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Abstract: The comprehensive quality enhancement and grading of coal are crucial methods for
unlocking the high value-added and low-carbon utilization of coal resources. In this work, the
influence of oily bubbles on the flotation of Shendong Jurassic vitrinite-rich coal and inertinite-
rich coal was studied via flotation tests, Fourier transform infrared (FT-IR) spectroscopy, X-ray
photoelectron spectroscopy (XPS), contact angle detection, and induction time measurements. FT-IR
and XPS analyses demonstrated that the surface of inertinite-rich coal contains more hydrophilic
oxygen-containing functional groups. Contact angle and induction time measurements showed that
the vitrinite-rich coal is more hydrophobic than inertinite-rich coal, and that for both air and oily
bubbles, the induction time on the surface of vitrinite-rich coal is shorter than that on the surface of
inertinite-rich coal. In addition, rather remarkably, the induction times for both vitrinite-rich coal and
inertinite-rich coal are significantly reduced by oily bubbles. Finally, a better flotation performance
for oily bubble flotation of vitrinite-rich coal and inertinite-rich coal was found. It appears that
oily bubble flotation is an efficient method for enhancing the recovery of vitrinite-rich coal and
inertinite-rich coal.

Keywords: vitrinite-rich coal; inertinite-rich coal; oily bubble; induction time; functional groups; wettability

1. Introduction

Differentiated upgrading and classification of coal are essential prerequisites for the
green and efficient utilization of coal in China. It is also crucial to achieve high value-
added and low-carbon utilization of coal resources. As an important component of coal
production and supply in China, approximately 90% of Jurassic coal is classified as low-
rank bituminous coal, which is an ideal steam coal and an excellent choice for chemical
raw materials. However, the high inertinite content (often exceeding 35%) [1] of Jurassic
coal leads to poor coal caking and slurry properties, and degrades the liquefaction and
gasification properties of coal [2]. Therefore, effective separation and enrichment of coal
macerals is necessary for the green and efficient utilization of Jurassic coal [3].

The methods used for the separation of coal macerals include specific gravity, cen-
trifugation, and flotation [4,5]. Dormans et al. [6] proposed a specific gravity method for
separating coal macerals. Based on this method, Dyrkacz and Horwitz [7] further devel-
oped the density gradient centrifugal separation technique (DGC), which is currently the
commonly used method for separating coal macerals. At the optimal crushing particle size,
Men [8] obtained enriched products with a vitrinite content higher than 85% via float-sink
tests. Gagarin [9] proposed a distribution function that simulates the separation of coal
macerals by density. Ma and Tao [10] reported a better vitrinite recovery of 71.81% using
enhanced gravity separation under the optimal experimental conditions. Flotation is a
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critical method with prospects for industrial application in the separation and enrichment
of coal macerals. Several studies have examined the flotation separation and enrichment of
coal macerals via conventional flotation (air flotation), and it was found that vitrinite-rich
concentrates can be obtained to a certain extent [11–14]. Despite much progress being made,
techniques for separation and enrichment of coal macerals still face several limitations,
such as low separation efficiency, low content of separated macerals, and discontinuous
separation processes.

Recently, a new method of using oily bubbles as flotation carriers for mineral particles
has been gradually adopted by researchers. For example, Liu et al. [15,16] used reactive
oily bubbles, i.e., bubbles coated with a thin layer of oil containing a surfactant-modified
collector, as flotation carriers for the extraction of oil sands. Wallwork et al. [17] used
a collector (oil) flash evaporation device to conduct an oily bubble separation test on
difficult-to-float oxidized oil sands, and found that the recovery of oily bubble separation
increased by nearly 80%. Yu and Wang [18] took a homemade oily bubble flotation system
with hydrocarbon flash evaporation to study the flotation behavior of Shenfu low-rank
coal and obtained a low-ash concentrate with a yield higher than 70%. In our previous
studies [19–21], it was found that the reactive oily bubble flotation method can significantly
reduce reagent consumption and improve the collection ability and flotation selectivity of
low-rank bituminous coal. Similarly, Wang et al. [22,23] proved that reactive oily bubbles
can indeed improve the quality and flotation performance of low-rank coal. The findings
of Zhu et al. [24] indicate that reactive oily bubbles modified by an appropriate concen-
tration and type of surfactant can help improve the flotation efficiency of low-rank coal.
Zhou et al. [25–27] reported that oily bubble flotation can effectively improve the flotation
recovery of bastnaesite, apatite, dolomite, quartz, and collophane. Ramirez et al. [28] also
demonstrated the positive effect of oily bubbles on the flotation recovery of molybdenite
under experimental circumstances. Wang et al. [29] also proved that oily bubbles are more
hydrophobic than air bubbles, which is conducive to strengthening the bubble–particle at-
tachment and inhibiting the bubble–particle detachment in the flotation column. However,
it is still unclear whether oily bubble flotation can promote the flotation performance of
coal macerals.

In this work, coal macerals of two Shendong Jurassic coals were enriched using the
density gradient centrifugation method. A comparative study of the conventional flotation
and oily bubble flotation of the enriched coal macerals was also conducted. The possible
mechanism through which oily bubble flotation improves the recovery of coal macerals
was explained according to the results of induction time measurements, and wettability
and surface group analyses.

2. Materials and Methods
2.1. Sample Preparation

The lump coal used in the test was collected from the 5−2 coal seam (designated
DLT 5−2) of the Daliuta mine and the 2−2 coal seam (BLT2−2) of the Bulianta mine in the
Shendong Mining Area, northwest China. The lump was carefully crushed and screened
to prepare coal samples with a size less than 0.25 mm for coal maceral enrichment and
flotation tests. In this study, centrifugally separated vitrinite-rich coal and inertinite-rich
coal were labelled ‘V’ and ‘I’, respectively.

The density gradient centrifugation [7] method was used to prepare vitrinite-rich coal
and inertinite-rich coal, and the densities of zinc chloride (ZnCl2) specific gravity liquid
were set to 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.32, 1.34, 1.36, 1.38, 1.40, 1.42, 1.44, 1.46, 1.48,
and 1.50 g/cm3. The centrifugation speed and time were fixed at 3000 r/min and 25 min,
respectively. Figure 1 shows the density distribution of the coal samples. As displayed
in Figure 1, the vitrinite-rich of the DLT5−2 and BLT2−2 coal were concentrated in the
density range from 1.30 to 1.38 g/cm3, and 1.25 to 1.36 g/cm3, respectively. The inertinite-
rich of the DLT5−2 and BLT2−2 coal were concentrated in the density range from 1.38 to
1.44 g/cm3.
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Based on the float-sink enrichment results shown in Figure 1, the tail throwing
method was adopted to recover the vitrinite-rich coal and inertinite-rich coal, and the
enriched centrifuge products were re-enriched. The final enriched products were quan-
titatively analyzed using a DM4500P type polarization microscope (Leica Microsystems,
Germany). The polarization microscope results are presented in Table 1, where the counts
are the statistical quantities obtained by the point measurement method. After undergoing
two rounds of enrichment, the enrichment rates of the vitrinite-rich and inertinite-rich
samples improved significantly, with both exceeding 84%, thereby satisfying the basic
requirements for the subsequent single-mineral flotation tests.

Table 1. Results of the enrichment of coal macerals.

Samples
Vitrinite Inertinite Mineral

Total
Counts Enrichment

Rates (%) Counts Enrichment
Rates (%) Counts Enrichment

Rates (%)

DLT5−2-V 834 85.45 127 13.01 15 1.54 976
DLT5−2-I 128 13.20 815 84.02 27 2.78 970

BLT2−2-V 811 85.55 119 12.55 18 1.90 948
BLT2−2-I 122 13.10 788 84.64 21 2.26 931

The proximate analysis of enriched coal macerals consists of the determination of
moisture, ash, volatile matter, and fixed carbon contents. Those were determined using a
muffle furnace according to the China National Standard (GB/T 212). The ultimate analysis
of coal includes the determination of the contents of carbon, hydrogen, nitrogen, sulfur,
and oxygen. It was carried out using an elemental analyzer and a sulfur meter according
to China National Standards (GB/T 211, 212, 214 and 30733). The proximate and ultimate
analysis results of the enriched coal macerals are shown in Table 2, where M, A, V, and FC
are the moisture, ash, volatile matter, and fixed carbon contents, respectively (air-dry basis),
and C, H, O, N, and St are the carbon, hydrogen, oxygen, nitrogen, and total sulfur contents,
respectively (dry basis). An examination of the data presented in Table 2 shows that for
the DLT5−2 and BLT2−2 coals, both the C and H contents of the vitrinite-rich component
are greater than those of the inertinite-rich coal, while the O content of the vitrinite-rich
component is relatively low.
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Table 2. Proximate and ultimate analyses of the enriched coal macerals.

Samples
Proximate Analysis, Air-Dry Basis Ultimate Analysis, Dry Basis

M/% A/% V/% FC/% C/% H/% O 1/% N/% St/%

DLT5−2-V 7.04 2.40 45.92 44.64 77.10 4.61 16.69 1.15 0.44
DLT5−2-I 6.04 7.52 44.48 41.96 72.90 2.28 22.98 1.28 0.57

BLT2−2-V 6.72 2.48 41.76 49.04 75.44 4.81 17.99 1.29 0.47
BLT2−2-I 7.83 6.16 37.12 48.89 69.67 3.83 25.04 0.91 0.55

1 O is calculated by the subtraction method.

2.2. Fourier Transform Infrared (FT-IR) Analysis

The surface functional groups of the vitrinite-rich and inertinite-rich materials were
analyzed using a Nicolet iS5 Fourier transform infrared spectrometer (FT-IR) manufactured
by Thermo Fisher Scientific, Inc. (Waltham, MA, USA). The scanning range was from
4000 cm−1 to 400 cm−1, the number of scans was 32, the resolution was 4 cm−1, and the
accuracy was less than 0.1 cm−1. The substrate was spectrally pure potassium bromide
(KBr). The tablet diameter is 13 mm, and the pressure is 20 MPa. The experimental data
were plotted after baseline correction, peak finding, and normalization.

2.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

The surface element contents of the vitrinite-rich and inertinite-rich coal samples were
examined using an ESCALAB 250Xi X-ray photoelectron spectrometer (XPS) manufactured
by Thermo Fisher Scientific, Inc. (Waltham, MA, USA). The scan data were corrected using
a C1s (284.6 eV) internal standard, XPSPEAK 4.1 software was used for peak fitting [19],
and the parameter settings [30–34] are given in Table 3.

Table 3. Parameters set for curve fitting in the XPSPEAK software [30–34].

Fitting
Range (eV) Background L-G FWHM

Range (eV)
C1s Peak

Range (eV) Attribution

(281–295) ± 0.5 Shirley 0 0–2

284.6 C-C/C-H
285.8–286.3 C-O-C/C-OH
287.3–287.6 C=O
289.0–289.2 O=C-O

2.4. Contact Angle Measurements

A JC2000D contact angle measuring instrument was adopted to examine the wettability
of the vitrinite-rich and inertinite-rich coal samples by employing the droplet method. The
sample was compressed into a tablet under a pressure of 25 MPa for 2 min. The diameter
and thickness of the tablet were 13 and 2 mm, respectively. A detailed description of
the contact angle measurement process can be found in previous reports [19,35]. In this
study, three droplets, namely, water, diesel oil, and modified diesel oil, were taken as the
wettability liquids. The average value and the standard deviation from three repeated tests
were reported.

2.5. Induction Time Measurements

Induction times between bubbles and coal macerals were measured using a 2017EZ-
B+ Induction timer, as shown in Figure 2, manufactured by Oil Sands Environmental
Development & Services, Inc. (Edmonton, AB, Canada). For each measurement, coal
maceral (0.5 g) was stirred and settled in a beaker containing deionized water, and the
suspension was removed. Following this, the coal slurry was transferred to a measurement
vessel pre-filled with two-thirds deionized water. This process resulted in the formation of a
flat particle bed with uniform thickness at the bottom of the vessel (shown in Figure 3). The
amplitude of the bubble motion was set as 3 V, the times to approach and retraction were
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fixed on 10 ms, and the air/oily bubble size was kept at 1.3 mm. During the measurement,
air needs to be drawn into the glass capillary tube beforehand. When the bottom of the
capillary tube was immersed in the water in the measurement vessel through the controller,
an air bubble with controllable size could be generated at the end of the capillary tube
using a microsyringe. However, it should be noted that when an oily bubble is needed, a
small volume of (modified) diesel oil should be sucked into the capillary tube before being
immersed in the water. Then, a (modified) diesel oily bubble could be generated at the end
of the capillary tube by pushing air using the microsyringe. The generated air/oily bubble
was brought into contact with the particle bed for a preset period, as shown in Figure 3. In
this way, the corresponding induction time can be obtained. A more detailed description of
the measurement process could be found in previous reports [36–38]. The measurements
were carried out at room temperature. Each experiment was repeated five times, and the
average value was reported.
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2.6. Conventional Flotation Tests

For conventional flotation, an XFD-IV flotation machine with a flotation cell volume of
0.5 L was selected. The concentration of the slurry was 40 g/L. The impeller speed and the
airflow rate were set at 1996 r/min and 0.02 m3/min, respectively. Sec-octanol was used as
a frother, and the dosage was fixed at 0.90 kg/t. Diesel oil was used as a collector, and the
dosages were 0.75, 1.50, 1.98, 2.25, 3.00, 3.75, 4.50, 5.25, and 6.00 kg/t. The skimming time
was 3 min. The froth concentrates and the flotation tailings were filtered, dried, weighed
and calculated, separately.

2.7. Oily Bubble Flotation and Modification

To obtain a better flotation performance, a custom-made device for oily bubble gen-
eration was designed based on the atomization and flash evaporation methods [19]. The
schematic diagram of oily bubble flotation setup is shown in Figure 4. According to the
characteristics of the test device, the collector (diesel oil) used for oily bubble flotation was
added through the inflation tube of the flotation machine at dosages of 0.66, 1.32, 1.98, 2.64,
and 3.30 kg/t. The rated air flow rate of atomizer was 6 L/min, and the atomizing rate of
collector was kept at 0.299 g/min. The skimming time was 40 s, and the other parameters
were the same as those used in the conventional flotation tests. A detailed description of
the oily bubble flotation procedure can be found in previous reports [20,36].
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Based on the optimal dosage determined from the oily bubble flotation test results
(1.98 kg/t diesel oil), diethyl phthalate (DP) was selected as the modifier, and a modified
diesel oil was prepared by blending DP and diesel oil at a weight ratio of 2:100. The
modified oily bubble flotation processes are the same as those used for oily bubble flotation,
except that the diesel oil was replaced with diesel oil modified by DP.

The method for adding and controlling the amount of collector (diesel oil or DP-
modified diesel oil) during the flotation experiment was as follows: When the gas valve
of the flotation machine was completely closed, the air and collector gasified by heating
device would all enter the excess gas recovery device through the gas flowmeter, and the
maximum gas flow value (V0) could be obtained from the gas flowmeter. When the test
started, part of the gasified collector and air (V2) were allowed to flow in the flotation cell
for oily bubble flotation, and the remaining collector and air (V1) would be discharged
through the gas flowmeter by adjusting the gas valve of the flotation machine. As a result,
the actual required collector and air in the flotation was obtained, i.e., V2 = V0 − V1. The
atomized collector undergoes rapid expansion upon gasification through the heating device,
maintaining a constant mass. It is then uniformly dispersed throughout both the cavity and
pipeline. Specifically, the collector drawn from the gas valve of the flotation cell matches
the discharge from the gas flowmeter, differing only in volume. During the whole test,
sufficient air was sucked in by the atomizer, and there was no air intake in the rest of the
process. Therefore, the actual dosage of collector (Mobf) in oily bubble flotation could be
calculated using Equation (1):

Mobf =

(
V2

V0
· Ma · t

)
/mc × 1000 =

(
V0 − V1

V0
· Ma · t

)
/mc × 1000 (1)

where Mobf is the actual dosage of collector in oily bubble flotation, kg/t; V0 is the maximum
volume of air and collector after atomization and heating flash evaporation, L/min; V1 and
V2 are the volume of air and collector discharged from the gas flowmeter and sucked into
flotation cell, L/min, respectively; Ma is the atomizing rate of collector, which was fixed at
0.299 g/min; t is the oily bubble flotation time, i.e., the skimming time, which was kept at
40 s; mc is the amount of coal sample used in a single flotation test, which was fixed at 20 g
in this study.

In addition, the enriched vitrinite-rich and inertinite-rich coals were approximately
treated as pure coal, and their flotation yields were used as the recoveries of concentrate.
For both conventional flotation and oily bubble flotation, each experiment was repeated
three times, and the average values were reported.

3. Results and Discussion
3.1. Analysis of the Surface Properties of the Coal Samples
3.1.1. Analysis of FT-IR Spectra

Figure 5 shows the FT-IR spectra of the coal samples. It can be seen from the infrared
absorption peak characteristic of coal [39–41] observed in Figure 5 that not only hydrophilic
oxygen-containing functional groups (-OH, C-O, C=O, etc.) but also hydrophobic -CH3 and
-CH2 groups, organic sulfur-containing groups (-SH), and some mineral groups (Si-O-Si
and/or Si-O-Al, etc.) are present in each coal sample. Functional groups play a vital role in
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the adsorption of reagents and determine the surface wettability and floatability of minerals.
The contents of hydrophilic oxygen-containing functional groups and hydrophobic groups
are discussed in subsequent sections.
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3.1.2. XPS Analysis

Table 4 shows the contents of C, N, and O on the surface of the DLT5−2 and BLT2−2

coals. There are clear differences between the element contents of vitrinite-rich coal and
inertinite-rich coal, which match both DLT5−2 and BLT2−2 well. For DLT5−2 coal, the
content of C in the vitrinite-rich coal is approximately 2.59% greater than that in the
inertinite-rich coal. Conversely, the O and N contents in the vitrinite-rich coal are ap-
proximately 2.33% and 0.27% lower than those in the inertinite-rich coal, respectively.
For BLT2−2 coal, similar experimental results were observed. Clearly, the O/C value of
vitrinite-rich coal is lower than that of inertinite-rich coal, which is consistent with the
results of proximate and ultimate analyses.

Table 4. The contents of C, N, and O elements on the surface of the DLT5−2 and BLT2−2 coals.

Element

Element (Atomic) Contents/%

DLT5−2 Coal BLT2−2 Coal

Vitrinite-Rich Coal Inertinite-Rich Coal Vitrinite-Rich Coal Inertinite-Rich Coal

C1s 82.83 80.24 84.18 79.28
O1s 15.22 17.55 14.35 18.40
N1s 1.95 2.22 1.47 2.33
O/C 0.18 0.22 0.17 0.23

Figures 6 and 7 show the C1s fitting spectra of vitrinite-rich and inertinite-rich coal for
both the DLT5−2 and BLT2−2 coal samples. Within the peak range of the functional group
containing C, the fitting curves of the vitrinite-rich and inertinite-rich coal samples exhibit
a high degree of correspondence with the experimental curves, indicating that the relevant
parameters were properly selected and that the fitting process was reliable. Table 5 shows
the contents of the C-containing functional groups in the vitrinite-rich and inertinite-rich
coal for both the DLT5−2 and BLT2−2 coal samples. The surface groups of vitrinite-rich and
inertinite-rich coal are mainly C-C and C-H, and the oxygen-containing functional groups
are mainly hydroxyl (C-OH) and ether groups (C-O-C). In addition, a limited quantity
of carboxyl (O-C=O) and carbonyl groups (C=O) are also present. The results show that
there are significant differences in the functional groups present in the vitrinite-rich and
inertinite-rich coal fractions.
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Table 5. C1s fitting data of the DLT5−2 and BLT2−2 coal macerals.

Functional Groups

Contents in Total Sample/%

DLT5−2 Coal BLT2−2 Coal

Vitrinite-Rich Coal Inertinite-Rich Coal Vitrinite-Rich Coal Inertinite-Rich Coal

C-C/C-H 67.24 60.24 65.82 58.90
C-O-C/C-OH 9.91 8.83 10.37 7.25

C=O 0.22 0.39 0.40 0.66
O=C-O 0.04 0.11 0.05 0.10

For DLT5−2 coal, the total content of C-C and C-H groups in vitrinite-rich coal is ap-
proximately 7.00% higher than that of inertinite-rich coal, and the total content of hydroxyl
(C-OH) and ether groups (C-O-C) in vitrinite-rich coal is only 1.08% higher than that of
inertinite-rich coal. However, the content of carboxyl (O-C=O) and carbonyl (C=O) groups
in vitrinite-rich coal is approximately 0.24% lower than that of inertinite-rich coal. A similar
trend was observed for BLT2−2 coal. It can be concluded that the surface of inertinite-rich
coal contains more oxygen-containing functional groups and thus is more hydrophilic,
reducing its floatability.
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3.2. Wettability Analysis

Figure 8 shows the contact angles of water, diesel oil, and DP-modified diesel oil
droplets on coal macerals. The contact angle of the water droplets on the surface of the
vitrinite-rich coal and inertinite-rich coal of DLT5−2 is, respectively, 81.7◦ and 71.5◦, and that
for BLT coal is 73.1◦ and 57.9◦, indicating that the vitrinite-rich coal is more hydrophobic,
which is highly consistent with the results of the functional group analysis. In addition, for
DLT 5−2 coal, the contact angle of the diesel oil droplets on the surface of vitrinite-rich coal
and inertinite-rich coal is separately 17.9◦ and 23.7◦. Similarly, for BLT2−2 coal, the contact
angle of the diesel oil droplets on the surface of vitrinite-rich coal and inertinite-rich coal
is 19.7◦ and 26.4◦, respectively. The results show that diesel oil droplets can easily spread
on the surface of vitrinite-rich coal, which is beneficial for enhancing its hydrophobicity.
Moreover, the contact angle of modified diesel oil droplets containing DP on the surface of
vitrinite-rich coal and inertinite-rich coal for DLT5−2 coal is 16.1◦ and 18.0◦, and that for
BLT2−2 coal is 16.3◦ and 18.3◦, respectively, indicating that while the addition of DP could
further increase the hydrophobicity of both vitrinite-rich coal and inertinite-rich coal, the
hydrophobicity of vitrinite-rich coal is still higher than that of inertinite-rich coal.
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In summary, vitrinite-rich coal exhibits higher hydrophobicity than inertinite-rich
coal. Consequently, the (modified) diesel oil droplets easily spread on vitrinite-rich coal,
facilitating rapid bubble–particle attachment.

3.3. Induction Times of Air and Oily Bubbles on Coal Macerals

Figure 9 compares the induction times of air, diesel oily, and modified diesel oily
bubbles on the surfaces of coal macerals. As shown in Figure 9, the induction time of air
(diesel oily or modified diesel oily) bubbles on the surface of vitrinite-rich coal is shorter
than that on the surface of inertinite-rich coal. In addition, for both vitrinite-rich and
inertinite-rich coal, the induction times of air bubbles on the coal surfaces are greater
than 200 ms. However, the induction times of diesel oily bubbles on the surfaces of both
vitrinite-rich and inertinite-rich coal are less than 50 ms. Furthermore, for both vitrinite-rich
and inertinite-rich coal, the induction times of modified diesel oily bubbles on the surfaces
further decrease to less than 45 ms. It could be concluded that the time of adhesion on
the coal surface is significantly reduced by the diesel oily bubble, and the addition of DP
further reduces the adhesion time between the coal surface and the bubble. Under the
same flotation conditions, a shorter induction time may result in rapid collection of the coal
macerals during froth production. As a result, higher recoveries of coal macerals could
be achieved via (modified) diesel oily bubble flotation due to the shorter induction time.
The wettability analysis showed that the modified diesel oil droplet spreads more rapidly
than the diesel oil droplet, and both of these spread more rapidly than the water droplet,
which consistent with the findings of previous studies [20,22]. Hence, the induction time
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results are reliable, and a shorter induction time for vitrinite-rich coal contributes to better
flotation performance.
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3.4. Flotation Results of Coal Macerals
3.4.1. Conventional Flotation Tests

Figure 10 shows the results of conventional flotation experiments for DLT5−2 and
BLT2−2 coal macerals. For DLT5−2 and BLT2−2 coals, the recoveries of vitrinite-rich coal
were greater than that of inertinite-rich coal for the same diesel oil dosage. This difference
may be ascribed to the higher hydrophobicity of the vitrinite-rich coal, which leads to a
shorter induction time of air on the coal macerals and greater flotation recovery. In addition,
it was found that when the dosage of diesel oil exceeded 4.50 kg/t, the growth trend of
recoveries of vitrinite-rich and inertinite-rich coal disappeared. At a dosage of diesel oil of
6 kg/t, the recoveries of vitrinite-rich and inertinite-rich coal for DLT5−2 are approximately
81.58% and 72.82%, and those for BLT2−2 are 83.80% and 73.62%, respectively. It is likely
that a further increase in the dosage of diesel oil would not enhance the hydrophobicity
and reduce the induction time of air on coal macerals. In summary, the higher recoveries of
vitrinite-rich and inertinite-rich coal could not be achieved via air bubble flotation.
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3.4.2. Oily Bubble Flotation Tests

Figure 11 shows the results of oily bubble flotation of DLT5−2 and BLT2−2 coal macer-
als using diesel oil. The results show that the highest recoveries of the coal macerals were at



Minerals 2024, 14, 328 11 of 14

a collector dosage of 1.98 kg/t. With the present experimental procedure, the aeration rate
increased with collector dosage. For collector dosages up to 1.98 kg/t, the air introduced
in the flotation cell produced small bubbles. However, above this collector dosage, our
observations show that large air bubbles are generated in the flotation cell. Since flotation
is an interfacial phenomenon that depends on bubble surface area, the production of large
air bubbles results in a decrease in flotation recovery.
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Based on the above-described results, the oily bubbles were further modified by the
surfactant DP to increase the recovery differences between the vitrinite-rich and inertinite-
rich samples for the same coal (DLT or BLT) in order to improve the selectivity of the same
collector for the two coal macerals.

The recoveries of conventional flotation and (modified) oily bubble flotation of vitrinite-
rich and inertinite-rich coal are compared in Figure 12. Figure 12 shows that the flotation
recovery of the vitrinite-rich coal is greater than that of the inertinite-rich coal for both
conventional flotation and (modified) oily bubble flotation. At a diesel oil dosage of
1.98 kg/t, the recoveries of vitrinite-rich and inertinite-rich coal of DLT5−2 by conventional
flotation were 66.27% and 63.43%, and those of BLT2−2 were 59.68% and 55.06%, respec-
tively. However, the recoveries of vitrinite-rich and inertinite-rich coal by oily or modified
oily bubble flotation were 92.91% and 86.26% for DLT5−2, and that were 90.13% and 82.88%
for BLT2−2, respectively. Compared with those of conventional flotation, when oily or
modified oily bubble flotation was used, the recoveries of vitrinite-rich and inertinite-rich
coal for DLT5−2 increased by more than 26.64% and 30.45%, respectively. For modified oily
bubble flotation, the recoveries of vitrinite-rich and inertinite-rich coal for BLT2−2 were
22.83% and 27.82% higher than those of conventional flotation, respectively. The above
results are in agreement with the measurements of the induction times and contact angles
between the (modified) diesel oily bubbles and coal macerals. Hence, oily bubble flotation
is proven to be an effective method for improving the recoveries of vitrinite-rich coal and
inertinite-rich coal.
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(air) flotation of vitrinite-rich and inertinite-rich coal, respectively. OBF-V and OBF-I represent oily
bubble flotation of vitrinite-rich and inertinite-rich coal, respectively. MOBF-V and MOBF-I represent
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4. Conclusions

In this study, the effect of oily bubbles on the flotation of Shendong Jurassic coal mac-
erals was investigated using FT-IR analysis, XPS analysis, wettability analysis, induction
time measurements, and flotation experiments. The following conclusions can be drawn:

1. Enrichment rates exceeding 84% for both vitrinite-rich and inertinite-rich coal can be
obtained by the density gradient centrifugation method with two rounds
of enrichment.

2. FT-IR and XPS analyses confirmed that there are clear differences in the contents of
the C-C, C-H, and oxygen-containing functional groups between vitrinite-rich and
inertinite-rich coal, and the O/C value of vitrinite-rich coal is lower than that of
inertinite-rich coal.

3. Vitrinite-rich coal has a higher hydrophobicity than inertinite-rich coal, and (modified)
diesel oil droplets can further increase the hydrophobicity.

4. The induction time on the coal surface is significantly reduced by diesel oily bubbles,
and a further reduction in the induction time between coal macerals and oily bubbles
can be obtained by the addition of diethyl phthalate (DP).

5. Oily bubble flotation can significantly improve the recoveries of vitrinite-rich and
inertinite-rich coal.
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Abbreviations
All abbreviations used in this paper are explained as follows:

Abbreviation Full Name
DLT5−2-V the vitrinite-rich coal of the 5−2 coal seam of Daliuta mine
DLT5−2-I the inertinite-rich coal of the 5−2 coal seam of Daliuta mine
BLT2−2-V the vitrinite-rich coal of the 2−2 coal seam of Bulianta mine
BLT2−2-I the inertinite-rich coal of the 2−2 coal seam of Bulianta mine
M the moisture content (air-dry basis)
A the ash content (air-dry basis)
V the volatile matter content (air-dry basis)
FC the fixed carbon content (air-dry basis)
C the carbon content (dry basis)
H the hydrogen content (dry basis)
O the oxygen content (dry basis)
N the nitrogen content (dry basis)
St the total sulfur content (dry basis)
DP diethyl phthalate
Mobf the actual dosage of collector in oily bubble flotation
V0 the maximum volume of air and collector after atomization and heating flash evaporation
V1 the volume of air and collector discharged from the gas flowmeter
V2 the volume of air and collector sucked into flotation cell
Ma the atomizing rate of collector
t the oily bubble flotation time, i.e., the skimming time
mc the amount of coal sample used in a single flotation test
CF-V the conventional (air) flotation of vitrinite-rich coal
CF-I the conventional (air) flotation of inertinite-rich coal
OBF-V the oily bubble flotation of vitrinite-rich coal
OBF-I the oily bubble flotation of inertinite-rich coal
MOBF-V the modified oily bubble flotation of vitrinite-rich coal
MOBF-I the modified oily bubble flotation of inertinite-rich coal
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