag/AgCl electrode. The leaching residues were filtered and rinsed with dilute sulfuric acid
(pH 1.6) at room temperature and atmosphere, and then the samples were transferred into a vacuum
box, and dried at 40 ◦C; afterwards, all of these properly dried samples were used for analysis with
XRD (Advance D8, Bruker AXS, Karlsruhe, Germany) and XPS (ESCALAB 250Xi, Thermo Fisher
Scientific, Waltham, MA, USA). XPS was conducted with a monochromatic Al excitation (1486.6 eV)
operating at 200 W, and the chamber pressure was 1 × 10−9 mbar. High-resolution spectra were
collected using a pass energy of 20 eV and an energy step of 0.1 eV. Binding energy calibration was
based on C 1s at 284.6 eV. A summed Gaussian (70%)–Lorentzian (30%) function was used for peaks
fitted to the high-resolution spectra.

3. Results

3.1. Leaching Characteristics

The leaching characteristics of the minerals, in terms of changes in the extraction percentages of
Cu and Fe, pH and redox potentials, by sterile controls and microorganisms, are shown in Figure 1.
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Figure 1. Copper extraction (a); iron extraction (b); pH (c) and redox potential (d) in leach liquors 
during the leaching process.  
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Figure 1. Copper extraction (a); iron extraction (b); pH (c) and redox potential (d) in leach liquors
during the leaching process.

Under the sterile control, 4.8% of the Cu and 5.1% of the Fe were leached from the chalcopyrite
after 30 days (Figure 1a,b), and compared to chemical leaching, the extraction percentages of Cu and Fe
for bioleaching of chalcopyrite were 21.5% and 17.0%, respectively. Simultaneously, the Fe extraction
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percentage decreased owing to the precipitation of Fe3+ as jarosite after 24 days of bioleaching [7,50].
The pH of the solution changed slightly because only a small amount of chalcopyrite was leached
either by chemically or microorganisms (Figure 1c). During the bioleaching of chalcopyrite, Fe2+ in
the solution was oxidized to Fe3+ by ferrous oxidizing microbials, and thus redox potentials rose and
stabilized at about 630 mV, while the redox potentials of chemical leaching stabilized at about 370 mV
(Figure 1d).

The extraction percentages of Cu and Fe for the chemical leaching of bornite after 30 days were
36.7% and 18.5%, respectively, whereas 59.4% of Cu and 18.2% of Fe were bioleached from the bornite.
Figure 1c shows that a large amount of H+ was consumed during both chemical and bio-leaching of
bornite. In the first 10 days of bornite bioleaching, the Fe2+ was oxidized into Fe3+ by ferrous oxidizing
microbials, resulting in a redox potential increase to 460 mV. The potential slowly decreased from 460
to 380 mV over the following 20 days because the rate of Fe2+ oxidation to Fe3+ by the microorganisms
was less than the consumption rate of Fe3+ via bornite oxidation (Figure 1d). In contrast, the potentials
increased slowly and reached 370 mV after 30 days of leaching in the sterile control.

Compared to bioleaching of chalcopyrite (Ccp) or bornite (Bn) alone, the Cu extraction percentage
was greatly enhanced in co-bioleaching (Figure 1a). When the ratio of Ccp/Bn was 1:3, the
extraction percentages of Cu and Fe for co-bioleaching of chalcopyrite and bornite were 91.1%
and 16.4%, respectively; and when the ratio of Ccp/Bn was 1:1, 89.0% of the Cu and 11.9% of the
Fe were synergistically bioleached after 30 days. Interestingly, when the ratio of Ccp/Bn was 3:1,
the extraction percentage of the Cu and Fe for co-bioleaching of chalcopyrite and bornite were 94.6%
and 48.0%, respectively.

A large amount of H+ was consumed during the co-bioleaching of chalcopyrite and
bornite (Figure 1c). When the ratio of Ccp/Bn was 1:3 or 1:1, the change in redox potentials was
similar to that when leaching bornite alone. In the first five days of co-bioleaching chalcopyrite and
bornite, the redox potentials went up to about 540 mV, and then the potential slowly decreased and
finally stabilized in the range of 450 to 480 mV. However, the redox potentials were still higher than
those from leaching bornite alone (Figure 1d). When the ratio of Ccp/Bn was 3:1, the change in redox
potentials was similar to that of leaching chalcopyrite alone. The redox potential increased with time
and finally reached 630 mV (Figure 1d).

In summary, 21.5% of Cu was bioleached from the chalcopyrite; compared to bioleaching of
chalcopyrite, bornite was more easily bioleached, but 40.6% of the Cu was still locked in the residues.
When chalcopyrite and silver-bearing bornite were co-leached in a mixed moderately thermophilic
culture, both Cu extraction percentages were greatly enhanced.

3.2. Characterization of the Leaching Residues

In order to better understand the co-bioleaching of chalcopyrite and bornite (when the ratio of
Ccp/Bn was 3:1) in a mixed moderately thermophilic culture, the leaching residues were characterized
by XRD and XPS.

As shown in Figure 2, the XRD patterns of co-bioleaching chalcopyrite and bornite (when the
ratio of Ccp/Bn was 3:1) show that only the characteristic peaks of chalcopyrite were detected after 5
and 10 days of bioleaching (Figure 2D,E). Simultaneously, the mineralogical analysis of the leaching
residues shows that 81% of the bornite and 15% of the chalcopyrite were bioleached after 5 days.
Thus, the bornite preferentially dissolved. When the mixed sample was bioleached for 15 days, the
main composition of the leaching product was still chalcopyrite, together with low-intensity peaks of
jarosite (Figure 2F). Jarosite and elemental sulfur were detected after 30 days of bioleaching, and, at
the same time, low-intensity peaks of chalcopyrite were detected (Figure 2G).

The chalcopyrite, bornite, and leaching residues were also analyzed using XPS. The survey
(full range) XPS spectra of the samples are provided in Figure 3. Prior to the bioleaching of chalcopyrite,
C, O, Cu, Fe and S peaks were identified (Figure 3A). For the bornite, in addition to C, O, Cu, Fe, and S
peaks, a low-intensity Ag peak was also detected (Figure 3B). The peak intensity of Cu 2p decreased
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with leaching time and eventually disappeared. A low-intensity silver peak was detected between 5
and 23 days (Figure 3C–F), but disappeared after 30 days of bioleaching (Figure 3G). A low-intensity
nitrogen peak was detected throughout the bioleaching process; this could have originated from
ammoniojarosite (Figure 3C–G). The changes in atomic percentages on the surface of residues during
the bioleaching process are shown in Figure 3H.

Minerals 2017, 8, 4  5 of 14 

 

C, O, Cu, Fe and S peaks were identified (Figure 3A). For the bornite, in addition to C, O, Cu, Fe, and 
S peaks, a low-intensity Ag peak was also detected (Figure 3B). The peak intensity of Cu 2p decreased 
with leaching time and eventually disappeared. A low-intensity silver peak was detected between 5 
and 23 days (Figure 3C–F), but disappeared after 30 days of bioleaching (Figure 3G). A low-intensity 
nitrogen peak was detected throughout the bioleaching process; this could have originated from 
ammoniojarosite (Figure 3C–G). The changes in atomic percentages on the surface of residues during 
the bioleaching process are shown in Figure 3H. 

 
Figure 2. X-ray diffraction (XRD) patterns of co-bioleaching chalcopyrite and bornite (ratio of Ccp/Bn 
was 3:1). (A) bornite, (B) chalcopyrite, (C) Ccp/Bn = 3:1, (D) 5 days, (E) 10 days, (F) 15 days,  
(G) 30 days. 

 

10 20 30 40 50 60 70 80

♦
♦

♦
♦ ♦

♦

♦

♦♦♦

2-Theta (°)

•
•

•

B

E

G

D

C

F

A

••

•

♦♦♦ ♦♦

•

•
•

In
te

ns
ity

 (
a

.u
.)

•

•
•

∗

•

•
•

■

25 26 27 28 29 30

∗
∗

• Chalcopyrite

• ∗∗ ∗ ∗∗ ∗ ∗∗ ∗

∗

■

■ ■

∗ ♦ Bornite ∗ Jarosite ■ Sulfur

1400 1200 1000 800 600 400 200 0
0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

2.0x106

A

S
 L

M
1

C
 K

L1

O
 K

L1

In
te

n
si

ty
 (

C
P

S
)

Binding Energy (eV)

F
e 

LM
6

F
e 

LM
4

F
e

 L
M

2

F
e

 3
S

F
e 

3p

C
u 

2s

C
u 

2p
1/

2
C

u 
2p

3/
2

F
e 

2p
C

u
 L

M
3

C
u 

LM
2

O
 1

s

S
 2

s

S
 2

p
C

u 
3s

C
u 

3pC
 1

s

 

1400 1200 1000 800 600 400 200 0
0.0

5.0x105

1.0x106

1.5x106

2.0x106

C
 K

L1

B

A
g 

3d

In
te

n
s

it
y

 (
C

P
S

)

Binding Energy (eV)

F
e 

LM
6

F
e 

LM
4

F
e 

LM
2

F
e 

3S
F

e 
3p

C
u 

2s
O

 K
L1

C
u 

2p
1/

2

C
u 

2p
3/

2

F
e 

2p
C

u 
LM

3

C
u 

LM
2

O
 1

s

S
 2

s

S
 2

p
C

u 
3s

C
u 

3pC
 1

s

Figure 2. X-ray diffraction (XRD) patterns of co-bioleaching chalcopyrite and bornite (ratio of Ccp/Bn
was 3:1). (A) bornite, (B) chalcopyrite, (C) Ccp/Bn = 3:1, (D) 5 days, (E) 10 days, (F) 15 days, (G)
30 days.
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Figure 3. Survey (full range) X-ray photoelectron spectroscopy (XPS) spectra of co-bioleaching of
chalcopyrite and bornite (ratio of Ccp/Bn was 3:1). (A) chalcopyrite; (B) bornite; (C) 5 days; (D) 10 days;
(E) 15 days; (F) 23 days; (G) 30 days. H-Change in atomic percentages on the surface of residues during
the bioleaching process. Data source: survey (full range) XPS spectrum.

High-resolution spectra of Cu 2p for bornite, chalcopyrite, and leaching residues are shown
in Figure 4. It is well established in literature that the high binding energy (in the range of 933.0 to
933.8 eV) and the presence of a satellite peaks (around 942 eV) are two main XPS characteristics of
Cu(II), while a lower binding energy (in the range of 931.8 to 933.1 eV) and the absence of satellite
peaks are characteristics of Cu(I) and metal Cu [14,51–53]. From Figure 4, it can be seen that the
oxidation state for Cu after bioleaching was still +1. Although low-intensity peaks of chalcopyrite
were detected by XRD after 30 days of bioleaching, no Cu peak was detected by XPS. This may be
because the chalcopyrite was covered by jarosite and elemental sulfur (Figure 2F).
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Figure 4. Cu 2p peaks of co-bioleaching chalcopyrite and bornite (ratio of Ccp/Bn was 3:1). (A) bornite,
(B) chalcopyrite, (C) 5 days, (D) 10 days, (E) 15 days, (F) 23 days, (G) 30 days.

The copper Auger spectra (Cu LMM) excited with X-rays and the atomic percentages of Cu 2p
and Ag 3d on the surface of bioleaching residues are shown in Figure 5. It was very interesting that the
Cu LMM, Ag 3p3/2 peak was detected at about 572.5 eV [54] (Figure 5C–F), this was in agreement with
the survey XPS spectra (Figure 3C–F). Figure 5C–F show that the peak area ratio of Ag/Cu increased
as leaching time increased from 5 to 23 days. Simultaneously, the ratio of Ag3d/Cu2p also increased
with leaching time (Figure 5H). These results indicated that silver was enriched on the surface of
chalcopyrite and/or bornite. The Ag 3p3/2 peak disappeared after 30 days of bioleaching (Figure 5G),
indicating that silver compounds had been leached and/or covered by jarosite.
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Figure 5. Copper Auger spectra (Cu LMM) peaks of co-bioleaching chalcopyrite and bornite (ratio of
Ccp/Bn was 3:1). (A) bornite, (B) chalcopyrite, (C) 5 days, (D) 10 days, (E) 15 days, (F) 23 days, (G) 30
days. (H) Atomic percentage of Cu 2p and Ag 3d on the surface of bioleaching residues. Data source:
survey (full range) XPS spectra.
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The high-resolution spectra of S 2p for bornite, chalcopyrite and leaching residues are shown
in Figure 6, and the fitted photoelectron spectra of S 2p peaks of Figure 6 are presented in Table 2.
In order to obtain the data in Figure 6H, it was assumed that the percentages of S2−, S2

2−, Sn
2−, S0,

and SO4
2− were directly proportional to the area under the S 2p peak presented in Figure 6C–G.
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Figure 6. S 2p peaks of co-bioleaching chalcopyrite and bornite (ratio of Ccp/Bn was 3:1). (A) bornite;
(B) chalcopyrite; (C) 5 days; (D) 10 days; (E) 15 days; (F) 23 days; (G) 30 days; (H) Cu extraction and
sulfur species on the residue surface.
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Table 2. Binding energy values for X-ray photoelectron spectroscopy (XPS) spectra of S 2p3/2 peaks (eV).

Condition S2− S2
2− Sn

2− S0 SO4
2−

Cu5FeS4 161.2 161.9
CuFeS2 161.3 161.9 162.8
5 days 161.3 162.1 163.2 164.2 168.8
10 days 161.0 161.8 162.9 163.8 168.6
15 days 161.1 161.7 163.0 163.8 168.6
23 days 161.1 161.7 162.8 163.6 168.9
30 days 168.7
Ag2S # 160.8

# Data cited from Kaushik [55].

As can be seen from Figure 6C–G, except for the S2− that originated from chalcopyrite, the S2
2−,

Sn
2−, S0, and SO4

2− were detected on surface leaching residues during the bioleaching time from 5 to
23 days. Furthermore, the percentage of S2−, S2

2−, Sn
2−, and S0 decreased with increasing time from

5 to 23 days, while the percentage of SO4
2− increased with increasing bioleaching time (Figure 6H).

Only SO4
2− was detected on the on surface leaching residues after 30 days of bioleaching. This result

is not consistent with the XRD results. One possible explanation is that chalcopyrite and elemental
sulfur were covered by jarosite, and only surface substances (<10 nm) can be detected by XPS.

Previous studies have demonstrated that the Ag-enhanced leaching of chalcopyrite was due to
the formation of Ag2S [31,36]. Table 2 shows that when bioleaching time increased from 5 to 23 days,
the binding energy of S2− shifted to the binding energy of Ag2S [55], indicating that Ag–S bonds
formed on the surface.

High-resolution spectra of Fe 2p are provided in Figure 7. Compared with chalcopyrite, the Fe
2p spectra show that the surface of bornite was heavily oxidized. The peak near 708 eV can be
assigned to Fe−S [14]. The component near the binding energy of 712 eV can be assigned to jarosite.
When bioleaching time increased from 5 to 30 days, the peak intensity of Fe−S decreased with
increasing leaching time, while the peak intensity of jarosite increased with increasing leaching time
(Figure 7). This is in agreement with Figure 6H. In other words, the mixed sample was bioleached
when a mixed moderately thermophilic culture was employed.
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Figure 7. Fe 2p peaks of co-bioleaching chalcopyrite and bornite (ratio of Ccp/Bn was 3:1).
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3.3. Electrochemical Behavior of Chalcopyrite and Bornite

The corrosion current density, corrosion potential and polarization resistance of chalcopyrite
were 0.14 µA·cm−2, 406.5 mV, and 165.2 kΩ·cm2, respectively (Figure 8). Compared to chalcopyrite,
the corrosion current density of bornite was greater, and the corrosion potential and polarization
resistance of bornite were smaller. These values were 1.55 µA·cm−2, 306.5 mV, and 23.9 kΩ·cm2,
respectively (Figure 8). The higher value of the corrosion current density or lower value of the
polarization resistance means that the oxidation kinetics were higher during the dissolution process.
On the other hand, when chalcopyrite and bornite were bioleached together, bornite dissolved
preferentially compared to chalcopyrite due to the galvanic interactions because the open circuit
potential (OCP) of bornite (340 mV) was lower than that of chalcopyrite (475 mV) (Figure 8). This is
well in agreement with the leaching results.
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4. Discussion

When silver-bearing bornite was dissolved preferentially due to the galvanic interactions, Ag+

was also released into the solution. Ag+ then diffused to the surface of chalcopyrite, and replaced
Cu and Fe (Equation (1)) [36]. This resulted in the leaching of copper and iron from the chalcopyrite.
Figures 3 and 5 show that silver accumulated onto the surface of the chalcopyrite, and Table 2 shows
that the binding energy of S2− shifted to the binding energy of Ag2S. These findings agreed with
previous studies that Ag2S formed on the surface [31,36]. Ag+ can be regenerated by oxidation of
Ag2S with Fe3+ (Equation (2)) [36]. Therefore, chalcopyrite can be continuously leached because it is
silver-catalyzed. This result is well in agreement with previous studies [28,56]. On the other hand,
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the OCP of Ag2S was about 500 mV (vs. SHE) [57], and the contact between CuFeS2 and Ag2S could
accelerate the dissolution of CuFeS2 owing to the galvanic interactions:

CuFeS2 + 4Ag+ → 2Ag2S + Cu2+ + Fe2+ (1)

Ag2S + 2Fe3+ → 2Ag+ + 2Fe2+ + S0 (2)

S2
2− and Sn

2− were detected on surface leaching residues during the bioleaching time from 5 to
23 days, but the Cu extraction percentage still increased from 46% to 84% (Figure 6H). In previous
study, S2

2− and Sn
2− were considered as chalcopyrite passive film [7,11,12]. However, higher Cu

extraction has been obtained in the presence of Ag. Ghahremaninezhad et al. [37] proposed a new
model for silver-catalyzed chalcopyrite leaching: when Ag+ was present in solution, Ag+ adsorbed
onto the surface of the chalcopyrite passive film and formed Ag2S; and the sulfur in Ag2S was a sulfur
vacancy. The sulfur vacancy caused a faster diffusion rate in passive film and the formation of a porous
sulfur layer; thus, high Cu extraction has been obtained in the presence of Ag although S2

2− and Sn
2−

were detected on surface leaching residues during the bioleaching [37]. On the other hand, jarosite
(SO4

2−) and S0 were detected during the leaching process, but the Cu extraction percentage increased
with increased leaching time (Figure 6H). Many studies have indicated that neither jarosite nor S0

hindered the dissolution of chalcopyrite [13,20,58,59].

5. Conclusions

The achieved results show that only 21.5% and 59.4% of Cu can be leached from chalcopyrite and
silver-bearing bornite, respectively, using a mixed moderately thermophilic culture, while 94.6% of
the Cu was successfully bioleached from the mixed sample (ratio of chalcopyrite/bornite was 3:1).
Compared to bioleaching chalcopyrite or silver-bearing bornite alone, the Cu extraction percentage
was greatly enhanced when they were co-bioleached. The results of XRD show that silver-bearing
bornite dissolved preferentially compared to chalcopyrite, owing to the galvanic interactions. The Ag+

released from silver-bearing bornite was enriched on the surface of the mineral, owing to the formation
of Ag2S. During the bioleaching process, Ag+ can be regenerated by the oxidation of Ag2S with Fe3+;
thus, chalcopyrite can be continuously leached when it is silver-catalyzed.
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