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Abstract: Synthesis of hydrophilic/hydrophobic beads from functional carbon nanotubes (CNTs)
conjugated with sodium alginate was investigated. Glutaraldehyde was used as a coupling agent
and Ca2+ as a crosslinking agent. The formed conjugate comprises two-dimensional sheets of
sodium alginate bounded to long tufts of functional CNT tails of micro-size geometry. Detailed
characterization of the conjugates was performed using thermogravimetric analysis (TGA) and its
first derivative (DTG), Fourier transform infrared (FTIR), and scanning electron microscope (SEM)
techniques. Different ratios of the conjugate were successfully prepared and used as biodegradable
environmentally friendly sorbents. Removal of U6+, V3+, Cr3+, Mo3+, Pb2+, Mn2+, Cu2+, Ti4+ and
Ni2+ from aqueous solutions using the synthesized biosorbent was experimentally demonstrated.
Maximum metal uptake of 53 mg/g was achieved using the % Functional CNTs = 33 sample.

Keywords: functional CNT-sodium alginate beads; uranium tailings; water purification; industrial
effluents; environmentally friendly biosorbents; hydrophilic/hydrophobic

1. Introduction

Profound cost benefit analyses for many novel materials appearing in the world endorse carbon
nanotubes (CNTs) as the Trojan horse in the nanotechnology race. Due to their extraordinary
properties, many industries could effectively use CNTs and its derivatives in a wide range of versatile
applications: National Aeronautics and Space Administration (NASA) utilizes CNTs as sensors for
gas detection [1], IBM in high performance electronics [2,3], and INTEL in delicately engineered
nanowires [4]. In addition, CNTs have already been incorporated in the manufacturing of energy
storage technologies [5], electron field emitting displays [6], fuel cells [7,8], and semiconductors [9,10].
In the field of bio-applications, CNTs receive considerable attention in radio-diagnosis imaging [11,12],
cancer therapy and other therapies as drug carriers [13–18], and in detection and binding of DNA
and RNA [19–22]. CNTs are also acknowledged for their high adsorption affinity towards: (1) organic
pollutants such as aniline and phenol via non-covalent forces, such as π–π stacking, van der Waals
forces, and hydrophobic interactions [23] and (2) multivalent environmental ion contaminants over
a broad range of pH values [24,25]. Currently, CNTs account for 28% of the overall global market
demand of nanomaterials with a proposed production of up to 12,766 metric tons by 2016 [26].

On the other hand, naturally occurring polymers modified via synthetic routes are gaining
widespread applications especially in biomaterials as smart and stimuli-sensitive drug delivery
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systems [27–35], in biosorption processes [36,37], and in protective coatings of metal surfaces [38–41].
Moreover, these materials such as sodium alginate are gaining promising futuristic anticipations not
only due to their capability to adhere to biological tissues but also due to their biodegradable and
environmentally friendly characteristics [42]. Iron oxide loaded alginate beads have been investigated
for the removal of arsenic from contaminated water. Three types of modified alginate beads were
studied, and a preferential behavior to adsorb As(V) was reported. As(III) was found to be less
efficiently adsorbed [43].

Nevertheless, water purification is materializing as one of the major widespread dilemmas of
the industrial world. The purification of drinking water and wastewater arouse as paramount issues
throughout the uprising environmental threats and the global water-shortage crisis. To purify water
from uranium and other contaminants, a multitude of techniques are being administered [44]. This
research investigates the opportunity to purify water by harnessing the power attained when the
characteristics of both synthetically modified CNTs and alginate are combined together. The proposed
conjugate is deemed conceivable by modulating the sidewall surfaces of CNTs via the insertion of a
carboxylic acid functional group into their backbone structure. The described implantation renders the
CNTs ready to couple with the synthetically modified alginate and enhances the molecules surface
area characteristics and suspension performance in aqueous solutions.

This research is dedicated to develop environmentally friendly beads of surface enhanced
CNTs bounded to naturally occurring alginate. Such biosorbents are favorable due to their
biodegradability, hydrophobic/hydrophilic surface characteristics, and high efficiency biosorption
characteristics. The formed novel biosorbents which come with micro-size geometry were characterized
via thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) and scanning electron
microscope (SEM) techniques, and were further evaluated experimentally for their capability to
purify water from dissolved uranium and other multivalent heavy metal pollutants.

2. Experimental

2.1. Materials

Multi-walled CNTs purchased from NanocylTM NC7000, Sambreville, Belgium. Sodium alginate,
a gluteraldehyde cross-linker, was purchased from Acros organics, Geel, Belgium. Multicomponent
ICP (Inductively Coupled Plasma) standard was purchased from AccuStandard, New Haven, CT, USA.
The other reagents were analytical grade and used as received.

2.2. Investigation Tools

Thermogravimetric Analysis (TGA) (Netzsch Proteus, Selb, Germany) thermograms performed
under N2 atmosphere at a heating rate of 10 ˝C/min in 25–900 ˝C temperature range. FTIR: Shimadzu
IRAffinity-1 FTIR spectrophotometer (Shimadzu, Tokyo, Japan) recorded the vibrational spectra in the
4000–400 cm´1 range using KBr pellets. Scanning Electron Microscopy (SEM); the samples were coated
with gold ion by sputtering method with (DSM 950 (ZEISS) model) (ZEISS, Pleasanton, CA, USA),
(E6100) model (Polaron (now Quorum Technologies, Laughton, UK)). Inductively Coupled Plasma
Mass Spectrometry (ICP-MS) (Elan DRC-E (Dynamic Reaction Cell-Enhanced) by PerkinElmer Sciex
(Concord, ON, Canada), used to analyze aqueous samples resulted from purification of contaminated
water evaluation.

2.3. Acid Functionalized Carbon Nanotubes (CNTs)

In a 50 mL dried round bottom flask equipped with a condenser, 0.5 g multi-walled carbon
nanotubes (CNTs) dispersed in 40 mL of 9.0 M nitric acid and refluxed for 8.0 h for three rounds at
75–80 ˝C. The use of 9.0 M nitric acid meant to increase the defect sites and –COOH groups and at
the same time maintain appropriate yield for the oxidation process [45]. The solution was allowed
to cool down to ambient temperature and then a large volume of deionized water was added to
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the resultant dispersed solution. The functionalized CNTs were collected by filtration whereas the
remained suspended portion was separated by centrifugation. In order to remove any amounts of
trapped nitric acid, the produced functionalized CNT sample was thoroughly washed with deionized
water until a neutral pH value of the filtrate was observed. The product was dried overnight at 40 ˝C.

2.4. Functional CNT-Alginate Beads

As part of this experiment, 200 mg sample of functional CNTs dispersed in 20 mL deionized water,
and in another flask, 200 mg sodium alginate (SA) dispersed in 20 mL aqueous solution. The sodium
alginate solution was slowly poured into the functional CNT dispersed solution under continuous
stirring. Then, 40 mg acidified glutaraldehyde solution, acting as coupling agent, was added to the
mixture. The mixture stirred at 40 ˝C for 60 min until one homogenous dense black phase was formed.
The dense solution was added dropwise, through a dropper, into large volume of 2% (w/w) CaCl2
solution, where Ca2+ acted as a crosslinking agent. Immediate formation of bead-like agglomerations
of the functional CNT-sodium alginate conjugate was observed. The formed beads are left in solution
for 24 h to achieve complete nucleation, and then filtered and flushed thoroughly with distilled water
to remove any uncross linked and unreacted dispersions of functional CNTs or alginate moieties. The
average size of the beads is approximately 5 mm in diameter. To serve the purpose of this research,
the following four different functional CNT samples were prepared and subjected to bench-scale
laboratory testing:

Table 1. List of synthesized % functional carbon nanotubes (CNT) samples.

Sample Functional CNTs (%)

I 17
II 33
III 50
IV 100

The fraction of functional CNTs (in %) in the functional CNT-sodium alginate beads were
calculated from the following relation:

Functional CNT p%q “
AUCCNTs

´

AUCCNTs `AUCalginate

¯ ˆ 100 (1)

where AUCCNTs and AUCalginate represent the area under the curves of functional CNTs and sodium
alginate (SA) moieties, respectively. The area under the curves was determined from the first derivative
thermogravimetric analysis technique (TGA) using the software package provided by Derivative
Thermogravimetric (DTG) thermogram in a similar manner to previously reported work [34,36].

2.5. Removal of Uranium and Other Contaminants

Two liters of multicomponent (Ni2+, Ti4+, Cu2+, Mn2+, Pb2+, Mo3+, Cr3+, V3+ and U6+) solution of
50 ppm concentration was prepared by diluting 100 mL of AccuStandard multicomponent solution
with ASTM I (Ultra-pure) water. The concentration of each species in original standard is 1000 ppm. In
a 500 mL bottle, 2 mL of wet functional CNT-sodium alginate beads (obtained from 2.4) was mixed with
300 mL multicomponent solution (species concentration 50 ppm). Four bottles were prepared—one
for each type of the synthesized beads (Table 1). The bottles were placed on a rotating bottle device
and rolled for 5 h; afterwards, the mixture was filtered. While still on the filter paper, the beads were
washed with 20 mL of ASTM I (Ultra-pure) water to ensure no entrainment existed. The resulting
combined solution of filtrate mixed with the wash was sent for assaying by ICP-MS. The experiment
was repeated but for a contact time of 24 h; no enhancement in adsorption was observed.
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3. Results and Discussion

3.1. Structural Identification of Functional CNT-Alginate Conjugates

The conjugate formulation of a biosorbant is based on a two-step consecutive crosslinking process
of the negatively charged carboxylate group (COO–) located on the surface of alginate macromolecule
and the surface enhanced functional CNT thread. The addition of gluteraldehyde acidified with two
drops of 1.0 M hydrochloric acid guarantees the immediate formation of double-sided positive charges
on the gluteraldehyde molecule. Such ion species act as a coupling agent of the negative charge
carboxylate groups (COO–) located on the surfaces of alginate macromolecule and functional CNT
thread, leading to the formation of micro-size geometry as depicted in Scheme 1. Consecutively, the
addition of calcium ion species (Ca2+) in aqueous solution, acting as a crosslinking agent, tends to bind
micro-size geometry freely distributed in solution with each other to form spherical beads. The shell of
beads probably will form hydrophilic surfaces of alginate macromolecules, whereas the core of beads
will be formed of hydrophobic functional CNT threads.
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Scheme 1. Schematic illustration of the synthesis process for conjugates and beads.

The foremost distinctive features of thermogravimetric analysis thermograms, TGA, and its
first derivative, DTG, techniques are thermal stability and decomposition temperature of the formed
conjugates. Figure 1a shows the first derivative thermogram of the as received carbon nanotubes
before being acid functionalized. No degradation peaks were observed up to 900 ˝C. This confirms
high thermal stability and high resistance against thermal degradation up to 900 ˝C. On the other
hand, Figure 1b shows distinctive and broad decomposition peak for functional CNTs at 693 ˝C. The
lower decomposition temperature of functional CNTs with respect to as-received CNTs confirm the
appearance of defects and oxidizable fractions, which result from the oxidation process during acid
treatment, on the surface of carbon nanotubes that weaken the entire structure of CNTs. In other
words, the oxidation processes of CNTs include the formation of carboxylic acid groups (COOH)
on the sides of the CNT cylinders. Such groups deprotonate and form carboxylate ions (COO–) at
pH = 7.0, which repel each other and lead to weaker intermolecular forces (i.e., weaker π–π stacking,
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van der Waals forces and hydrophobic interactions). This weakness causes the observed lower
decomposition temperature.

However, sodium alginate shows sharp midpoint decomposition peak at 242 ˝C as seen in
Figure 1c. At the splitting of the first derivative peak, the DTG is attributed to two types of alginate:
bulk, non-conjugated alginate and conjugated alginate. Interestingly, the decomposition peak of
sodium alginate in the functional CNT-sodium alginate conjugate (Figure 1d) appears at the same
decomposition temperature as in Figure 1c, whereas, the decomposition temperature of functional
CNTs increased to 807 ˝C. This extremely large increase in decomposition temperature (i.e., 114 ˝C) is
attributed to the large surface area of functional CNT threads that allow easy and large crosslinking, via
glutaraldehyde and calcium ion, which eventually leads to stronger and more consistent CNT threads
and hence more thermally stable constructions. Any carboxylate group not functionalized will also
exist as calcium salts at this point as well, thereby increasing the decomposition temperature. However,
the insignificant increase in decomposition temperature of alginate fraction is due to geometric planar
properties of alginate [46] that tend to form dominant self-aggregate layers which were not strongly
incorporated in the crosslinking process.
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Figure 1. Thermogravimetric analysis (TGA) thermogram and its first derivative (DTG) of:
(a) as-received CNTs, (b) functional CNTs, (c) sodium alginate, and (d) functional CNT-sodium alginate
conjugate (% Functional CNTs = 17).

Figure 2 and Table 2 illustrate the FTIR stretchings for the functional CNTs and the functional
CNT-sodium alginate conjugates. In the functional CNT spectrum, apparently, the presence of
characteristic peaks of carbonyl, asymmetric and symmetric carboxyl and hydroxyl stretchings located
respectively at 1735, 1638, 1387 and 3443 cm´1, provide evidence of successful acid functionlization
of CNT threads. In addition, asymmetric CH stretching of methyl bounded to aromatic groups,
and symmetric CH stretching of methyl and methylene groups located respectively at 2960, 2922
and 2851 cm´1, provide other evidence of successful acid functionlization of CNTs by nitric acid.
Furthermore, the larger intensified hydroxyl (OH) band at 3443 cm´1 in the functional CNTs-sodium
alginate conjugate refers to the presence of hydroxyl groups from alginate and crosslinker, respectively.
Moreover, the carbonyl, asymmetric carboxyl, and symmetric carboxyl stretchings are intensified in
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the functional CNT-sodium alginate conjugate as described in Table 2. The presence of carboxyl groups
bearing negative charge in the functional CNT-sodium alginate conjugates are important to hook and
trap positive charge multivalent environmental ion contaminants, and hence play a dominant key role
in the biosorption process.Minerals 2016, 6, 9 6 of 12 
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Figure 2. Fourier transform infrared (FTIR) spectra of sodium alginate, functional CNTs and functional
CNT-sodium alginate conjugate.

Table 2. Characteristic Fourier transform infrared (FTIR) peaks of functional CNTs and functional
CNT-sodium alginate conjugate.

Composite Wavenumber (cm´1) Absorbance Functional Group Reference

Functional CNTs

3443 0.003 OH stretching [47,48]

2960 0.074 Asymmetric CH stretching of
methyl groups [47,48]

2922 0.073
Asymmetric CH stretching of
methyl bounded to aromatic

groups
[49,50]

2851 0.077 Symmetric CH stretching of
methyl and methylene groups [47–50]

1735 0.087 C=O stretching -
1638 0.069 Asymmetric COO– stretching -
1557 0.089 C=C stretching [51]
1387 0.072 Symmetric COO– stretching [52]

Functional
CNTs-alginate

conjugates

3443 0.096 OH stretching -

2960 0.160 Asymmetric CH stretching of
methyl groups -

2922 0.149
Asymmetric CH stretching of
methyl bounded to aromatic

groups
-

2851 0.159 Symmetric CH stretching of
methyl and methylene groups -

1735 0.164 C=O stretching -
1638 0.144 Asymmetric COO stretching -
1557 0.157 C=C stretching -
1387 0.152 Symmetric COO stretching -

Scanning electron microscope (SEM) images was utilized to identify and describe the surface
topology of the functional CNT samples pre- and post-conjugation with sodium alginate (Figure 3).
The as-received carbon nanotubes (CNTs) in Figure 3a show cylindrical shape yarns and threads
accumulated above each other forming longitudinal clusters. The free volume between the threads
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is obviously small. As the oxidation occurs, the CNTs are more dispersible in water as the aromatic
trunks become more hydrophilic. This allows a better dispersion and minimizes the agglomeration
that occurs in aqueous solutions. Free volume between threads became larger, and the cluster structure
got loosened and disassembled as shown in Figure 3b. This could also be due to the presence of
negatively charged carboxylate groups that allow repulsion between CNT cylinders and hence the
formation of a larger free volume structure. The widely spread functional carbon nanotubes threads
and the largely created free volume increase the microscopic surface area available for biosorption of
positive charge metals and ion chelating.
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Sodium alginate demonstrated two-dimensional sheet microstructures as shown in Figure 4a. In
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diffusion pathways for dissolved ions to follow in pursuit of available landing sites.
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3.2. Removal of Uranium and Associated Contaminants Using the Synthesized Biosorbent

The ability of the generated four types of functional CNT-sodium alginate beads to purify
contaminated water was experimentally evaluated using synthesized aqueous solution containing
the following nine co-existing multivalent ion pollutants: Ni2+, Ti4+, Cu2+, Mn2+, Pb2+, Mo3+, Cr3+,
V3+ and U6+. The concentration of each species of these inorganic heavy metal ion pollutants in the
solution was set to 50 ppm. The process of biosorption was allowed 5 h of continuous contact time
between the beads and the aqueous solution. The biosorbents achieved variant intervention based on
their different functional CNT content and hence acted differently depending on micro-size geometry
and free volume between CNT threads in the aqueous solution. The recovery of these common
environmental ion contaminants by the beads was measured by inductively coupled plasma mass
spectrometry (ICP-MS) technology at pH = 6 and ambient temperature using the following relation:

qe “
pC0 ´ CeqV

w
(2)

where qe is the equilibrium uptake (mg/g), C0 is the initial ion contaminant concentration (mg/L), Ce

is the equilibrium ion contaminant concentration (mg/L), V is the volume of the solution (L) and w is
the mass of the conjugate (g).

Simultaneous considerable separation for the co-existing and competing ions from the aqueous
solution was measured and the corresponding recoveries were calculated (Table 3 and Figure 5).
However, no biosorbtion selectivity was demonstrated by any specific species amongst the array of
used ions in spite of their different charge and size. This behavior alludes to the fact that the mechanism
of the recovery process comprises sweeping physical adsorption of the positive charge ions in solution
on the negative charge surface of the hydrophilic/hydrophobic beads. This behavior clearly indicates
that carboxylate ions (COO–) located on the surface of functional CNT/Alginate conjugates play a
dominant role in the biosorption process.

In total, the designed conjugate achieved a collective recovery of 53 mg/g metal ion uptake
for the various ion contaminants that co-existed in the solution. Apparently, as the % of functional
CNTs increases the metal ion uptake increases and then exponentially decreases. For the % functional
CNTs = 17 sample, lower ion pollutant recovery was observed. This is due to the two-dimensional
sheet geometry of the alginate that prevents the penetration and the adsorption of ions on the surface
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of these sheets. On the other hand, smaller free volume between threads for the % of functional
CNTs = 100 sample with respect to % of functional CNTs = 17 sample. This inhibited the penetration
of environmental ion contaminants from reaching active adsorption sites, and hence, an obvious
decrease in the efficiency towards metal ion biosorption is experienced. Hence, an obvious decrease
in the efficiency towards metal ion biosorption is experienced. Maximum ion biosorption recovery
was achieved using % of functional CNTs = 33 sample. This is believed to occur due to larger free
volume between threads of indicated sample; the micro-size structures guarantee largest surface area
of carboxylate groups oriented toward the solution and, therefore, achieved the maximum metal
ion biosorption. Moreover, the hydrophobic/hydrophilic characteristics of the conjugate micro-size
geometry, revealed from hydrophobic CNT threads and hydrophilic alginate sheets, adapted them
to adsorb inorganic heavy metal ion pollutants. This may present these conjugates to strongly act as
universal inorganic and organic biosorbents.
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Figure 5. Change in recovery of environmental ion contaminants against different functional CNT
bead samples.

Table 3. Environmental ion contaminants recovery (qe) (mg/g) using different functional CNT
content conjugates.

Functional CNTs (%) Ni2+ Ti4+ Cu2+ Mn2+ Pb2+ Mo3+ Cr3+ V3+ U6+

17 2.98 2.69 3.40 3.09 4.13 1.70 2.06 2.66 3.04
33 6.69 5.82 6.51 6.29 6.77 4.41 5.09 5.79 6.01
50 5.32 5.39 5.89 5.41 5.64 5.60 6.55 5.17 5.36

100 4.07 4.64 4.11 4.11 4.19 6.14 4.27 5.56 4.33

4. Conclusions

Beads of acid-functionalization carbon nanotubes conjugated with sodium alginate were
synthesized. The use of glutaraldehyde and Ca2+ profoundly enhanced respective coupling
and crosslinking properties of the formed micro-structure. Detailed characterization using TGA,
DTGA, FTIR and SEM techniques, revealed the formation of hydrophilic/hydrophobic beads with
two-dimensional sheets of alginate and long tufts of functional CNT tails. The synthesized four
types of beads acted as novel biosorbents to dissolved uranium and other common industrial water
pollutants. Low metal biosorption occurred at low and high % functional CNT bead types. Maximum
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metal ion uptake was obtained for functional CNT = 33% sample. Metal recovery was found to be
sensitive to available free volume between functional CNT threads. The hydrophilic/hydrophobic
surface properties of the biodegradable conjugates together with the micro-size geometry adapt them
to act as effective biosorbents for the purification of industrial water tailings.
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