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Abstract: The Lysan alkaline–ultramafic complex is located in the Sisim shear zone at the contact of
the two largest tectonic structures of the accretion–collisional belt in the southwestern frame of the
Siberian craton. Intrusions of the complex consist of ore-bearing olivinites, kaersutite clinopyroxenites,
and banded kaersutite gabbro, which have been «cut» by albitite dykes and veins. The veins and
veinlets of the carbonate rocks are mainly associated with the albitites. The present paper represents
the first detailed mineralogical study of carbonate rocks and albitites in the Podlysansky Massif of
the Neoproterozoic Lysan alkaline–ultramafic complex. The mineral composition was determined
in situ in a polished section by scanning electron microscopy, energy dispersive spectrometry, and
electron probe microanalysis. The carbonate rocks of the Podlysan Massif have been found to contain
minerals that are typical of siderite–carbonatites (senso stricto), including calcite, siderite, phengitic
muscovite, apatite, monazite, REE fluorocarbonates, pyrite, and sphalerite. These rocks are enriched
in light rare earth elements due to the presence of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce), and
synchysite-(Ce). The albitites were formed as a result of the fenitization of leucocratic gabbro by alkali-
rich carbo-hydrothermal fluids in zones of intense development of tectonic fractures. Infiltration
was the dominant mechanism of fenitization. The obtained data significantly enhance the current
understanding of the geochemical and ore specialization of rocks in the Lysan Complex.

Keywords: calcite–siderite carbothermalites; sodic metasomatism; fenites; monazite-(Ce); REE
fluorocarbonates

1. Introduction

Carbonatites are defined as magmatic rocks in which the modal amount of primary
carbonate minerals exceeds 50% [1]; however, they are, in fact, extremely diverse rocks. In
general, they can be categorized into two groups: primary carbonatites and carbothermal
residues [2,3]. Primary carbonatites can be further subdivided into those associated with the
eruption of nephelinites, melilitites, kimberlites, and specific mantle silicate magmas formed
by partial melting [2,4]. Meanwhile, carbothermal residues are generated by low-temperature
fluids rich in CO2, H2O, and fluorine [2,4]. The geochemical characteristics of each genetic
type of carbonatite are different [3,5–7]. In addition, carbonatites and carbothermal residues
exhibit unique and diverse mineralization with associated mineral assemblages including Fe,
P, Ba, Sr, high field strength (Nb, Zr, Ti), and rare earth elements (REEs). As such, carbonatite
massifs are a critical source of numerous mineral deposits [7–10].

The dominant rock-forming minerals in carbonatites are calcite, dolomite, and ankerite.
Compared to other rock types, magnesite- and siderite-rich carbonatites are less abundant.
The position of REE-rich siderite carbonatites (sensu lato) in the overall sequence of carbon-
atite formation processes remains unclear and is of significant interest to researchers [11–16].

Crystallization and cooling of carbonatite and alkaline–ultrabasic melts are accompa-
nied by processes of metasomatic transformation of rocks. Fenites are formed as a result
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of these processes [5,17–22]. The study of fenites has been ongoing for over 100 years.
Even prior to the introduction of the term “fenite” into scientific use [23], these geological
formations have attracted the attention of numerous geologists. Interest in fenites has
remained constant over a long period of time [24,25]. The investigation of fenites is crucial
for reconstructing the composition of metasomatizing fluids and, ultimately, the original
magma [5,17–25]. The mineral composition of fenites is variable and is influenced by
several factors, such as the composition, permeability, and structure of the protolith, fluid
composition, temperature, and pressure [5,19,20].

The Neoproterozoic Lysan alkaline–ultramafic complex massifs are situated in the Sisim
shear zone, at the intersection of two major tectonic structures of the accretion–collisional
belt in the southwestern region of the Siberian Craton. Their formation has been a subject of
debate for a significant period [26,27]. Recent geochemical and mineralogical discoveries have
made it possible to classify these rocks as alkaline–ultramafic complex formations [28]. This
hypothesis is supported by the discovery of carbonate rocks with REE mineralization in an
albitite “dyke”. These “dykes” are found in crushing zones at contacts between petrographic
rock differences within the massifs of the Lysan Complex or at contacts with host rocks. It
was previously believed that these dykes were of magmatic origin [26].

This work presents the first data on the chemical composition of the mineral phases of
carbonate rocks and albitites from the Podlysan Massif of the Lysan Complex. The sequence
of mineral formation has been established. Furthermore, a novel comprehension of the
origins of albitites is put forward.

2. Geological Background
2.1. Summary of Geological Features of Neoproterozoic Alkaline Carbonatite Complexes
2.1.1. South Siberia

In the Neoproterozoic period (670–630 Ma), there was widespread intraplate mag-
matic activity along the western, southwestern, and southeastern (in modern coordinates)
margins of the Siberian craton [29–31]. This phenomenon resulted in the formation of
several alkaline complexes with carbonatites (Figure 1) [29,32–48]. The Lysan Complex
intrusions were also formed during this period [28].
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Figure 1. Location of Neoproterozoic alkaline–ultramafic complexes with carbonatites (orange star)
in South Siberia. The data used to create this map are sourced from [49].

Neoproterozoic alkaline–carbonatite complexes in southern Siberia are located in the
Yenisei Ridge, East Sayan, North Baikal region, and Eastern Aldan. The alkaline igneous
complexes in the Yenisei Ridge are located within the Tatarka–Ishimbinskaya suture zone
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of the Neoproterozoic accretionary–collisional structure on the southwestern margin of
the Siberian craton. These are small plutons within the Tatarka Complex [32,33]. The East
Sayan alkaline carbonatite massifs are situated within the Early Proterozoic Urik-Iya graben
and the Late Archean Zhidoy Block of the Sharyzhalgai basement uplift of the Siberian
craton [34–38]. The Urik-Iya graben is located in the southern part of the Siberian craton,
between the Sharyzhalgai and Biryusinsk basement uplifts. It is a linear zone that extends
in the northwest direction. The Bolshaya Tagna, Belaya, and Srednaya Zima Complexes
are located in the Urik-Ya graben, while the Zhidoy Massif is situated in the basement
uplift [39–41]. The carbonatites in the North Baikal region, specifically Pogranichnoye
and Veseloye, are located in the eastern part of the Neoproterozoic Baikal-Muya fold belt,
adjacent to the North Muya Block [42,43]. The Arbarastakh and Ingili alkaline–ultramafic
complexes are located in the eastern part of the Archean Aldan Shield [44–48].

The massifs of the Tatarka Complex (Srednetatarka and Yagodka) are composed of
feldspar ijolites with tributaries of urtites and of alkaline syenites and dominant nepheline
syenites [32,33]. There are various types of pegmatite and post-magmatic altered rocks
that have undergone hydrothermal alteration by microclinization and albitization [33].
The Penchenga carbonatite complex is located 80 km to the northeast of the Srednetatarka
Massif [32,33,50]. The carbonatites in this complex form dykes up to 200 m wide and
3 km long. They vary in composition and are represented by calcite, dolomite–calcite, and
ankerite–calcite carbonatites [32,33,50].

The Bolshaya Tagna, Belaya and Srednaya Zima are multiphase intrusions [34–37].
This is a series of massifs at varying levels of erosion. They are thought to be branches of a
single-ore magmatic system [34]. The following sequence of rock formation is observed:
melteigites → ijolites → nepheline syenites → calcite carbonatites → calcite–dolomite
carbonatites → ankerite carbonatites. The syenites are cut by dykes of porphyritic picrite,
alnoite, damkjernite, and aillikite [36].

The Zhidoy Massif is composed of perovskite and ilmenite pyroxenites [39–41]. Some
researchers have identified up to four varieties of pyroxenite in the massif [41]. Ijolites and
melteigites form dykes. Carbonatites are found in veins 0.2–5 m thick. They are calcite
carbonatites with biotite, apatite, sulphides, REE carbonate, and fluorocarbonate [39].

The Pogranichnoye and the Veseloye are complexes of dolomitic carbonatite dykes
with minor amounts of calcite [42,43]. No comagmatic silicate alkaline rocks were discov-
ered associated with carbonatites [43].

The Arbarastakh Massif has a concentric shape [44,50]. The main phase is pyroxen-
ite [44] or, as these rocks are now classified, jacupirangite [45]. Bodies of phoscorite exist in
the centre of the complex [44,46]. Numerous arcuate carbonatite sheets are concentrically
arranged within the jacupirangite. Ultrabasic lamprophyre dykes are also present [45].
Carbonatites are represented by a number of varieties. These include silicocarbonatites,
calcite, calcite–dolomite, dolomite and ankerite carbonatites. About 90% of the carbonatites
in the complex are calcite and calcite–dolomite carbonatites [50].

The Ingili Massif occurs as a concentrically zoned body. Its core consists of ijolite,
melteigite and urtite. It is surrounded by dykes, stocks, and veins of leucocratic nepheline
gabbro, theralites, nepheline syenites, nepheline pyroxenites, nepheline–amphibole rocks,
and carbonatites [48,50]. Two generations of carbonatites are distinguished. The first gener-
ation is represented by biotite and amphibole–biotite calcite carbonatites [48]. Carbonatites
of the second generation are calcite and dolomite–calcite [48].

Thus, most of the Neoproterozoic alkaline complexes with carbonatites in South
Siberia belong to central-type alkaline–ultramafic complexes. Only the complexes of
the Yenisei Ridge belong to the linear fracture-type complexes. Carbonatites in alkaline–
ultramafic complexes of the linear fracture type are typically restricted to lower-order fault
systems, in contrast to those of the central-type complexes. The Lysan complex massifs are
characterized by zonal rock assemblages and shear zone-type tectonic positions [51].
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2.1.2. North America and Baltic Region

Neoproterozoic alkaline complexes with carbonatites are considered to be significant
indicators of the breakup zone of Laurasia into the Siberian and Laurentian continents [29].
They can be traced on both sides of this boundary. In North America and the Baltic region,
they are found along the rifted margin of the Laurentian crystalline basement [52–55] and
the pre-Caledonian margin of the Baltica [52,56].

The Torngat Mountains, Aillik Bay, Baie-Des-Moutons (Mutton Bay), Quigussaq
(Umanak), Holsteinsborg, and Sarfartoq complexes are located in the Labrador Sea re-
gion of North America, including the Canadian and West Greenland sides. In all complexes,
except Baie-Des-Moutons and Sarfartoq, carbonatites are associated with ultramafic lam-
prophyres [52–55]. The Baie-des-Moutons intrusion is a ring complex composed mainly
of syenite [53]. Syenites are cut by small dykes of calcite carbonatites and carbonate-rich
lamprophyres. The Sarfartoq carbonatite complex consists of a 15 km2 core of carbonatites
and fenites, surrounded by an extensive marginal zone that contains carbonatite dykes.
Carbonatites are dolomitic and calcitic [53].

There are two well-studied alkaline complexes with carbonatites in the Baltic region:
Alnö and Fen [52,56]. The Alnö igneous complex comprises alkaline silicate rocks such as
ijolite, nepheline–syenite, and pyroxenite, as well as calcite and silico-calcite carbonatites.
These rocks are arranged in a semi-circular pattern [57].

The Fen Complex is considered one of the world’s classic carbonatite complexes. It
was at this location that the igneous nature of carbonatite was initially recognized. The
Fen Complex is a diatreme intrusion composed of carbonatite, ijolite, and pyroxenite [53].
Carbonatites are calcite–dolomite. Fenitization zones are widely developed around the
carbonatite dykes and alkaline intrusions.

Comparing the Neoproterozoic alkaline complexes of southern Siberia, North America,
and the Baltic region reveals some similarities with the complexes of the Baltic Shield.

2.2. Geology of the Lysan Complex Massifs

The Lysan alkaline–ultramafic complex is situated within the Sisim shear zone, located
at the junction of the Precambrian Derba Block of the Sayano-Yenisei accretionary belt
(as specified by [58]) and the Sisim-Kazyr zone of the Central Asian folded belt (Figure 2a).
From an orographic perspective, the region is a confluence area for two mountain ranges in
southern Siberia: the Western Sayan and the Eastern Sayan.

The Sisim Shear Zone comprises Bakhta Formation rocks within the Kuvai Group,
which overlay the Neoproterozoic metacarbonate–terrigenous rocks of the Derba Group at
a dipping unconformity. The rocks of the Bakhta Formation form an outcrop 4–5 km wide.
These rocks are twisted in isoclinal folds which strike northwest.

The Bakhta Formation consists of basalts with interbeds of tuffs and tuff breccias,
argillaceous shales, and tuff sandstones. The rocks are altered to chlorite and sericite schists,
amphibole schists, amphibolites, and amphibole gneisses.

The intrusions of the Lysan Complex are distributed over an area of more than 150 km in
a direction subparallel to the deep fault zone (Figure 2b). The original shape of the Massifs
has not been preserved, existing in the present time as a plate- and lens-shaped body that
extends towards the northwest and measures up to 5 km in length and 300 m in thickness.
Mylonitization and cataclasis zones are present at the points of contact with the host rocks.

All massifs consist of ore-bearing olivinites, non-mineralized olivinites, serpentinites,
kaersutite clinopyroxenites, and gabbroids (Figure 3). Olivinites and/or serpentinites are
usually found in the centre of the massif. They are surrounded by clinopyroxenites and
gabbro. The massifs also contain almost monomineral rocks composed mainly of albite,
commonly called albitites [20]. Albitite veins or dykes typically occur at the interfaces
between different rocks within the massif and occasionally along the boundaries between
the massif and the host rock [20]. Thicknesses of the vein vary from 0.01 to 10 m, and vein
lengths can be up to 1.5 km. Dykes of porphyritic picrites are present in some areas.
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South Siberia. The data used to create this map are sourced from [28,58]. (b) Simplified geological
map of the area where the Lysan alkaline–ultramafic complex massifs are located, according to [59],
with our modifications.

The largest Podlysan intrusive is located at the watershed of the Balakhtison River, a
tributary of the Shinda River, and the Podlysan Creek, a right tributary of the Sisim River
(Figure 3). It has a lenticular outline and a total length of 5 km, with a maximum thickness
of up to 300 m. The outcrop area of olivinites and clinopyroxenites decreases significantly
from northwest to southeast, while gabbro increases, as shown in Figure 3. There are
similar changes in the proportions of olivinites, clinopyroxenites, and gabbros as the depth
of the massif increases.

Albitite “dykes” and “veins” of varying thickness and lengths occur at the contact
between clinopyroxenites and gabbro (Figure 3). The albitite contains carbonate veins and
veinlets. The outcrops of these rocks show considerable weathering but the cores taken
from boreholes are better preserved. Ore-bearing olivinites are composed of fine-grained
idiomorphic olivine (Fo80–82) or pseudomorphs of serpentine on olivine (50–80 vol.%),
titanomagnetite–ilmenite aggregates (15–45 vol.%), and minor allotriomorphic clinopy-
roxene (Wo50En38Fs11, 3.4–3.6 wt.% TiO2). Hornblende commonly replaces clinopyrox-
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ene. Kaersutite clinopyroxenites are medium-grained rocks consisting of clinopyroxene
(55–45 vol.%), ferrokaersutite (35–54 vol.%), ilmenite (8–12 vol.%), and minor apatite and
titanite. Ferrokaersutite (5.2–6.0 wt.% TiO2, 0.3–0.4 Mg#) occurs as oikocrysts containing
clinopyroxene (Wo44En46Fs10, 0.9 wt.% TiO2), apatite, and ilmenite chadacrysts. Kaersu-
tite gabbro exhibits banded textures. Banding is formed by an alternation of leucocratic
and melanocratic layers. Gabbro comprises of clinopyroxene (6–57 vol.%), plagioclase
(38–47 vol.%), ferrokaersutite (30–35 vol.%), ilmenite (1–4 vol.%), minor apatite, and titan-
ite. Primary plagioclase (An50–60) and clinopyroxene (Wo43En46Fs11, 0.9 wt.% TiO2) occur
only in relicts and are replaced by albite and ferrohastingsite, respectively.
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The rock and mineral composition of the massifs in the Lysansky Complex exhibits
significant similarity to the Lesnaya Varaka Massif in the Khabozerskaya Group located in the
Kola Alkaline Province, Russia [50,60]. In this massif, as well as in the studied intrusions, ore-
bearing olivinites, pyroxenites, and various rocks of the dyke complex are present [50,60,61].
The carbonatites of the Lesnaya Varaka Massif are of two types: dolomitic and apatite–
dolomitic, with REE mineralization associated with the latter. The Lesnaya Varaka Massif
is regarded as the most extensively eroded and deepest segment of the complex alkaline–
ultramafic intrusion among the massifs in the Kola Alkaline Province [50,60].

3. Materials and Methods

The petrography and mineralogy of the rocks in the Lysan Complex massifs are
described based on our collection of rock samples from outcrops and drill cores. The de-
scription is based on a collection of 55 rock samples. The mineralogy of the carbonate rocks
and albitites in the Podlysan Massif has been documented based on a rock sample obtained
from drill hole number 5 (Figure 3). Rocks and minerals were analysed at the Isotope Geo-
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chemical Research Centre, Vinogradov Institute of Geochemistry, Siberian Branch, Russian
Academy of Sciences [62]. The mineral composition was determined in situ in a polished
section by scanning electron microscopy, energy dispersive spectrometry (SEM EDS), and
electron probe microanalysis (EPMA). SEM EDS analysis was performed on a Tescan MIRA
3 LMH electron microscope (Tescan, Brno, Czech Republic) with an AztecLive Advanced
Ultim Max 40 energy dispersive analysis system (Oxford Instruments Analytical Ltd.,
Abingdon, UK). Analyses were performed at an acceleration voltage of 20 kV, probe current
of ~0.5 nA, and a spectrum accumulation time of 10–50 s. The results were checked against
reference standards of simple compounds and metals for the majority of the elements.
EPMA was performed using a JXA8200 Superprobe (JEOL Ltd., Tokyo, Japan) under the
following conditions: acceleration voltage of 20 kV, a beam current of 20 nA, a beam di-
ameter of 1 µm, and a counting time of 10 s for major elements and 20 s or 30 s for trace
elements. The background counts were 5 s or 10 s long for major elements and 15 s long for
trace elements. Matrix corrections and analysed element contents were calculated using
the ZAF (atomic number, absorption, and fluorescence) approach applying the software
for quantitative analysis for Superprobe JXA−8200 (V01.42© 2024–2007, JEOL Ltd., Tokyo,
Japan). The standards used for major and minor components were: F-phlogopite (Si, Al,
K, Mg and F); diopside (Ca); albite (Na); Mn-garnet rhodonite (Mn); pyrope (Fe); Sr-glass
(Sr); ZrSiO4 (Zr); BaSO4 (Ba); Ti-glass (Ti); Y-phosphate (Y); Cl-apatite (Cl and P); PbS (Pb);
Cs2RECl6 (Cs); La-phosphate (La); Ce-phosphate (Ce); Eu-phosphate (Eu); and pure Sc and
Nb. Detection limits were (3σ, in wt.%): 0.07 for Na, 0.06 for Al, 0.1 for Si, 0.02 for Ca, 0.09
for F, 0.02 for K, 0.04 for Mg, 0.01 for Fe, 0.02 for Mn, 0.08 for Nb, 0.04 for Ti, 0.16 for Ta,
0.15 for Zr, 0.09 for Th, 0.08 for U, 0.27 for Sr, 0.14 for Pb, 0.06 for Ba, 0.08 for La, 0.14 for Ce,
0.11 for Pr, 0.1 for Nd, 0.06 for Sm, 0.11 for Gd, 0.05 for Dy, and 0.18 for Y. The calculation
of mineral structural formulae was undertaken using the CALCMIN software [63].

4. Results
4.1. Petrography Carbonate Rocks and Albitite

The relationships between the leucocratic kaersutite gabbro, albitite, and carbonate
veins in the core sample are shown in Figure 4a. The carbonate veins and veinlets have a
pale primrose-yellow colour, which contrasts with the almost white albitite background and
the dark grey-green kaersutite gabbro background. There are no sharp intrusive contacts
between the gabbro and albitite. Instead, a gradual transition is observed, as shown by the
colour gradation in Figure 4b, due to the gradual increase in carbonates and plagioclase
in the gabbro towards the carbonate veins. Moreover, the textural appearance of albitite
resembles brecciated gabbro that has been impregnated with silicate–carbonate aggregates.
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The carbonate veins and veinlets are primarily located in the albitite and vary in
thickness from 0.1 to 10 mm. They are infrequent and thinner in the gabbro. Structurally, the
large carbonate veins resemble flattened plates formed of transparent, pure euhedral and
subhedral carbonate material. The centres of these veins consist of calcite, while the rims
consist of aggregates of siderite, calcite, rare earth minerals, and albite (Figures 5a and 6).
The small veins lack a zonal structure (Figure 5b).
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6), and is often surrounded by a border of K-feldspar. This occurs in the carbonate–silicate 
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Figure 7. BSE image. (a) Calcite–siderite matrix between carbonate veins; (b) large albite grains in a 
rim of calcite–siderite clusters. Cal—calcite; Sd—siderite; Cal + Sd—carbonate–silicate matrix; Pl—
plagioclase. 

The groundmass is composed of calcite, siderite, white mica, K-feldspar, various ac-
cessory minerals, and sulphides. Determining the precise ratio of the main phases is a 
difficult task. However, it is worth noting that siderite is typically slightly more prevalent 
than calcite. Furthermore, white mica is a crucial phase. 

Accessory minerals are apatite, rutile, zircon, monazite, REE fluorocarbonates, and 
an unidentified REE phase, listed in descending order of abundance. 

Apatite crystals of varying sizes and forms are present. Small anhedral crystals (5–10 
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Figure 6. BSE image. (a) The central part of carbonate veins; (b) the rims of carbonate
veins. Cal—calcite; Sd—siderite; Mu—white mica; Pl—plagioclase; Syn-Ce—synchysite-(Ce);
Pst-Ce—parisite-(Ce); Mnz-Ce—monazite-(Ce).

There are three types of albites. The first type is monomineralic aggregates or large
porphyroblasts (0.2–1 mm) localized between carbonate veins (Figure 7a). The second
type consists of smaller sharp-angled porphyroclasts (50–100 µm) in the carbonate–silicate
groundmass (Figure 7). The third type of grain is small, measuring less than 50 µm
(Figure 6), and is often surrounded by a border of K-feldspar. This occurs in the carbonate–
silicate groundmass.
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Figure 7. BSE image. (a) Calcite–siderite matrix between carbonate veins; (b) large albite grains in a rim of
calcite–siderite clusters. Cal—calcite; Sd—siderite; Cal + Sd—carbonate–silicate matrix; Pl—plagioclase.

The groundmass is composed of calcite, siderite, white mica, K-feldspar, various
accessory minerals, and sulphides. Determining the precise ratio of the main phases is a
difficult task. However, it is worth noting that siderite is typically slightly more prevalent
than calcite. Furthermore, white mica is a crucial phase.

Accessory minerals are apatite, rutile, zircon, monazite, REE fluorocarbonates, and an
unidentified REE phase, listed in descending order of abundance.

Apatite crystals of varying sizes and forms are present. Small anhedral crystals
(5–10 µm) are found within intergrowths alongside monazite in a siderite–calcite aggregate,
whereas larger euhedral crystals (up to 0.1 mm) are present in a calcite–siderite–mica
aggregate (see Figure S1). Rutile is observed as euhedral and subhedral crystals, ranging in
size from 10 to 50 µm, forming intergrowths with apatite or monazite. Zircon grains are
found in both the rims of large carbonate veins and in the carbonate–silicate groundmass.
Most zircon grains are irregular in shape; sometimes, short prismatic or bipyramidal crystals
are observed. The grain size ranges from 5–10 to 70–100 microns. Relics of baddeleyite are
found in some crystals (Figure S2).

Monazite is typically found as small, individual grains measuring 5–10 µm in size, or as
aggregates of subhedral and anhedral grains (Figure 8). Similar to zircon, it can also be found
in the rims of large carbonate veins (Figure 6b) and in carbonate–silicate groundmass.

REE fluorocarbonates are bastnäsite-(Ce), parisite-(Ce), and synchysite-(Ce). Bastnäsite
occurs as individual lamellar grains, with sizes ranging from 0.01 to 0.05 mm. Polycrystals
with syntaxic intergrowths of parisite-(Ce) and synchysite-(Ce) were observed in siderite–calcite
interstices (Figure 9).

The mineral phase containing rare earth elements and Ti, which remains unidentified,
occurs in aggregates of rutile, siderite and mica as irregular grains measuring 10–20 microns.
Pyrite and sphalerite occur as single crystals or as aggregates of subhedral or anhedral grains,
occasionally forming sizable clusters ranging from 10–15 to 50–70 microns (Figure S3).

4.2. Mineral Chemistry

The albite porphyroblasts and porphyroclasts are similar in composition (An0–5). Al-
bite from the groundmass always contains K2O, with a maximum amount of 2.2 wt.%. The
K-feldspar consistently contained Na2O (0.4–1.9 wt%) and BaO (0.4–1.4 wt%). Additionally,
Ce2O3 (1.4 wt%) was detected in one of the grains.

The composition of siderite, as shown in Table 1, exhibits varying contents of MnO,
MgO, and CaO. The zonal crystals show an increase in CaO, MgO, and MnO concentrations
from the core to the margin (1.5–2.7, 0–3.3, and 0.7–2.9 respectively).
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Table 1. Representative EPMA of siderite.

Oxide
wt.% 7821 7821 7821-1 7821-1 7821-1 7821-1 7821-2 7821-2 7821-2 7821-3 7821-3 7821-3 7821-3 7821-3

FeOt 52.03 51.16 51.97 51.92 59.04 46.02 52.90 52.75 52.92 56.08 54.67 45.80 52.28 54.27
MnO 3.91 1.38 0.97 3.14 0.71 0.78 0.42 2.31 0.64 1.04 3.13 0.68 0.87 1.47
MgO 3.12 6.00 5.64 3.50 0.00 3.61 4.43 4.62 4.48 1.84 2.86 7.46 6.06 3.44
CaO 2.80 2.92 3.05 2.86 1.68 10.07 3.54 1.78 2.99 2.41 1.37 7.26 2.49 2.06
Total 61.86 61.46 61.63 61.42 61.43 60.47 61.29 61.45 61.03 61.37 62.03 61.20 61.70 61.24

Structural formulae on the basis of 3 oxygens
Fe 0.799 0.764 0.777 0.799 0.954 0.696 0.804 0.804 0.809 0.883 0.845 0.663 0.778 0.841
Mn 0.061 0.021 0.015 0.049 0.012 0.012 0.006 0.036 0.010 0.017 0.049 0.010 0.013 0.023
Mg 0.085 0.160 0.150 0.096 0.000 0.097 0.120 0.125 0.122 0.052 0.079 0.193 0.161 0.095
Ca 0.055 0.056 0.058 0.056 0.035 0.195 0.069 0.035 0.059 0.049 0.027 0.135 0.048 0.041

Cations 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Calcite contains variable and appreciable amounts of FeO, MnO, and MgO, and only
small amounts of SrO (0.9 wt.%) (Table 2, Figure 10). Calcite in the centre of the veins
(Figure 5a) shows lower FeO and MnO abundances (1–1.3 wt% and <0.01–0.1 wt.%, respec-
tively), compared to calcite from the groundmass (2.0–6.5 and 0.7–0.8 wt.%, respectively).

Table 2. Representative EPMA of calcite.

Oxide
wt.% 7821 7821 7821 7821-1 7821-1 7821-1 7821-2 7821-2 7821-2 7821-3 7821-3 7821-3

FeOt 4.04 1.76 0.40 2.00 2.33 3.83 1.62 1.88 2.74 2.70 1.34 1.69
MnO 2.35 1.85 0.77 0.81 0.34 0.90 0.62 0.95 0.18 0.53 0.94 0.00
MgO 0.28 0.18 0.00 0.14 0.36 0.26 0.18 0.18 0.15 0.18 0.00 0.18
CaO 49.39 51.43 54.19 51.64 52.34 49.16 51.35 52.05 53.13 50.46 52.95 52.83
SrO 0.86 0.25 0.19 0.56 0.26 0.26 0.82 0.47 0.27 0.46 0.20 0.40
Total 56.92 55.47 55.55 55.15 55.64 54.42 54.59 55.53 56.46 54.33 55.43 55.11

Structural formulae on the basis of 3 oxygens
Fe 0.057 0.025 0.006 0.029 0.033 0.056 0.024 0.027 0.038 0.039 0.019 0.024
Mn 0.034 0.027 0.011 0.012 0.005 0.013 0.009 0.014 0.003 0.008 0.014 0.000
Mg 0.007 0.005 0.000 0.004 0.009 0.007 0.005 0.005 0.004 0.005 0.000 0.005
Ca 0.894 0.941 0.981 0.950 0.950 0.921 0.954 0.950 0.953 0.943 0.965 0.967
Sr 0.008 0.002 0.002 0.006 0.003 0.003 0.008 0.005 0.003 0.005 0.002 0.004

Cations 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 10. Composition of siderite (blue triangle) and calcite (green triangle).

The white mica is characterized by slightly higher SiO2 (3.17–3.45 apfu), moderate FeO
(0.14–0.28 apfu) and MgO (0.11–0.17 apfu), and high TiO2 (up to 6.4 wt.%) contents (Figure S4,
Table S1). The mica composition can be described as slightly phengitic muscovite.
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Apatite is a fluorapatite with a homogeneous composition and a fluorine content of
4.1–4.8 wt.% (Table S2). The presence of Ce2O3 (0.3–0.9 wt.%) is noted in some grains. It is
indicated that there are at least two generations of apatite. Rutile contains up to 2.5 wt.%
Nb2O5. Zircon contains ThO2 (0.4–0.6 wt.%) and HfO2 (0.9–1.5 wt.%).

The monazite composition is consistent with monazite-(Ce) (Table S3). Increased SiO2
(3.0–5.9 wt.%) and ThO2 (0.7–1.2 wt.%) were detected in some grains. Rare earth elements
are typically found in the following proportions: Ce > La > Nd > Pr > Sm > Gd.

In the absence of a dedicated structural study of REE fluorocarbonates from carbonate
veins within the Lysan Complex, mineral names have been assigned based on stoichiometric
recalculations of analyses. On this basis, REE fluorocarbonates correspond in composition
to bastnäsite-(Ce), parisite-(Ce), and synchysite-(Ce) (Table S4). Since the fluorine content
was measured slightly lower than the theoretical amount, the deficiency was compensated
for at this position by the calculated OH. REEs are typically found in the following ratios:
Ce > La > Nd > Pr > Y> Sm > Gd. ThO2 contents range from 0.8 to 5.1 wt.%.

The unidentified REE phases (Table S5) contain small amounts of SiO2 (1.26–7.4 wt.%)
and highly variable amounts of TiO2 and CaO (6.5–25.6 and 87.8–13.2 wt.%, respectively).
The main component of the composition of these phases is rare earth elements, the total
amount of which is 35.7–50.3 wt.%. The rare earth elements in them occur in the same
proportions as in REE fluorocarbonates: Ce > La > Nd > Pr > Y > Sm > Gd. ThO2
(0.8–1.1 wt%) and fluorine (3.2–6.9 wt.%) are also present. According to the analysis results,
the composition should contain carbonate or hydroxyl ions or both. These phases require
further study. They were probably formed by the replacement of titanite or perovskite.

Pyrite is stoichiometric, without any additional elements. Some grains contain micro
inclusions of galena and probably anglesite. Sphalerite typically contains Fe (4.1–5.9 wt.%) and
occasionally Cu (up to 0.9 wt.%). The structural formula can be written as Fe0.09Cu0.01Zn0.9S.
Areas of atypical composition were detected in one of the grains, wt.%: Fe—21.04; Cu—24.0;
Zn—15.69; S—32.14.

5. Discussion
5.1. General Features of the Origin of Albitites and Carbonate Rocks of the Podlysansky Massif
5.1.1. Albitites

As mentioned earlier, it was previously believed that the albitite dykes in the Lysan
Complex were of magmatic origin [26]. These dykes are found in cataclasis zones at contacts
between petrographic rock differences within the massifs of the Lysan Complex or at contacts
with host rocks. The examination of the relationship between albitite and leucocratic kaersutite
gabbro in the drill core in this study did not reveal any evidence of intrusive contact between
the rocks of the massif and albitite. The rock displays a gradual transition, which is attributed
to an increase in carbonate and plagioclase content towards the carbonate veins. The textural
and structural characteristics of albitite suggest that it was formed as a result of metasomatic
alteration (fenitization) of leucocratic gabbro in zones of intense development of tectonic frac-
tures. The injection of metasomatizing fluids was preceded by the formation of apogabbroic
cataclasites. Where the fracturing of the gabbro is less pronounced, the compositional change
is expressed only in plagioclase albitization. The sample shows observable effects of pervasive
and vein fenitization. However, the main mechanism for albitite formation was the infiltration
of metasomatizing fluid. Similar transformations of metabasite substrates to albitite under the
influence of ferricarbonatite magma have been recorded in the Alpine Dyke Swarm, Westland,
New Zealand [22,64], and the Kunene Intrusive Complex, NW Namibia [21].

Comparing the chemical composition of gabbro sampled at a distance from the albitite
“dyke” with the composition of the albitite–carbonate mixture (see Table 3), it is clear
that albitites are enriched in Na2O and K2O and depleted in FeO, CaO, and MgO. The
albitite contains a large amount of metasomatically formed albite compared to the relatively
small volume of the surrounding carbonate–silicate matrix. This suggests that the fluid
responsible for metasomatism contained significant amounts of sodium prior to its loss
during fenitization.
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Table 3. Bulck rock composition of the albitite (7821ac) and gabbro (68166), wt.%.

Sample # SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 CO2 H2O Total

7821ac 49.70 0.96 16.70 1.36 6.52 0.23 0.82 5.34 7.18 2.39 0.23 7.31 0.20 99.59
68166 48.80 1.58 15.57 3.43 8.41 0.13 5.54 11.70 1.89 0.42 0.27 0.51 1.14 99.01

5.1.2. Carbonate Rocks

The carbonate rocks found in the Podlysan Massif contain minerals such as calcite,
siderite, apatite, Nb-bearing rutile, monazite-(Ce), REE fluorocarbonates, pyrite, and sphalerite,
which are typomorphic to carbonatites (sensu lato). Most of the carbonatite complexes are
typically associated with mica of the phlogopite series, but muscovite is a characteristic
mineral of certain siderite carbonatites [11,14–16]. The muscovite composition in carbonate
rocks of the Podlysansky Massif is characterized by an increased concentration of TiO2 and a
slightly phengitic composition. Similar composition patterns have not been observed before
in muscovite from known siderite carbonatites. However, some studies show that the high
titanium content of phengite depends on the P-T conditions of its formation [65].

As mentioned earlier, carbonatites (sensu lato) are classified based on their mineralogy
and texture as either primary, high-temperature magmatic rocks or low-temperature car-
bothermal remnants, known as carbothermalites [2,4]. This classification is non-genetic, as
carbonatites can be formed through more than one route [2–6,9], just as carbothermalites can
be derived from different parent magmas [2,4]. There are notable distinctions in the min-
eralogy, texture, and geochemical properties of intrusive carbonatites and carbothermalites.
Carbothermalites are typically fine- to very fine-grained rocks with complex mineralogy and
textures [4], which often makes them unsuitable for optical petrographic study due to their
intricate nature. Intrusive carbonatites are sources of Nb, Ti, and P but not REE [2,4,7,9].
Carbothermal fluids were found to contain REE, Sr, and Ba but not Nb [2,4,7].

According to this classification [2,4], the carbonate rocks of the Podlysan Massif exhibit
characteristics typical of carbothermalites. The minerals present are fine- and very fine-
grained and form complex intergrowths (Figure 11). Common minerals identified include
siderite, REE fluorocarbonates, zircon, and K-feldspar. Olivine, diopside, tetraferriflogopite,
magnetite, and perovskite are not present.
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The order of mineral crystallization in carbonate-silicate groundmass (Figure 11) can
be inferred as follows: albite, K-feldspar, REE minerals, mica, siderite, and calcite. The
syntaxial intergrowths of the Ca-REE fluorocarbonates are considered to be evidence of their
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primary origin, with the intergrowths being related to changes in the chemical composition
of the host fluid [66,67]. Based on the composition of calcite from carbonate veins, it appears
that it crystallized after the carbonates from the groundmass. The formation of this most
likely occurred during the hydrothermal stage.

Although it is considered difficult to find two identical carbonatites [5], the Haast
River carbothermalites (or sideritic carbonatites according to [22,64]) found in the Alpine
Dyke Swarm, Westland, New Zealand, exhibit similar textural features and mineral compo-
sition to those of the Podlysan Massif. Additionally, the composition of fenites resulting
from the impact of fluid associated with these carbothermalites on metabasitic host rocks
corresponds to almost monomineral albitite [22,64].

At this stage of the research, it is premature to determine the mechanisms responsible
for the formation of carbonate rocks in the Podlysan Massif and their position in the
formation of the dunite–pyroxenite–gabbro series.

However, when drawing an analogy with the Kola alkaline Province Complexes in
Russia, it is important to note that there is some dependence between the occurrence of
carbonatites, the petrographic composition of individual massifs, their degree of formation
and the depth of denudation of intrusions [60]. Carbonatites (sensu lato) occur as indi-
vidual, thin bodies within deeply eroded Massifs composed primarily of peridotites and
pyroxenites. In shallower cross sections, carbonatite bodies become more numerous and
unite into fields [60]. These fields are confined to zones of crushing or increased fracturing,
as seen in the Vuorijärvi and Kovdor massifs [50,60]. Carbonatites are most prevalent in
alkaline massifs, where early-phase peridotites occur as relict areas that have been strongly
altered by alkaline metasomatism [60]. The Sallanlatvi and Ozernaya Varaka Massifs are
good examples of this [13,60]. While the carbonatites of the Kovdor [68–71], Vuorijärvi [72],
and Ozernaya Varaka [73] massifs have been extensively studied, the origin of the carbonate
veins in the Lesnaya Varaka Massif remains unclear [60,74].

6. Conclusions

The Neoproterozoic Lysan alkaline–ultrabasic complex is an intricate object, requiring
further geochemical, isotopic studies and petrological constructions. This study focused on
the mineralogy of carbonate rocks and albitites, which are confined to fracture zones at the
contacts between rock varieties within the massif and with the host rocks.

As a result, it has been established that:

1. The mineral composition of carbonate rocks corresponds to siderite carbonatites (senso
stricto). They contain calcite, siderite, phengitic muscovite, albite, K-feldspar, apatite,
monazite-(Ce), Nb-bearing rutile, bastnäsite-(Ce), parisite-(Ce) and synchysite-(Ce),
pyrite, and sphalerite.

2. Textural features suggest that they are carbothermalites formed from alkali-rich carbo-
hydrothermal fluid.

3. Albithites were formed as a result of the phenitization of leucocratic gabbro by the
infiltration of alkaline carbo-hydrothermal fluids in zones of intensive development
of tectonic fractures.

The obtained results will provide a foundation for future studies focused on clarifying
the origin of carbonate rocks in the Lysan Complex.
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