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Abstract: Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has rapidly
established itself as the method of choice for generation of multi-element datasets for specific minerals,
with broad applications in Earth science. Variation in absolute concentrations of different trace
elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and
hematite), and key accessory minerals, such as apatite and titanite, can be particularly valuable for
understanding processes of ore formation, and when trace element distributions vary systematically
within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element
data can assist in element deportment and geometallurgical studies, providing proof of which
minerals host key elements of economic relevance, or elements that are deleterious to various
metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology,
reference standards, the application of the method to new mineral matrices, outstanding analytical
uncertainties that impact on the quality and usefulness of trace element data, and future applications
of the technique. We illustrate how data interpretation is highly dependent on an adequate
understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

Keywords: laser ablation inductively coupled plasma mass spectrometry; trace element data;
ore genesis; sulphide minerals

1. Introduction

Significant advances have taken place in laser ablation inductively-coupled plasma mass
spectrometry (LA-ICP-MS) over the past two decades ([1] and references therein). Instruments have
become widely available in laboratories worldwide and the number of applications in Earth science
has been greatly expanded by ongoing technological development, particularly with respect to analysis
speed, resolution and sensitivity, and by the availability of reliable reference materials designed for
specific purposes. The LA-ICP-MS method is also cost-effective compared to other techniques, such as
secondary ion mass spectrometry (SIMS). For these reasons, LA-ICP-MS has rapidly established itself
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as the method of choice for generation of multi-element datasets for specific minerals. Applications
have expanded from trace element ‘spot’ analysis to mapping of areas within a sample, greatly assisted
by the widespread availability of software, such as iolite [2]. The LA-ICP-MS platform has also been
developed to undertake stable (e.g., [3]) and radiogenic isotope analysis (e.g., [4,5]), and is also widely
applied in geochronology to obtain U–Pb ages for zircon (e.g., [6]). LA-ICP-MS-based geochronology is
rapidly being extended to other dateable minerals, including hematite [7,8], apatite [9], cassiterite [10],
and epidote-group minerals [11].

This contribution reviews a number of recent advances both from a technological
method-development and scientific problem-solving perspective. The focus of this contribution
is on multi-trace element analysis for mineral characterisation and petrogenetic interpretation of
magmatic-hydrothermal ore deposits. We highlight, drawing in part on our own published and
previously unpublished data, the wide range of different mineral matrices that have been studied and
the diversity of geological problems that can be addressed by accurate, reproducible trace element
microanalysis. Secondly, this contribution discusses good analytical practice, stressing the need to
have a detailed understanding of what has been analyzed and the potential limitations that area
selection will have on data quality. We speculate on future developments and new applications.
Recent advances in geochronology using LA-ICP-MS, Pb isotope analysis, and mapping of sulphur
isotopes are covered elsewhere in this Special Issue ([8,12,13], respectively). Due to space limitations,
LA-ICP-MS analysis of fluid inclusions (e.g., [14]), melt inclusions (e.g., [15]), and LA-ICP-MS trace
element geothermobarometery (e.g., Ti-in-zircon [16], or Zr-in-titanite [17]), are also not covered here
despite their great relevance to understanding the genesis of hydrothermal ore deposits.

2. LA-ICP-MS Trace Element Microanalysis

LA-ICP-MS applications in the Earth sciences are described in an extensive volume of literature.
The reader is referred to Sylvester (2008) [1] for authoritative chapters on LA-ICP-MS hardware, the
underlying principles of analysis, and outstanding issues. Although the overwhelming majority of
LA-ICP-MS facilities (as is our own) are based around nanosecond LA-ICP-MS systems, one significant
development over the past decade has been the emergence of femtosecond (fs) laser systems [18,19].
This has prompted concerns about the comparative performance of the two instrument types for
geological materials (e.g., [20]).

For example, in a study of four glass reference materials, Ohata et al. (2014) [21] established that
femto- and nanosecond LA-ICP-MS systems provide comparable results if Ca was used as an internal
standard but significant deviations if Si-normalized fractionation was applied with fs laser ablation
at 795 nm. These deviations were attributed to the composition and/or particle size distribution of
aerosols formed over the sampling interval and could be corrected for by modifying fluence and spot
size. Wohlgemuth-Ueberwasser and Jochum (2015) [22] compared the performance of nanosecond
solid state and excimer lasers with a 200 nm femtosecond laser for analysis of common sulphide
minerals. They report significant differences in the degrees of melting, with no melting observed
utilizing the femtosecond laser.

2.1. Melts, Aerosols, Vapours and Mineral Decomposition

The many recent technical developments in mass spectrometry that have enabled greater
accuracies and sensitivity have also focused interest on matrix effects and the physical state of the
ablated material. One factor considered to potentially influence data quality is heating and generation
of melts or particles precipitated from aerosols and vaporized products of ablation (e.g., [23]) during
laser ablation. If melts are generated, and these are inherently different, chemically to the reference
material used for calibration, fractionation may be introduced that could lead to a reduction in
precision [22].

An additional topic of concern is the potential for fractionation during transport of ablated
material from sample to plasma to mass spectrometer, e.g., between iron and sulfur [24]. Fractionation
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can be caused at various stages, including chemical reaction processes (mineral decomposition, etc.)
at the site of laser ablation, differential particle transport from the site of ablation as a function of
particle size, preferential redeposition of particles of different size at the site of ablation or within
the instrument, and selective ionization of some minerals in the ICP-MS. Each of these issues may
be influenced by, and corrected for, by adjusting operating parameters of the LA-ICP-MS system
(e.g., [23]), and judicious use of appropriate matrix-matched standards. There is also the issue of
downhole fractionation, when operating in ‘spot’ mode, with fractionation increasing as a function of
the aspect ratio of the crater.

2.2. Reference Materials and Matrix Effects

Use of appropriate matrix-matched reference standards is critical to enable correction for
laser-induced fractionation during ablation, and thus reliable and reproducible quantitative outcomes
(e.g., [25–32]). Table 1 lists reference materials commonly employed for LA-ICP-MS trace element
analysis, matrices for which they have been applied, and key references regarding their suitability.
The reader is referred to Reference [33] for a more extensive list of LA-ICP-MS reference materials.
Although there are, to our knowledge, few published examples of comparative cross-laboratory or
cross-standard testing (e.g., [34]), several publications have offered insights into the relative analytical
accuracy that can be achieved. The use of multiple reference materials is encouraged [35]. New,
alternative methods are also being sought to prepare suitable reference materials for analysis of
elements not present in the more commonly used standards (e.g., [36]).

Table 1. Reference materials (RM) commonly employed for laser ablation inductively-coupled plasma
mass spectrometry (LA-ICP-MS) trace element analysis of minerals in hydrothermal settings.

Standard Matrix Type Suitability Comments References

NIST-610, -612 Synthetic glass Silicates

Widely used for silicates;
have been used as secondary
RM for Fe-oxides (low Fe
content but some trace
elements (e.g., As) not
present in primary RM such
as BHVO

Norman et al. (1996) [29],
Jochum et al. (2011) [37],
Nadoll and Koenig [38]

BCR-2G Columbia River basalt glass - Secondary RM for some
silicates Wilson (1997) [39]

GSE-1G, GSD-1G Synthetic glasses Fe-oxides Doped with most elements
found in Fe-oxides Jochum et al. (2005) [40]

BHVO-1 Hawaiian basalt glass - Suitable RM for Fe-oxides Flanagan (1976) [41]

MASS-1 Cold-pressed pellet Sulphides
Commercially available RM
for sulphides;
widely applied

Wilson et al. (2002) [42],
Yuan et al. (2012) [43]

(Fe,Ni)1-xS and
(Fe,Cu)1-xS Synthetic sulphides Sulphides -

Wohlgemuth-
Ueberwasser et al.
(2007) [31]

STDGL2b-2

Fused glass disk (25% Zn
concentrate and 75%
pyrrhotite), mixture of
CANMET international
reference materials RTS-4
and CZN-1 doped with
a range of trace elements

Sulphides
Wide range of chalcophile,
siderophile and
lithophile elements

Danyushevsky et al.
(2011) [32]

NiS-3 - Sulphides - Gilbert et al. (2013) [34]

IMER-1 Chalcogenide glass
(Ge28Sb12S60) Sulphides 4 minor elements,

34 trace elements Ding et al. (2012) [44]

In some cases, it may be advantageous to use two or more reference materials with different
concentrations of the element to be used for internal calibration. For example, when analyzing trace
elements in iron oxides, we prefer to use National Institute of Standards and Technology (NIST)-610 and
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one of the basalt glass standards (BHVO—basalt, Hawaiian volcano observatory or BCR-2G—basalt
Columbia River glass; Table 1) since Fe, the only element that can be used as an internal standard
for Fe-oxides, is much lower in NIST-610 (<1 wt %) relative to the natural basalt glasses. We also
encourage users to compare LA-ICP-MS data for elements at concentrations of hundreds to thousands
of ppm with electron probe microanalysis (EPMA) data on the same material as a further check on the
validity of results.

It is clear, for example, that better quality analyses will be systematically obtainable for some
elements than for others. In our experience with trace element analysis of sulphides, As, Se and Hg are
among the more problematic elements, and can be difficult to completely remove from the ablation
system, leading to high background counts for these elements. Samples suspected to contain high
concentrations of these elements should only be run after others with lower concentrations. Lead can
also be a problematic element. Higher background signals are encountered after analysis of galena
or other Pb-bearing minerals, compromising the detection of Pb in other minerals where the element
is only a trace component. Similarly, arsenopyrite, a mineral that may be a source of valuable trace
element data, should never be run before other sulphides containing only ppm concentrations of As.
Thorough cleaning of the LA-ICP-MS system is in any case essential when switching between analysis
of different minerals.

An appreciation of potential interferences remains an important issue associated with LA-ICP-MS
analysis. This includes: (i) poly-atomic interferences such as the generation of argides if using Ar
as the plasma gas (e.g., argides of Cu and Ni (e.g., [45])) that may interfere with Pd, Rh, and Ru
(101Ru with 61Ni40Ar, and so on); (ii) isobaric interferences between elements which have the same
isotopic masses (e.g., 108Pd with 108Cd, 115In with 115Sn); and (iii) multiple ionization interferences
(generally less significant for trace element analysis). An understanding of potential interferences and
isotopic proportions is necessary to know whether or not corrections need to be applied (for instance,
correction of 101Ru for 61Ni40Ar when analyzing pentlandite, or 115In for 115Sn in stannite, Ni and
Sn being major components of the two sulphides). Other potential interferences may not necessitate
correction. For example, 92Zr measurement in magnetite need not be corrected for 52Cr40Ar since Cr is
a minor component of magnetite and interference is thus negligible. The same would apply to analysis
of In and Sn in sphalerite, since both elements are only minor components of that mineral, and any
interference would be small, within the precision of the method. Interferences can be corrected for by
careful analysis of blanks of known composition without the interfering element present. The list of
potential interferences is large and, thus, beyond the scope of the present contribution.

When reporting trace element data, all users should provide full information on analytical
methodology, including details of isotopes measured (with interference corrections as necessary),
dwell times, external standard(s), internal calibration routines and precision and reproducibility
of concentration data. It is also critical to report how the data were processed, both in terms of
integrating segments of LA-ICP-MS depth profiles, and in terms of treatment of outliers and values
below minimum detection limit to derive statistically meaningful data.

2.3. What Is Being Analyzed?

Compared to other techniques, notably electron probe microanalysis (EPMA) or SIMS, the volume
of analyzed material by LA-ICP-MS is relatively large. Even with a small spot size of 15 µm, an ablation
crater for a moderately hard mineral such as pyrite can be 20 µm deep, giving an ablated volume of
several thousand µm3. Softer minerals, such as galena or chalcopyrite, ablate far more rapidly. It is
always prudent to ensure the ablated surface is free of inclusions prior to analysis but knowledge
about the presence or absence of inclusions does not extend to depth within the section. Following
guidelines to only analyze inclusion-free materials will, by and large, give reliable information on
contained trace elements in a range of matrices. Nevertheless, by analyzing only ‘clean’ areas of
a mineral, typically in its center, significant bias can be introduced into the dataset if that mineral is
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compositionally zoned (Figure 1). Problems associated with representative analysis of zoned grains are
particularly accentuated when the grains are so small they do not accommodate multiple spot analyses.
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Figure 1. LA-ICP-MS maps of mm-sized pyrite grains displaying micron-scale oscillatory zoning.
Note that, whereas As, Co and Ni occur in solid solution, within the pyrite grains and display concentric
zoning, the map for Ga shows that element associated with microscopic silicate inclusions in the pyrite
cores, and the maps for Ag, Bi and W show these elements are distributed not within the zones but in
crosscutting microfractures. The mapped area is shown as a backscatter electron image at upper left.
Scales in counts-per-second. Measured isotopes: 56Fe, 69Ga, 75As, 59Co, 60Ni, 109Ag, 2095Bi, 182W.

A second, related problem, commonly observed but not restricted to studies of gold-bearing
pyrite and arsenopyrite, is that areas of a grain with abundant microfractures, pores and non-sulphide
inclusions, can contain significantly more Au than ‘clean’ areas without inclusions and/or pore-rich
domains in pyrite and arsenopyrite (e.g., [46–48]). An assessment should therefore be made of
whether grain-scale compositional heterogeneity (including chemical zoning) is present—either by
creating a LA-ICP-MS map, or if simply by comparing absolute concentrations from a number of
randomly positioned spot analyses. This assumes, however, that the micro-fractures or pores are
visible. In some cases, the micro-fractures in particular will not be visible. Similarly, trace elements may



Minerals 2016, 6, 111 6 of 34

be strongly concentrated along cleavage planes not visible under the SEM, and often only revealed by
element mapping.

We also encourage LA-ICP-MS users to visually inspect laser craters after analysis—indications
of possible inclusions can be seen in debris around the crater edge. In some cases, we have followed
up LA-ICP-MS spot analysis by in-situ extraction of slices adjacent to the crater by focused ion beam
(SEM) methods [49]. Subsequent investigation by transmission electron microscopy (TEM) allows
the identity of what has been analyzed to be confirmed. A combined FIB-TEM approach can also be
a powerful method to distinguish between nanoparticle-hosted and lattice-bound trace elements [50].

2.4. Trace Element Mineral Signatures—TESIM

A persistent question is whether analyzed elements are present in solid solution or as fine
particle or nanoparticle mineral inclusions. Provided the particles are sufficiently large (roughly a few
hundred nm in size), their presence will be recognized—and in many cases, their identity confirmed,
on the down-hole laser ablation profiles. If the nanoparticles are fine enough and homogeneously
distributed, however, it is impossible to recognize them on the downhole profiles, which will typically
be smooth. Further investigation by transmission electron microscopy, as for example, done by
Junge et al. (2015) [51], may help to understand if these elements are in the lattice, or occur as
nanoparticle inclusions. Valuable information can nonetheless be obtained from analysis of areas
within ore minerals that are known to include gangue or sub-µm to nanoscale inclusions of discrete
minerals. We illustrate this with examples of chondrite-normalized REE + Y (REY) fractionation trends
in hematite where the LA-ICP-MS spot size is significantly larger than the individual grains in the
analyzed specimen (Figures 2 and 3).
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Figure 2. (a) Secondary electron (SE) image of fine-grained rusty hematite (Olympic Dam; OD).
Note size of laser spot relative to grain size; (b) time-resolved depth profile showing ‘flat’ signals
for most elements interpreted to he hosted in the hematite lattice; (c) chondrite-normalized REY
fractionation trends for this type of hematite; note coherent, readily interpretable trends; (d) SE
image of coarser hematite aggregate containing inclusions of monazite (see Figure 3a–d; OD);
(e) time-resolved depth profile for spot in (d) showing rough signals indicative of inclusions during
ablation. This hematite is not zoned with respect to trace elements; (f) chondrite-normalized REY
fractionation trends for the hematite in the same sample shown in (d,e) separated by grain size. There is
an increase in ΣREY with the fine-grained hematite in the matrix, which shows similar REY profiles
with the rusty hematite. Note however their wider range relatively to the finest, rusty hematite in (c).
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In Figure 2, we contrast LA-ICP-MS analyses of (i) rusty, finest-grained hematite (Figure 2a–c)
and (ii) analysis of coarser hematite containing inclusions of monazite and at grain boundaries
(Figure 2d–f). Both cases show high ΣREY (thousands of ppm, and >2 wt % for the rusty and coarser
hematite, respectively) but differ in the ‘noisiness’ of the LA-ICP-MS downhole profiles. In both cases,
a proportion (<10%) of the analyzed material is from gangue minerals, but the ‘rusty’ hematite clearly
shows a smooth signal for individual elements and a highly reproducible chondrite-normalized REY
fractionation trend. In the second case, spot analyses from the grain-boundaries and finer-grained
hematite in the matrix are broadly comparable with those displayed by the rusty hematite trends
but show much higher variability in terms of ΣREY, concordant with the observation of discrete
REY-bearing minerals.
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FIB‐SEM study of both types of hematite (Figure 3) feature pores and nanoscale inclusions. The 
latter differ in size in the rusty and coarser hematite, typically a few, or several hundred nm, 
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Figure 3. Mineral inclusions and porosity present in hematite from samples shown in Figure 2a,b SE
images showing location of FIB-cut next to LA-ICP-MS spot in rusty hematite (a); and the presence
of pores and inclusions within the sub-µm size lamellae (b); (c) FIB-Scanning Transmission Electron
Image in Bright Field mode showing trails of sub-µm inclusions of monazite (Mnz) close to the grain
boundary; (d) FIB-EDS maps of monazite grains in (c); (e,f) SE images showing distribution of pores
and their morphology in hematite from (c) obtained after FIB-cross sectioning through the polished
block; (g) Sub-µm-sized inclusion of hematite (Hm) in florencite (Flor) from a high-grade bornite
(Bn)-bearing sample at OD. Ser—sericite.

FIB-SEM study of both types of hematite (Figure 3) feature pores and nanoscale inclusions.
The latter differ in size in the rusty and coarser hematite, typically a few, or several hundred nm,
respectively (Figure 3a–f). Some of these inclusions can be identified as discrete REE-minerals, notably
the trail of monazite inclusions observed in the coarser hematite (Figure 3c,d). Note that the monazite
grains are close to the margin of one of the lamellae, which is sputtered with nanoparticle-size
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inclusions and nanopores. We also draw attention to the fact that the margins of hematite lamellae
in the rusty type do not contain abundant nanoscale REE-minerals attached to them but are
instead rather ‘clean’ and the specimen is very vuggy (Figure 2b). This implies that the bulk of
the measured REY content is hosted within the hematite itself. Lattice-bound elements can be
released upon supersaturation and/or interaction with fluids, and can form discrete REE-bearing
minerals within crystal lattice defects. Conversely, hematite can also occur as nanoscale inclusions
(several hundred nm) within REE-minerals (Figure 3g), re-emphasizing the strong genetic link between
hematite and REY in iron oxide-copper-gold (IOCG) systems.

Based on this evidence, we conclude that trace element signatures in minerals (TESIM) can
display consistency, and thus be used as meaningful geochemical tracers. This is true not only when
the elements are lattice-bound but also when nanoscale inclusions are present, as long as the speciation
of those inclusions does not vary widely.

2.5. Mineral Textures

No less important than an adequate knowledge of what has been analyzed, is an appreciation
of the prevailing mineral textures, and how to compile compositional data for a given mineral into
statistically meaningful groupings. Prior investigation of as large a volume of representative samples
as possible by optical and scanning electron microscopy is strongly recommended prior to LA-ICP-MS
microanalysis, to facilitate an adequate appreciation of multiple generations and overprinting
(if present), features that might indicate compositional zoning, or evidence for mineral-mineral or
mineral-fluid reactions. Single mineral grains may preserve compositionally or texturally-distinct
domains that can be interpreted as multiple generations; examples include growth-zoned pyrite from
metamorphosed ores that preserve pre-metamorphic grain cores (e.g., [52]), or skarn garnet recoding
prograde and superposed retrograde growth cycles [53].

2.6. Spots, Rasters and Element Maps

The recent literature documents a number of different analytical approaches, notably the use of
‘spots’ (i.e., relatively deep craters) and ‘trenches’ (rasters; shallower ablation along a trajectory across
a larger area). Each approach has its advantages and disadvantages and may be selected based on
the target mineral and the inherent patterns to be analyzed. Spots and rasters may often be used in
combination, each mode contributing information. Downhole fractionation is greater in ‘spot’ mode,
and may affect the final results if not properly corrected for. Using raster analysis will decrease the
spatial resolution of laser ablation in that the total surface area is generally larger. Spot analyses
are commonly preferred when the minerals in question are small and/or compositionally zoned at
the micron-size, and should be used (to keep the area analyzed as small as possible) if two or more
distinct generations are present within that zoning pattern (e.g., an early core and later overgrowth).
Raster analyses are certainly useful for showing variation across a single grain or assemblage, but
there is always significant risk of mineral inclusions or other features that may influence the data.
Raster analysis also has the advantage of allowing longer acquisition on grains that are sufficiently large
and inclusion-free and can also contribute representative, average compositions for zoned minerals.

Trace element mapping by LA-ICP-MS has proven an extremely valuable technique to provide
a visualization of trace element distributions within individual minerals or assemblages [54–58].
Element maps show concentration patterns with single zoned grains (Figure 1) and also facilitate
a rapid visualization of the relative trace element concentrations and interpret partitioning trends
among coexisting minerals (e.g., [59]).

Imaging is conducted by ablating sets of parallel lines in a grid across a sample surface. The laser
spot size should match the distance between adjacent lines, and should be chosen based on the desired
sensitivity of the elements of interest, as well as the desired spatial resolution. The authors typically
use the open source software package ‘iolite’ [2] to compile and process trace element maps obtained
by LA-ICP-MS data. Iolite is an add-in for the data analysis program Igor developed by WaveMetrics.
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Maps can be generated to provide either qualitative or quantitative information. Qualitative
trace element maps are based only on measured counts per second (cps) for each element,
and variation across a mapped area is displayed only in cps. As the ablation rate for different minerals
can vary over orders of magnitude, the counts for elements within different minerals also vary greatly.
Thus qualitative maps are able to disclose relative concentration variations across a mineral or
assemblage (e.g., compositional zoning) but actual concentration values cannot be determined,
and concentration intensity cannot be compared across different phases. Quantitative trace element
maps determine actual trace element concentrations and these are often displayed on a parts per
million (ppm) scale bar. Quantitative maps are able to reveal both trace element variation and actual
trace element concentrations in a single mineral.

Difficulties arise, however, when attempting to quantify an entire assemblage comprising multiple
distinct phases. Quantifying a map with iolite requires the selection and input of an internal standard.
This tells the program the concentration of one element in the mapped area, allowing calculation of
all other unknown element concentrations. If, however, the mapped area contains distinct phases of
vastly different composition, a single internal standard often cannot be adequately selected.

Exceptions arise when mapping assemblages comprising distinct phases with comparable
concentrations of a particular element. For example, when mapping base metal sulphide assemblages
comprising sphalerite, galena and chalcopyrite, an average sulfur concentration value may be
used as an approximate internal standard. Figure 4 shows three quantitative LA-ICP-MS maps of
an assemblage comprising co-crystallized sphalerite, galena and chalcopyrite. The LA-ICP-MS maps
were quantified by using 25 wt % S as the internal standard, a value representing an approximate
average sulfur concentration for the assemblage. LA-ICP-MS spot analysis was also conducted around
the margins of the mapped area for comparison. As can be seen, the LA-ICP-MS spot analyses closely
match the concentrations displayed by the map. Some slight discrepancies are noted, although these
are typically less than 10% of the spot values and are usually less than the uncertainty of ascribing
a particular concentration value to a particular color on the map.
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ppm scales) of a galena (light grey)–sphalerite (dark grey)–chalcopyrite (yellow) assemblage with spot
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the internal standard to accommodate the three distinct minerals.

LA-ICP-MS maps generated via an average internal standard value are powerful in that they
display approximately real concentration values that are comparable across different minerals in
an assemblage. This is ideal for determining and comparing the distribution of trace elements in
a multi-mineral assemblage. Care should, however, be taken in interpreting concentrations too rigidly.
If trace element concentrations look similar in different phases, other methods should be employed
to determine the preferred primary host of a particular trace element with confidence. If precise
concentration values are required, LA-ICP-MS spot analysis should always accompany quantitative
LA-ICP-MS mapping.

Two additional points are worth making. Firstly, if the scale of zonation within a given mineral
is sufficiently fine (i.e., below the resolution of the element map), electron microprobe or SEM-EDS
mapping might be a more suitable option. If the zoning is on a subscale below that of the microprobe
beam, synchrotron-based methods (such as µ-X-ray fluorescence spectrometry [60]) may be more
appropriate. Secondly, map quality may be influenced by the orientation of the sample surface relative
to zoning. Depth penetration during rastering will cause a blurring of the zoning pattern if that
zoning is sharply inclined relative to the sample surface, with best results obtained if the zoning is
perpendicular to the map.

3. Trace Element Distributions in Common Minerals

The range of mineral matrices in which trace element concentrations have been successfully
measured by LA-ICP-MS has widened considerably in the past decade. These data, complemented
by studies that have compared the trace element signatures of a particular mineral from different
geological settings, provide a reasonably good understanding of which trace elements can enter specific
mineral structures, and at approximately what range of concentrations. Currently available data is
highly heterogeneous, keeping in mind that some minerals or mineral groups are far more thoroughly
studied than others.
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Table 2 provides an overview of selected studies that have contributed, through LA-ICP-MS
analysis, to current understanding of the trace element geochemistry of the common sulphides,
iron-oxides, rock-forming silicates and a number of accessory minerals. As more data become
available, a predictive understanding of the fundamental crystal-structural controls on element
partitioning into specific minerals (e.g., critical metals in sphalerite [61], controls on trace element
substitution in magnetite [62]), or among co-existing minerals formed at equilibrium (e.g., coexisting
sphalerite-galena-chalcopyrite assemblages [59]) can be developed. Such constraints have been
complemented by empirical studies showing how lattice-scale controls aid incorporation of a broader
range of trace elements, including those overlooked in broader approaches. Examples include
the observation of superstructuring in hematite allowing incorporation of (U + Pb + W + Mo) [7],
the incorporation of Au into bismuth chalcogenides [63], and inter-lamellar enrichment of chalcophile
elements in molybdenite [64].

Table 2. Selected studies that have used LA-ICP-MS to address the trace element geochemistry of
common sulphides, iron-oxides, rock-forming silicates and accessory minerals.

Minerals Reference(s)

Sphalerite
Cook et al. (2009) [61], Ye et al. (2011) [65], Cook et al. (2012) [66],
Murakami and Ishihara (2013) [67], Lockington et al. (2014) [68],
Belissont et al. (2014) [69], Cook et al. (2015) [70]

Chalcopyrite Butler and Nesbitt (1999) [71], Wohlgemuth-Ueberwasser et al.
(2015) [72], George et al. (in review) [73]

Bornite, chalcocite-group Cook et al. (2011) [74]

Galena George et al. (2015) [75]

Pyrite
Large et al. (2007) [76], Cook et al. (2009) [47], Large et al.
(2009) [77], Winderbaum et al. (2012) [78], Ingham et al. (2014) [79],
Large et al. (2014) [80]

Arsenopyrite Morey et al. (2008) [81], Sung et al. (2008) [46], Cook et al.
(2013) [48], Lawley et al. (2015) [82]

Enargite Deyell and Hedenquist (2011) [83]

Molybdenite Ciobanu et al. (2013) [64]

Pyrrhotite–pentlandite– (pyrite, Ni-arsenides)
in magmatic ores, including PGE deposits Barnes et al. (2008) [84]; see also Table 3

Bismuth chalcogenides and sulphosalts Ciobanu et al. (2009) [63]

Hematite Ciobanu et al. (2013) [7]

Magnetite Nadoll et al. (2014) [62], Dare et al. (2014) [85]

Chromite Pagé and Barnes (2009) [86]

Gahnite O’Brien et al. (2015) [87]

Scheelite, wolframite, ferberite Goldmann et al. (2013) [88], Song et al. (2014) [89], Hazarika et al.
(2016) [90], Raju et al. (2016) [91]

Xenotime, florencite Cook et al. (2013) [92]

(Calcic, skarn) garnet and other skarn
calc-silicates (pyroxenes, clinozoisite, etc.)

Smith et al. (2004) [93], Gaspar et al. (2008) [94], Ismail et al.
(2014) [53], Xu et al. (2016) [95]

Feldspars Kontonikas-Charos et al. (2014) [96]

Rutile and titanite Smith et al. (2009) [97], Ismail et al. (2014) [53], Fu et al. (2016) [98]

Apatite Ismail et al. (2014) [53], He et al. (2016) [99], She et al. (2016) [100]

Fluorite Gagnon et al. (2003) [101]

Empirical studies aimed at understanding the fundamental ability of minerals to incorporate
measurable concentrations of trace elements, the controls on trace element distributions, and partitioning
behavior in multi-mineral assemblages underpin the three main applications of LA-ICP-MS trace element
analysis. These are: (1) Trace element distributions in common, widely distributed phases such as
pyrite, or extended mineral families, such as spinels or garnets, where variation in absolute trace
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element concentrations, or their relative distributions can be valuable for understanding the nature
and sequence of ore-forming processes; (2) trace element distributions in minerals that display spatial
relationships at the regional or deposit scales and which can be used in a vector approach in mineral
exploration; and (3) microanalysis of minerals that can potentially host elements of economic interest,
or elements which are deleterious to various metallurgical processes, and where an understanding of
the distribution of a particular element or group of elements is of interest in element deportment and
geometallurgical studies. Each of these will be highlighted in the following sections.

4. LA-ICP-MS Analysis in Ore Petrogenesis

Trace element data for minerals is increasingly used to support models for ore genesis. Recognition
of distinct trace element signatures can assist with tracking sequences of crystallization and stages
of mineralization, sources of metals, evolution of ore-forming fluids over time, and overprinting
during superimposed geological events. Using examples from the recent literature, we focus here
on four groups of deposits for which trace element studies are advancing the understanding of
ore-forming processes.

4.1. Orthomagmatic Ore Deposits

A substantial volume of literature exists on the distribution and partitioning behaviors of trace
elements among sulphides and co-existing oxides and silicates in orthomagmatic ore systems. In many
ways, such systems are far better understood than their hydrothermal counterparts, assisted to some
degree by temperature constraints from melt compositions and predictable, relatively closed-system
behavior of mineral assemblages in magmatic environments. This work has been driven by the desire
to understand controls on the partitioning behavior of the platinum-group elements (PGE) and shows
a surprising range of behaviors from system to system. Trace element distribution patterns have,
in turn, delivered valuable evidence in support of genetic models, and the sequence of crystallization.
Representative advances in the field are summarized in Table 3.

Table 3. Selected examples of LA-ICP-MS studies of trace element distribution in minerals from
orthomagmatic ore systems.

Reference Mineral(s)
Analyzed

Deposit(s)
Studied Significant Findings

Barnes et al.
(2008) [84]

Pentlandite,
chalcopyrite,
cubanite,
pyrrhotite

Compilation of
data from
various Pt-rich
ore deposits
(Noril’sk, Great
Dyke, Bushveld
and others

Siderophile and chalcophile element distributions in pentlandite,
chalcopyrite and pyrrhotite from platinum-rich ore deposits are
compared. Re, Os, Ir, Ru and Rh are concentrated in both
pentlandite and pyrrhotite. Pentlandite also concentrates Ni, Co
and Pd. Cu, Zn, Cd and Ag are concentrated in chalcopyrite or
cubanite. Au and Pt do not preferentially concentrate in any
particular BMS, with very little of these elements located in BMS.
Significant differences in trace element distribution between ore
systems can be related to temperature evolution, abundance of
sulphides and availability of other minor elements (As, Te, Bi, etc.).

Dare et al.
(2010) [102]

BMS
(pyrrhotite,
pentlandite,
chalcopyrite,
pyrite)

Creighton
Ni–Cu–PGE
sulphide
deposit,
Sudbury,
Canada

BMS host all Co and Se, a significant proportion (40%–90%) of Os,
Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir,
Mo, Pb, Pt, Rh, Re, Sb and Te. Os and Ru are concentrated in equal
proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd
(~1 ppm) are concentrated in pentlandite. Ag, Cd, Sn, Zn, and in
rare cases Au and Te, are concentrated in chalcopyrite. Se is present
in equal proportions in all three BMS. Ir Rh, and Pt are present in
euhedrally zoned PGE sulph-arsenides. Enrichment of Os, Ru, Ni,
and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te
and Zn in chalcopyrite explained by fractional crystallization of
MSS from sulphide liquid followed by sulphide exsolution.
The bulk of Pd in pentlandite cannot be explained by sulphide
fractionation alone because Pd should have partitioned into
residual Cu-rich liquid and be in chalcopyrite or in PGM around
chalco-pyrite. The variation of Pd among different pentlandite
textures provides evidence that Pd diffuses into pentlandite during
exsolution from MSS.
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Table 3. Cont.

Reference Mineral(s)
Analyzed

Deposit(s)
Studied Significant Findings

Dare et al.
(2011) [103]

Pyrrhotite,
pentlandite,
chalcopyrite,
pyrite

McCreedy East,
Sudbury,
Canada

Os, Ir, Ru, Rh (IPGE), and Re concentrated in pyrrhotite,
pentlandite, and pyrite. Pd present in pentlandite. Some Pt noted in
oscillatory-zoned pyrite.

Dare et al.
(2012) [104] Magnetite Sudbury,

Canada

Fe-oxide geochemistry a sensitive petrogenetic indicator for the
degree of fractionation of the sulphide liquid. In sulphide-bearing
liquids, lithophile elements are compatible into Fe-oxide.
The concentrations of these elements are highest in the
early-forming titanomagnetite, which crystallized with Fe-rich MSS.
Late-forming magnetite, which crystallized from residual Cu-rich
liquid, is depleted in these elements. Behavior of chalcophile
elements in magnetite largely controlled by the crystallization of
sulphides. Local trace element redistribution occurs at subsolidus
temperatures (ilmenite ex-solution from titanomagnetite, Al-spinel
exsolution from magnetite).

Dare et al.
(2014a) [85] Magnetite

Compilation of
data from
magmatic and
hydrothermal
environments

Discussion of trace element partitioning behaviour between
magnetite, melt/fluid, and co-crystallizing phases. Trace elements
aid discrimination of magnetite formed in different environments,
with applications in petrogenetic and provenance studies.

Dare et al.
(2014b) [105]

BMS, also
sphalerite and
galena

McCreedy East,
Sudbury, ON,
Canada

Distribution of PGE and trace elements in different sulphides
reported and comprehensive genetic model presented.

Duran et al.
(2015) [106] Pyrite

Lac des Iles Pd
deposits, ON,
Canada

Atypical deposits in which pyrite contains Os, Ir, Ru and Rh
(also present in pyrrhotite and pentlandite), possibly redistributed
during cooling. Pyrite is zoned: IPGE–Rh and As towards pyrite
cores, Co and Se towards the rims. Pb, Bi and Ag present in thin
overgrowths on pyrite margins (also some Pt, Te and Sn).

Godel et al.
(2007) [107]

BMS
(pyrrhotite,
pentlandite,
chalcopyrite)

Merensky Reef,
Bushveld
Complex

~65% up to ~85% of PGE hosted by PGM. Lesser amounts of PGE in
solid solution within BMS. Pentlandite is the principal BMS host of
all PGE, except Pt (preferentially enriched in Pd, Rh and Co).
Pyrrhotite contains, Rh, Os, Ir and Ru, but excludes both Pt and Pd.
Chalcopyrite contains very little PGE. The PGE content in the BMS
varies only slightly as a function of the stratigraphy (twice as much
PGE in BMS from chromitites compared to silicate rocks).

Godel and
Barnes (2008)
[108]

BMS
(pyrrhotite,
pentlandite,
chalcopyrite)

J-M Reef,
Stillwater
Complex

Pentlandite main host for Pd. Pt occurs almost exclusively found as
PGM and do not partition into BMS. Other PGE present in BMS.
Highest PGE noted in samples containing secondary magnetite.
Pd precipitated as an alloy, later diffusing into pentlandite.

Holwell et al.
(2015) [109]

sulphide
microdroplets

Platinova Reef,
Skaergaard E
Greenland

Extreme trace element enrichment in sulphide droplets in
closed-system layered intrusions, forming unusual
low-sulphide deposits.

Piña et al.
(2013) [110]

Maucherite,
pyrrhotite,
pentlandite,
chalcopyrite

Beni Bousera,
Morocco

Partition coefficients for PGE, Au, Re, Ag, Se, Bi, Te, and Sb,
between arsenide and sulphide phases estimated. Maucherite
strongly enriched in all chalcophile elements, except Se, relative to
sulphide minerals. Results highlight the strong affinity of PGE for
arsenide phases and the importance of these phases as potential
carriers of PGE.

Piña et al.
(2015) [111]

Ni-arsenides
(nickeline,
maucherite,
löllingite)

Serranía de
Ronda, Málaga,
Spain

PGE, Au, Ag, Se, Sb, Bi and Te contents of arsenide and sulphide
assemblages determined. Arsenides enriched in all PGE, but
especially in Ir, Rh and Pt. Se and Ag partition preferentially into
the sulphide assemblage.

Piña et al.
(2016) [112] Pyrite

Main Sulphide
Zone, Great
Dyke,
Zimbabwe

PGE and other trace element contents in pyrite reported from
several mines. Two types of pyrite differentiated. Py1 is PGE rich
(higher Os, Ir, Ru, Rh, and Pt contents than the associated
pyrrhotite, pentlandite, and chalcopyrite); Py2 has low PGE
contents. Py1 inferred to have formed by late, low temperature
(<300 ◦C) decomposition of residual Ni-rich mss; Py2 suggested to
have formed by replacement of pyrrhotite and pentlandite caused
by late magmatic/hydrothermal fluids.
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Table 3. Cont.

Reference Mineral(s)
Analyzed

Deposit(s)
Studied Significant Findings

Duran et al.
(2016) [113]

Sulphides,
Fe-Ti-oxides

Lac des Iles Pd
deposits, ON,
Canada

Trace element concentration data for pyrrhotite, pentlandite and
chalcopyrite and co-existing Fe-Ti oxides (magnetite and ilmenite).
The study shows how the trace element composition of sulphides
can vary as a function of the degree of fractionation of the parental
silicate magma. Findings carry strong implications for the
petrogenesis of orthomagmatic deposits.

Abbreviations: BMS—base metal sulphides; PGE—platinum group elements; IPGE—intermediate platinum
group elements (Os + Ir + Ru); PGM—platinum group minerals; MSS—monosulphide solid solution.

4.2. Skarn Formation

Calcic skarns comprise a number of gangue minerals (garnet from andradite-grossular series,
pyroxene from the diopside-hedenbergite-johanssonite series, clinozoizite from the epidote supergroup
and abundant accessories), which are widely distributed across skarn deposits. These minerals are
known to feature significant concentrations of substituting trace elements, notably REY, opening
new avenues to explore skarn evolution in space and time. Despite this, there have been relatively
few published studies that specifically target trace element incorporation and partitioning in skarn
minerals by LA-ICP-MS. Smith et al. (2004) [93] described garnets from the Beinn and Dubhaich
contact aureoles, Scotland, which were enriched in HREE or LREE depending upon their grossular-
or andradite-rich composition. High U contents (up to several hundred ppm) were also measured in
such garnets. The measured REY-fractionated trends across crystal zoning in garnet were numerically
modeled with respect to changes in salinity [93]. Evolving REE fractionation trends could be used as
a tool to understand the evolution of metasomatic fluids. Gaspar et al. (2008) [94] studied factors that
control REE incorporation into garnets and showed that evolving REE fractionation trends could be
used as a tool to understand the temporal evolution of metasomatic fluids during skarn formation.

A holistic approach was taken to address the genesis of the Hillside Cu skarn-IOCG prospect,
South Australia [53]. Trace element datasets covered calcic garnet, diopside, clinozoisite and accessory
minerals as well as magmatic and early-hydrothermal feldspars. It was shown that prograde and
retrograde assemblages can be differentiated by distinct chondrite-normalised REY fractionation
trends, paralleled by changes from proximal to distal position within the deposit. Moreover,
application of Zr-in-titanite geothermometry revealed the thermal evolution of the skarn from the
magmatic-hydrothermal transition (~700 ◦C) through the main (prograde) stage of skarn formation
associated with mineralization down to late, retrograde fluids (~300 ◦C).

In a second prospect from the same terrane (the Groundhog copper prospect, Punt Hill district),
Nikolakopoulos (2013) [114] documented garnet compositional data in strongly retrogressive calcic
skarn assemblages, demonstrating that a number of mineralogical and geochemical features are
common to IOCG systems within the Olympic Cu-Au Province. As at Hillside, distinct textural
categories of garnet, each reflecting stages in the evolution of the skarn system, are recognized.
Fe-rich prograde andradite is oscillatory-zoned, with high W and As, relatively low ΣREY, and low
HREE/LREE. Later, retrograde garnets, assigned to the waning stages of the hydrothermal system,
are Al-rich, have ΣREY concentrations an order of magnitude higher, high HREE/LREE, and high
concentrations of incompatible and high field strength elements. Marked enrichment in Cr defines the
garnet rim.

In a study on the Zhibula Cu skarn deposit, Tibet, Xu et al. (in press) [95] have shown that garnet
colors are largely defined by trace element concentrations. Chondrite-normalized REY fractionation
trends in garnet can be correlated with the evolving salinity of ore-forming fluids. Garnets from
this deposit are enriched in an extraordinary range of trace elements less commonly reported for
garnet, including W, Sn, and As, but also Mo (as high as 730 ppm). Garnet compositions support a
genetic connection between the Zhibula skarn and the Qulong porphyry deposit located 2 km to the
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north. Trace element signatures in Zhibula garnets demonstrate the usefulness of this type of approach
(see also [108]) to establish genetic links between skarn and porphyry systems.

An important point here is that although garnet, pyroxene and other minerals in calcic skarns,
are characterized by trace element signatures that can be used to constrain skarn zonation and
evolution in space and time, neither patterns nor trace element substitution mechanisms in garnet
are necessarily identical from case to case. This has precluded development of generalized trace
element models for skarn systems. These studies have also highlighted that the skarn minerals, rather
than sulphides, can be significant sinks for minor metals of potential economic interest. Examples
include the extraordinary enrichment of Ga in clinozosite [53], and of Mo, W and Sn is some skarn
garnets [95,115], or magnetite [116].

4.3. Iron-Oxide-Apatite (IOA) and Iron-Oxide Copper Gold (IOCG) Deposits

IOA and IOCG deposit types belong to a broad spectrum of hydrothermal ore deposits with
distinct characteristics underpinned by a range of common features [117]. Among these are the presence
of abundant Fe-oxides (hematite and magnetite), the common phosphate, apatite, other accessory
minerals such as rutile and titanite, and not least feldspar of either magmatic or hydrothermal origin.
Such minerals are distributed, in varying proportions, within IOA and IOCG systems, and in each,
these trace minerals have great potential for fingerprinting the magmatic to hydrothermal transition
and the different origins of the protoliths to the host rocks. In IOCG systems, trace element analysis
of Fe-oxides, apatite and other accessories allows recognition of distinct mineral generations formed
throughout the hydrothermal lifespan of the system. Here we present existing data related to IOCG
systems, including some enigmatic deposits whose affiliation to this clan is debated (e.g., Bayan Obo,
El Laco, see below). What follows is a selection of examples from the recent literature intended to
highlight various perspectives and the interpretation of LA-ICP-MS datasets obtained on different
minerals, and in different deposits or provinces.

In a pioneering study, Smith et al. (2009) [97] used the REE trends in apatite and rutile/titanite
from the Kiruna Fe-deposit, Sweden, to model deposit evolution. A number of recent publications have
addressed the genesis of iron-oxide-apatite (IOA) deposits based on the trace element geochemistry of
Fe-oxides and/or apatite.

Huang et al. (2015) [118] investigated magnetite and hematite compositions from banded,
disseminated and massive Fe ores in the Bayan Obo Fe-REE-Nb deposit, Northern China, in an effort
to understand the genesis of this world-class REE deposit. Magnetite and hematite show similar REE
patterns and trace element signatures, indicating a common origin. Two stages of REE mineralization
and multiple sources of Fe and REE are indicated. The authors propose a model involving sedimentary
carbonates and subsequent metasomatism by REE-rich hydrothermal fluids. Magnetite chemistry
has proven critical for understanding the transition from magmatic to hydrothermal conditions in
Kiruna-type iron oxide-apatite (IOA) deposits [119].

LA-ICP-MS analysis of trace elements in apatite have also been used to understand the genesis of
nelsonites and other apatite-oxide-rich rocks in magmatic environments [99,100]. Based on a study of
rocks from the Sept-Îles Intrusive Suite, Canada, Tollari et al. (2008) [120] were able to substantiate
a crystal accumulation model in which the nelsonites could have formed as dyke-like bodies.

Chen et al. (2015) [121] investigated magnetite in the Khetri copper belt in Rajasthan Province,
NW India, revealing that ore-forming conditions were controlled mainly by fluid compositions and/or
f O2. Factors such as temperature, fluid–rock interaction and co-precipitating minerals were found to
play negligible roles in controlling composition.

Oscillatory and sectorial zoning patterns were mapped in both hematite and magnetite from the
Olympic Dam IOCG deposit, South Australia [7,122]. Such patterns involve variation in U, Pb, W, Sn,
Mo and REY, elements that we group broadly as ‘granitophile’. Moreover, grain-scale variation in As
and Sb concentrations within hematite have also been shown [122]. The same study showed significant
differences in hematite composition between the deepest and shallower parts of the Olympic Dam
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deposit in terms of trace element signatures and REY content. Such trends have the potential to
underpin space-time evolution models, if understood in the context of the host rocks and regional-
and mine-scale alteration patterns at Olympic Dam, a deposit well-known for mineralogically- and
geochemically-defined zonation patterns [123].

There is, however, one important problem when making easy generalization of LA-ICP-MS
datasets for Fe-oxides in IOCG deposits—the fact that they are probably the only minerals that are
continuously generated and reworked through cycles of brecciation. Such cycles will induce trace
element heterogeneity associated with dissolution, recrystallization, pseudomorphic replacement
and release of trace elements that will overprint pre-existing grains at the scale of the polished block.
We demonstrate this variation by two contrasting examples of hematite from high-grade bornite ore
at Olympic Dam, which have been dated by hematite Pb–Pb geochronology [7]. The examples differ
from one another in terms of morphology, internal textures and trace element distributions (Figures 5
and 6). They do, however, represent the main categories of hematite within such ores.

The type of hematite containing high concentrations of granitophile elements occurs as acicular
grains and radial aggregates that display zoning of individual lamella on the BSE images (Figure 5a,b).
The same lamellae also show areas of abundant porosity and mineral inclusions (Figure 5c).
The LA-ICP-MS map (Figure 5d) shows that the bright areas on BSE images correlates with high-U,
Pb, Mo and W, whereas the same areas show depletion in HFSE (Nb, V, Ti), and mild increase of these
elements in the porous domains. The core of the aggregates shows also an increase in LREE (Ce as a proxy).Minerals 2016, 6, 111 17 of 34 
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Figure 5. BSE images (a)–(c) showing textural details of a radial aggregate of hematite hosted in
bornite (white in (a,b)) from Olympic Dam. Note the zoning and porosity within individual lamellae
depicted on the BSE images in (b) and (c), respectively. (d) LA-ICP-MS element maps of the hematite
aggregate shown in (a); note good correspondence between textures on BSE images and specific groups
of elements, i.e., zoning with respect of U, Pb, Mo and W (middle parts of lamellae), and enrichment in
HFSE in the porous, marginal parts of the same lamellae. Scales in counts-per-second (×103 except for
Ce and Nb). Measured isotopes: 238U, 206Pb, 95Mo, 182W, 140Ce, 93Nb, 51V, 47Ti.
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The second type (Figure 6) is illustrative of the abundant, coarser hematite grains that have been
pseudomorphosed by fine-aggregates of hematite preserving the crystal shape, albeit with some grain
rounding (Figure 6a). In detail, such hematite shows coarser, sub-micron inclusions of REE-minerals
within areas of high porosity (Figure 6b,c). At the micron-scale, such porous areas show a ‘channel’-like
texture, which can be correlated with the element maps (Figure 6e). The maps show a correlation
between the inclusions and the elements U, Y and Er (typical of coffinite-xenotime minerals), as well
as an enrichment in Al, and depletion in W and V within the channel areas shown in Figure 6d.

Although Fe-oxides in certain deposit types display characteristic geochemical signatures that
underpin effective discrimination schemes and can be correlated with ore-forming processes [124],
there is likely to be wide variability in any particular hydrothermal deposit, or among deposits of a
specific type. This is particularly true for IOCG systems where there remains an inadequate understanding
of how fluid/water chemistry and specific formation conditions impact on Fe-oxide compositions.

Controls on the diversity of trace element signatures derive from different fluid sources, participation
of multiple host lithologies (granites, BIF, mafic rocks), and competition for trace elements with other
minerals, including accessories and REE-minerals (and also skarn minerals if the protoliths are limestone).
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Figure 6. BSE images (a–d) showing the textures of coarser, sub-rounded grain of hematite from
the same sample as in Figure 5 (aggregate of acicular lamellae). Note the presence of µm to
sub-µm size REE-mineral inclusions (a,b), as well as the abundance of pores throughout most of
the grain (c); (d) channel-like sub-texture shows a correlation between high concentrations of Al with
low concentrations of W and V; (e) LA-ICP-MS element maps of reworked, hematite resulting in
a depletion of granitophile and HFSE trace elements. Note the correlation between the maps for U,
Y and Er, showing the presence of REE inclusions in (a,b), as well as the channel-like patterns on
the Al, W, V maps correlating with the texture in (d) containing micron-scale inclusions of U- and
REE-minerals, extensive porosity and chemically-defined channel textures. Concentration scales in
counts-per-second (×103). Measured isotopes: 238U, 89Y, 166Er, 27Al, 182W, 51V.

Although excellent hosts for Ba, Sr, Rb, Cs, and others, plagioclase and potassium feldspars are not
traditionally considered good sinks for transition metals and lanthanides. Despite relatively low absolute
concentrations, the abundance of feldspars can, however, mean that they are the dominant carriers
of petrogenetically valuable trace elements. Kontonikas-Charos et al. (2014) [96] have documented
concentrations of as much as 200 ppm ∑(REE + Y) in feldspars from an albite-biotite schist from the
Moonta-Wallaroo region, Yorke Peninsula, South Australia, associated with IOCG mineralization.
Such concentrations can account for nearly all (REE + Y) in whole-rock. Chondrite-normalized REY
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fractionation patterns for feldspars support the applicability of REE-fractionation trends in feldspars
as geochemical tracers of regional-scale hydrothermal alteration haloes.

Apatite is a common magmatic accessory in the same intrusive rocks hosting the world-class
Olympic Dam deposit and hydrothermal apatite is a locally abundant mineral throughout the altered
and mineralized rocks. Krneta et al. (2016) [125] have evaluated whether changes in the morphology
and chemistry (particularly REE and Y content) of apatite can be used to constrain the evolution of
giant IOCG systems. At Olympic Dam, magmatic apatite commonly contains inclusion-rich cores and
REY-enriched rims. The cores show a LREE-enriched chondrite-normalized fractionation trend with
a strong negative Eu-anomaly. Apatite intimately associated with advanced hematite-sericite alteration
and mineralization display convex, MREE-enriched patterns with a weak negative Eu-anomaly.
This change in REY-partitioning behavior could be due to changes in the physiochemical character
of the mineralizing fluid, or alternatively, may indicate crystallization of MREE-enriched apatite in
the presence of LREE- and HREE-consuming minerals such as monazite, florencite and xenotime.
These dynamics are important evidence for a change from early primitive low-grade pyrite-chalcopyrite
mineralization to high-grade bornite mineralization reflected in apatite chemistry by a switch from
LREE- to MREE-enriched REY-trends.

Trace element concentrations in magnetite have also been used to decipher the genesis of the
enigmatic El Laco deposit, Chile [126]. El Laco magnetite was shown to have a trace element signature
comparable with high-temperature hydrothermal magnetites like those in IOCG or porphyry-Cu
systems, supporting a model of metasomatic replacement of andesitic lava flows, and not a magmatic
origin from an effusive Fe oxide liquid.

4.4. Trace Elements in Pyrite in Hydrothermal Ore Deposits

Pyrite is the most common sulphide in a wide variety of hydrothermal ore deposits. As a refractory
mineral that is stable up to relatively high temperatures, and which readily preserves trace element
signatures, pyrite trace element geochemistry has proven useful for understanding the genesis of
volcanogenic massive sulphides, black shale hosted deposits and others [76,77,80,127,128].

Applying LA-ICP-MS trace element mapping of pyrite within the Carbon Leader Reef,
Witwatersrand Basin, South Africa, Large et al. (2013) [129] showed that “a significant proportion” of
pyrite and gold in the reef was derived, via large-scale flow of basinal fluids, from sedimentary
rocks stratigraphically below the reef. This is valuable evidence in support of a hybrid
hydrothermal-palaeoplacer genetic model for the world’s largest gold resource.

Gregory et al. (2015) [130] conducted LA-ICP-MS trace element analysis of >1400 diagenetic
and syngenetic pyrites from 45 carbonaceous shale and unconsolidated sulfidic sediment samples.
Despite extensive and often inconsistent variation in trace element signatures, three main groups of trace
elements identified from factor analysis revealed element groupings that carry genetic implications,
including recognisable signatures indicative of input from fluids associated with mafic rocks.

Steadman et al. (2015) [131] examined pyrites from black shale units in the Kalgoorlie goldfield,
Western Australia, and observed complex, though generally systematic patterns of compositional
zonation. These data support a genetic model for this world-class metallogenic terrane involving
inter-volcanic (syn)diagenetic pre-concentration of Au-Ag-Te-Hg-As in fine-grained, sulphidic,
moderate- to deep-water sediments before formation of gold-(telluride) lodes.

Trace element characterization of pyrite has been used to reconstruct the hydrothermal evolution
of Archean VMS in the Abitibi Belt, Canada [132]. Five pyrite types were identified, each of which
could be correlated with a distinct stage in the evolution of the mineralizing system. Recrystallization
causes some early signatures to be partially obliterated, with migration of some minor elements out of
pyrite. A near-mine vectoring approach to exploration is proposed based on discriminant diagrams.
In a further application of pyrite trace element geochemistry, Mills et al. (2016) [133] compared
compositions of pyrite from three belts within the Jiaodong gold district, Eastern China. Significant
differences in pyrite geochemistry were related to style of gold mineralization, allowing a model for
the timing of gold introduction, geodynamic setting, and for remobilization of gold.
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5. Trace Element Vector Approaches in Mineral Exploration

Interest in using the trace element concentration in a specific mineral in a vectoring approach
to mineral exploration stems from the fact that mineral compositions are more sensitive to changes
associated with ore-forming processes than whole rock is. This is because the geochemical signatures of
each mineral are governed by crystal structures and often-constrainable physical-chemical parameters.
They are thus much less prone to averaging-out effects than is the case for whole-rock data. Successful
application does depend, however, on the mineral concerned being abundant in a range of lithologies
across a deposit and within the alteration envelope enclosing the deposit. A second consideration is
that the variance (or ‘noise’) in the geochemical signal within a specific sample needs to be sufficiently
low to be able to recognize trends which correlate with distance from mineralization. Several dozen
recent studies have used LA-ICP-MS analysis of minerals (sulphides, oxides and in some cases, also
silicates) to support a vectoring or indicator mineral approach. A selection of these is given in Table 4.
Testing will be required to determine whether each can be duplicated in analogous terranes elsewhere.

In the Punt Hill district of South Australia, it was suggested [114] that trace element distributions
in texturally-distinct categories of garnet can be used as vectors to mineralization within defined
structural corridors. Vectors are defined by ΣREY- and W-concentrations in prograde and retrograde
garnets. Understanding structures that define the direction of fluid flow is critical for application of
such vectors, as is an adequate interpretation of trace element data in the contexts of textural and
prograde-to-retrograde evolution of the system.

An important potential application of the approaches listed in Table 4 is that if these minerals
are recovered from glacial deposits of unknown or uncertain setting, mineral compositions may
indicate the presence of potential mineralization upstream, directly impacting on exploration strategies
depending on the mineralization type identified.

Table 4. Selected examples of LA-ICP-MS studies of minerals as indicators of proximal and distal
position, or supporting a vector approach in mineral exploration.

Vector Mineral Reference Geochemical Signature and Comment(s)

Magnetite Boutroy et al.
(2014) [134]

Compilation of trace element compositions in magnetite from
13 major Ni–Cu–PGE deposits. Controls on magnetite composition
discussed. Discrimination diagrams introduced to distinguish
primary from secondary magnetite. Magnetite considered a useful
indicator mineral in exploration, particularly if used to detect
eroded Ni–Cu–PGE deposits in surficial sediments.

Ni-arsenides
(gersdorffite,
nickeline)

Le Vaillant et al.
(2015) [135]

Case study: Miitel komatiite-hosted nickel sulphide deposit,
Western Australia Elevated Pd and Pt associated with Ni and As
enrichment. Pd- and Pt-enriched trace arsenides in country rocks
considered a proximity indicator for Ni-sulphides in
hydrothermally altered terranes.

Magnetite Acosta-Góngora et al.
(2015) [136]

Major differences in the V, Ni, Cr, and Co concentrations within
magnetite are reported from the Paleoproterozoic Great Bear
magmatic zone. Cr/Co and V/Ni ratios are useful to distinguish
barren alteration from mineralization. The results highlight
potential use of magnetite as an indicator mineral in exploration for
IOCG deposits.

Pyrite Belousov et al.
(2016) [137]

Pyrite compositions from VHMS and orogenic Au deposits in the
Yilgarn Craton, Australia are distinct. The data are useful for
distinguishing signatures at the exploration stage and have valuable
implications for the deportment of precious metals in these ores.

Magnetite Canil et al.
(2016) [138]

Trace element compositions are reported from hydrothermal
magnetite in 5 porphyry Cu–Mo–Au deposits and two skarns from
B.C., Canada. Compositions are found to vary with temperature,
redox potential, and the acidity of the ore-forming fluids.
Concentrations of Mn, Sn and Mo in hydrothermal magnetite are
shown to vary with fluid acidity. Variations in Ti, Al and V are
inferred to depend on temperature and f O2.
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Table 4. Cont.

Vector Mineral Reference Geochemical Signature and Comment(s)

Gahnite O’Brien et al.
(2015) [87]

Major and trace element data for gahnite in the Broken Hill domain,
N.S.W., Australia is reported. Gahnite chemistry may be used to
distinguish prospective exploration targets from non-prospective
occurrences. Principal component analysis and variation of Zn/Fe
vs. Ni + Cr + V distinguishes gahnite in the Broken Hill deposit
from that associated with sulphide-poor mineralization and barren
rocks. Gahnite is proposed as an exploration guide to high-grade
ore in analogous metamorphosed terranes.

Magnetite Nadoll et al.
(2012) [139]

Magnetite compositions from different geological settings in
western Montana and northern Idaho are compared.
Subtle differences are correlated with formation temperatures.
Factor analysis is used to discriminate genetic types of magnetite.
Magnetite is thus proposed as a useful discriminator and pathfinder
for hydrothermal deposits.

Amphibole Hanley and Bray
(2009) [140]

Elevated Ni, Cu and Sn in amphiboles are noted within 10 to 20 m
from sulphide veins at Sudbury, ON, Canada. The mineral is
suggested to be a valuable proximity indicator for hidden
footwall-style sulphide deposits.

Biotite Warren et al.
(2015) [141]

The Ni, Cr, and Cu contents of biotite vary as a function of
proximity to mineralization at Sudbury, ON, Canada.

Chlorite Wilkinson et al.
(2015) [142]

Chlorite compositions reflect proximity to ore in the propylitic
environment of porphyry deposits, potentially over as much as
2.5 km. The elements K, Li, Mg, Ca, Sr, Ba, Ti, V, Mn, Co, Ni, Zn and
Pb, were shown to be likely incorporated in the lattice and display
spatial variation. Chlorite is proposed as a precise vectoring tool in
porphyry domains where few other vector tools are available.

Apatite Mao et al.
(2016) [143]

A compilation of apatite compositions shows that trace-element
compositions from various magmatic-hydrothermal deposits are
distinct from those in carbonatites and un-mineralized rocks.
Apatite composition shows potential for identifying specific types
of buried deposits.

Magnetite Makvandi et al.
(2016a, b) [144,145]

The authors compare compositional data for magnetite from
VMS-type mineralization, associated bedrocks, and surrounding till
samples, showing the value of preserved magnetite for prospecting
in glaciated terranes.

Pyrite Duran et al. (2015,
2016) [106,113]

The two papers show that pyrite from magmatic Ni–Cu–PGE and
hydrothermal deposits, and pentlandite from Ni–Cu sulphide and
PGE-dominated deposits, have distinct compositions, and can be
good indicators of mineralization type.

6. Element Deportment, Geometallurgy and Forensic Applications

Exploited mineral deposits ubiquitously contain elements other than those that are the major
target of a mining operation. Some of these elements are advantageous, and if present in sufficient
abundance, they can be recovered economically as by-products, either directly at the processing site,
or as credits in concentrates and mattes sold on to the refiner. These include the so-called ‘strategic’
or ‘critical’ metals, such as Ga, Ge, Co, In, Sn, REE, Nb, Sc, and many others. Other elements may
diminish the value of the ore and represent penalty elements. High contents of As, Sb, Bi and Hg,
for example, can make a copper ore difficult to process economically, or diminish the value or saleability
of the concentrate [146]. LA-ICP-MS is an effective method to constrain which mineral or minerals
contain the elements of interest (whether prospective by-product or penalty elements) in a specific
deposit or ore province (e.g., indium in vein mineralization in SW England [147]), and the range and
variation in absolute concentrations. Similarly, careful LA-ICP-MS analysis of individual minerals
within mill feed or across the deposit can provide valuable information that feeds into a quantitative
deportment model for penalty elements. Such approaches may require analysis of different minerals
in a large number of samples, and/or examination of materials from different stages of the processing
cycle. Together with microanalytical data acquired using other techniques, notably EPMA or SIMS,
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and automated QEMSCAN or MLA analysis on a large number of samples, the level of understanding
of key mineralogical hosts for trace elements of interest or concern has advanced significantly in the
past few years. This trend is likely to continue.

Such studies need to be designed to be as holistic as possible, and consider all minerals in
a given assemblage as potential hosts to the penalty or by-product elements. The distribution of
certain potentially valuable trace elements (for example, In, Ga, Ge, or Sn) may be complex with
the elements of interest occurring, at various concentrations, in sulphides, oxides, rock-forming
silicates, and even accessory phases (e.g., [148] in the case of indium). LA-ICP-MS data can make
a significant contribution to calculation of a quantitative mineralogical balance following extensive
mineralogical work to understand prevailing assemblages, and ideally the sequence of ore-forming
processes. Although there currently exists a sound understanding of the preferred partitioning of
key trace elements in base metal sulphide ores, allowing important hosts to be predicted (e.g., [59]),
substantial knowledge gaps remain, particularly with respect to trace element partitioning in complex
multi-phase assemblages [149].

LA-ICP-MS analysis can provide reliable information on mineral(s) hosting contaminant elements
in mine tailings and in other solid media. This knowledge can be critical, e.g., for evaluating the
behavior of those waste materials under exposure to groundwater.

A growing area of interest is to use the trace element signature specific to minerals formed in
a given geological environment as a fingerprint to trace the origin of a sample. Published applications
include successful attempts to fingerprint so-called ‘conflict diamonds’ [150,151], columbite-tantalite
and other sought-after ores (e.g., [152,153]). Potential can also be recognised in areas such as uranium
concentrates. Related fields of application include trace element microanalysis by LA-ICP-MS to
determine the likely derivation of cultural heritage objects [154].

7. Discussion

7.1. How Many Analyses?—And Which Elements?

The authors are often asked how many data points are sufficient to characterize the trace element
signature of a given mineral or phase. This will vary with the complexity of ore textures, and in
particular, any intra-grain compositional zoning or the presence of multiple generations of the same
mineral in a given sample or suite of samples. We cannot stress enough the importance of detailed
petrological characterization, by optical and scanning electron microscopy, prior to any microanalytical
work. This may entail the designation of textural sub-types and should assess any major compositional
zoning in the material to be analyzed (i.e., visible optically or in back-scatter electron images).
Such variation is likely to be mimicked by other elements present at lower concentrations.

Routine spot analysis by EPMA or LA-ICP-MS at the centers of ‘clean-looking’ grain is likely
to introduce a systematic bias into the dataset, with elements that concentrate towards the rim or in
specific domains within individual grains being potentially over- or under-estimated. Variation can be
expected between samples from different parts of a given ore, and not uncommonly within a single
polished section. Meaningful, quantitative evaluation of the distribution of, e.g., Au in pyrite, may
therefore only be attained by determining abundances in a large number of representative samples.
Other elements and other minerals, however, often show a more limited inter- and/or intra-sample
variation and an accurate appraisal may be possible with a smaller dataset. Examples include the
concentration of Cd, Mn and Hg in sphalerite from metamorphosed ores, which often appear quite
uniform on the deposit scale, at least in cases when only a single textural type (or generation) of
sphalerite is recognized.

A further issue is the choice of isotopes to be measured. Reasonably rapid spot analysis requires
sufficient dwell times for each element analyzed. The choice will be influenced by the type of mass
spectrometer the number of isotopes measured; a quadrupole, for example, allows for analysis of more
isotopes than a sector field instrument that may have longer magnet settling times. The maximum
number of elements that can be analyzed at acceptable levels of precision using a quadrupole mass
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spectrometer is, in our experience, around 25–30, exceptionally as many as 35. This may cause
the user to have to choose from a larger number of elements, which might potentially be present.
For common sulphides, a predictive understanding is beginning to emerge, whereby we can say
with some reasonable certainty that sphalerite, for example, can contain Mn, Cd, Hg etc., even if we
are unsure at what concentration levels, and that galena is likely to contain some Ag, Bi, Sb, Tl [49].
For other minerals, the choice may be more difficult—we have encountered Fe-oxides that contain
more than 45 elements at measurable concentrations (authors unpublished data).

Similarly, LA-ICP-MS element maps of skarn garnet [53,95], for example, reveal recognizable
patterns and measurable concentrations of more than half the periodic table (Figure 7), including
several elements that were unexpected (Sb, In, etc.). The choice of elements to be analyzed can be
narrowed down somewhat by considering whether the elements are present in the standard(s) to be
employed, and excluding those which are not, or by considering the likelihood that concentrations
are, in any case below detection limit. Nevertheless, as pointed out by Zhu et al. [13], element maps
expressed in counts-per-second values can provide valuable qualitative information on the relative
distributions of elements not present in a given standard.
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Minerals 2016, 6, 111 23 of 34

7.2. Statistical Treatment of LA-ICP-MS Data

The relative ease and speed of data collection using automated LA-ICP-MS instrumentation
facilitates the generation of large data volumes. This presents its own potential pitfalls, in that
innovation in data processing has not kept pace with technical development. Interpretation of
multi-element datasets is reliant on the choice of statistical methods used. These have been discussed
by, among others, Winderbaum et al. (2012) [78], Marques de Sá (2014) [155], Frenzel et al. (2016) [156]
and Makvandi et al. (2016a, b) [144,145]. The choice of methodologies used depends on the nature
of the dataset, the degree of variance at the sample or sub-population scale, and the objectives of the
study. The latter may include the efficient discrimination of groupings that are rooted in temporally
(genetically) distinct formation conditions, or spatial patterns that reflect systematic variation at the
regional to mine scale.

For example, Winderbaum et al. (2012) [78] applied multivariate analysis to test the validity
of pyrite grain classification methods based on morphological and textural factors. Parallel
coordinate plots and correlation cluster analysis using Spearman’s coefficients were found useful to
identify unexpected elemental relationships, while principal component analysis and factor analysis
demonstrate the presence of sub-classes of pyrite. Corroborated with geological data, statistical analysis
provided evidence for successive generations of hydrothermal fluids, each introducing specific metals,
and for partial or complete replacement of different minerals. Such weighted geochemical vectors
are important for defining the evolution of geochemical signatures over time. By plotting specific
components of such vectors (using, for example, Leapfrog 3D modeling software) spatial distribution
can be assessed in terms of proximal to distal relative to a certain structure of interest or fluid source.

Statistical models do, however, need to account for the inherent variability and underlying
relationships within such a dataset, necessitating mathematically-based, versatile, modulated
approaches which could be more powerful and accurate than current approaches provided by
off-the-shelf software. Such models need to acknowledge variables that do not show multivariate
normal distributions and where there may be issues of scaling and tail dependency. The latter
(the tendency for extreme outlying values to occur together) are crucial in the context of trace element
signatures. The trace element signatures of individual minerals are governed by crystal structures
and often-constrainable physical-chemical parameters making them far more sensitive to changes,
and much less prone to averaging-out effects than is the case for whole-rock data. For example,
if the relative concentrations and/or variation in element ratios can be correlated with the position of
a mineral assemblage within a given ore system, exploration vectors can be developed for application
in near-mine exploration, particularly for discrimination of proximal and distal positions relative to
a hydrothermal fluid source.

7.3. Current Trends and Future Opportunities

The currently available data for many common ore and gangue minerals can assist with prediction
of trace elements in the phases, and at what concentrations. As discussed above, minerals that are
abundant in nature and widely distributed, and which display extensive trace element substitution,
such as Fe-oxides or apatite, have particular appeal in that subtle variations in chemistry can be
interpreted to reflect conditions of ore formation and represent a guide to ore in a variety of settings.
Despite the considerable progress outlined above, more empirical data on a greater range of natural
hydrothermal ore occurrences would be invaluable in understanding the fundamental controls on
trace element distribution. This needs to be expanded to address the preferred partitioning behavior of
elements valuable for petrogenetic interpretation (e.g., REE) or of potential economic value (e.g., certain
‘critical’ metals such as Sc, Ga or Ge).

Several recent publications have explored minerals for which little or no LA-ICP-MS trace element
data have been available until now: carbonates [157,158], titanite [98,159], calcite and tourmaline [90],
Ti-spinels and perovskite [160], or native gold [161]. Despite these efforts, the distribution of trace
elements in certain matrices remains relatively poorly understudied. Data are particularly limited for
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common gangue carbonates (e.g., calcite and siderite), sulphates (e.g., anhydrite and barite), accessory
minerals (e.g., titanite) and common products of hydrothermal alteration (e.g., chlorite, epidote,
sericite, amphiboles and tourmaline). Considerable opportunity therefore exists for LA-ICP-MS
studies addressing the partitioning behavior of potential by-product metals, such as Ga or Sn,
in multi-phase sulphide-oxide-silicate assemblages. Even for relatively well-studied minerals, more
trace element data, especially for rare elements, is welcome (e.g., in sphalerite [162]). Such additional
data will assist in building holistic element distribution models, and will undoubtedly highlight the
importance of minor and trace minerals as hosts for specific elements. The role played by minor
minerals may be disproportionately large compared to their modal abundance. Care should, however,
be taken to avoid interpretation of apparent hosts for trace elements caused by isotope interference.
A related future objective would be the development of trace element geothermobarometers suitable
for sulphide assemblages, based on more detailed understanding of element partitioning under
equilibrium conditions.

Future technical developments are likely to lead to smaller spot sizes and better spatial
resolutions, in turn facilitating insights into finely-zoned or intergrown minerals that cannot, at present,
be unequivocally investigated by LA-ICP-MS. It can also be reasonably expected that future work will
help ease persisting uncertainties about fractionation at the site of ablation or during transport to the
mass spectrometer.

Although LA-ICP-MS is a destructive technique, complementary in situ trace element
microanalysis by other techniques can be used to obtain for other information. We have demonstrated
how small volumes can be extracted from the surface of a sample adjacent to laser ablation craters by
focused ion beam—SEM methods, thinned and investigated by TEM, resulting in the identification of
nanoparticles [50]. We have also performed synchrotron-based µ-XANES investigations on sphalerite,
shown by LA-ICP-MS spot analysis to contain hundreds of ppm Ge [70]. A further example is
utilization of FIB-SEM-prepared foils from a sample of Bi-sulphosalts on which LA-ICP-MS spot
analyses were conducted. These have been studied at the nanoscale to understand controls on trace
and minor element incorporation [163].

A further topic worthy of research is the optimization of spot analysis and element mapping taking
into consideration the orientation of mapped grains, given the possibility that trace elements may
be preferentially incorporated along specific orientations, as has been demonstrated in fluorite [164].
This may be investigated by integrated use of LA-ICP-MS and EBSD studies. Although not using
LA-ICP-MS, the multi-technique study of trace-element zoning in fluorapatite using BSE and CL
imaging, and EPMA and µPIXE/µPIGE mapping [165] is exemplary of the kind of approach destined
to become more common in the future.

Despite the publication of large volumes of LA-ICP-MS trace element data in recent years, and
expansion of the method to new matrices and applications, there have been remarkably few studies,
which have evaluated the performance of reference materials in different laboratories, or comparative
studies on different mineral matrices. More standard development needs to be carried out in order
to improve laboratory LA-ICP-MS practice, offer innovative strategies for preparation of reference
materials [166,167], and so contribute to better LA-ICP-MS analyses. This is particularly true for
standards needed to analyze the range of sulphides, oxides, phosphates and other common minerals
in hydrothermal ore deposits. Ways in which this might be done include better matrix matching,
homogeneity, reproducibility, and not least, accessibility to optimal reference materials. Several recent
developments in standard development [168,169] show how solutions are being sought to overcome
some of the limitations highlighted in this contribution.

8. Conclusions

LA-ICP-MS is a rapid, relatively inexpensive method to obtain large volumes of useful trace
element data without undue time-consuming sample preparation. Comprehensive optical and SEM
characterization of ore textures is, however, essential prior to analysis. Care should also be taken to
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select analytical spots and to consider that if the distribution of trace elements is heterogeneous at
the grain scale. Data processing and interpretation also needs to follow protocols that acknowledge
the presence of outliers related to mineral inclusions. Results can underpin models of ore genesis,
be applied in mineral exploration, and, indirectly, guide optimal exploitation of existing ore deposits.
Rapidly expanding datasets for a variety of mineral matrices provide the foundation necessary to
evaluate variations in samples from different geological settings and the issue of ‘noise’ within
individual samples that can hamper interpretation.
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