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Abstract: Quicklime is produced through the thermal processing of limestone in industrial kilns.
During quarry operations, fine particulate quarry dust adheres to limestone lump surfaces, increasing
the bulk concentration of impurities in limestone products. During thermal processing in a kiln,
impurities such as Si, Mg, Al, Fe, and Mn react with Ca, reducing quicklime product quality. Which
reactant phases are formed, and the extent to which these result in a reduction in quality, has not
been extensively investigated. The present study investigated as-received and manually washed
limestone product samples from two operational quarries using elemental compositions and a devel-
oped predictive multi-component chemical equilibrium model to obtain global phase diagrams for
1000–1500 ◦C, corresponding to the high-temperature zone of a lime kiln, identifying phases expected
to be formed in quicklime during thermal processing. The results suggest that impurities found
on the surface of the lime kiln limestone feed reduce the main quality parameter of the quicklime
products, i.e., calcium oxide, CaO (s), content by 0.8–1.5 wt.% for the investigated materials. The
results also show that, in addition to the effect of impurities, the quantity of CaO (s) varies greatly with
temperature. More impurities result in more variation and a greater need for accurate temperature
control of the kiln, where keeping the temperature below approximately 1300 ◦C, that of Hatrurite
formation, is necessary for a product with higher CaO (s).

Keywords: calcium oxide; chemical equilibrium calculations; thermal process chemistry

1. Introduction

The raw material for quicklime is limestone, an abundant rock that is quarried or
mined. Limestone is rich in calcium carbonate CaCO3 (s), typically occurring as the mineral
calcite; this is heated in industrial kilns to temperatures above the carbonate decomposition
temperature to produce quicklime, which is rich in calcium oxide CaO (s), according to
Reaction 1 as follows:

CaCO3 (s) → CaO (s) + CO2 (g) (1)

The thermal decomposition, or calcination, of calcite has been extensively studied. Rate-
limiting processes have been defined [1], and the effects of steam [2], pressure [3], CO2
partial pressure [4], heating rate [5], and impurities [6–8], among other parameters, have been
identified. Of the proposed calcination mechanisms, a mechanism involving intermediate
“activated lime” CaO*(s), originally proposed by Hyatt et al. in 1958 [9], has received support
in more recent studies [4,10]. In addition to the calcination process, the thermal behavior of
limestone at temperatures below calcination has been studied extensively; see, e.g., [11]. The
thermal behavior and properties of different quicklimes and of the main component, calcium
oxide CaO (s), produced at low temperatures, 650–1000 ◦C, has also been studied [12–14].
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To reduce the residence time and increase production capacity, the quicklime tempera-
ture in a lime kiln reaches 1100–1450 ◦C [15,16], far exceeding the calcination temperature of
800–900 ◦C. After calcination, the quicklime continues to exhibit phase transformations as
the temperature in the lime kiln increases, and the final phase composition will depend on
the maximum temperature reached. Eventually, the final product quality is also influenced
by cooling, post-processing such as crushing and sieving, storage, and transport to the end
user. The present paper targets the effect of impurities on the quicklime quality, expressed
as the calcium oxide CaO (s) content, between 1000 and 1500 ◦C, corresponding to the
high-temperature zone of the lime kiln.

The thermal behavior of quicklime in lime kiln conditions and the suitability of lime-
stone for quicklime production has been extensively investigated, e.g., regarding general
suitability [17], block formation tendencies in shaft kilns [18], product reactivity [19–21],
thermal decrepitation [22], fuel ash interactions on quicklime surfaces [23,24], interactions
of chlorine and sulfur with the quicklime product [25], specific heat capacity [26], and
thermal conductivity [27].

Few studies have been found on the phase chemistry of quicklime in the high-
temperature zone of a lime kiln. Vola et al. considered phase evolution during quicklime
production in generic terms [28] and studied the phase composition of different quicklimes
produced at 1050 ◦C, 1150 ◦C [29], and 1200 ◦C [30] in laboratory conditions. Hökfors
et al. and Eriksson et al. [31–33] investigated the phase composition of quicklime from
high-purity limestone of 97.41 wt.% CaCO3 (s) in different kiln conditions by utilizing equi-
librium calculations at temperatures ranging from 839 to 1774 ◦C. Previous studies have
identified several calcium compounds in quicklime such as CaO (s), CaCO3 (s), Ca2SiO4
(s), Ca3SiO5 (s), Ca3Al2O6 (s), Ca4Al2Fe2O10 (s), Ca3MgSi2O8 (s), Ca2MnO4 (s), and CaSO4
(s). Earlier studies have focused on the bulk composition of limestone and singular temper-
atures or cooled laboratory samples. No studies on the influence of impurities adhered to
limestone surfaces on quicklime product quality have been found, nor have studies on the
evolution of phases in quicklime in the high-temperature zone of a lime kiln been found.
Although the chemistry is complex and not fully known, the main interactions of Ca with
impurities can be simplified by reactions (2)–(6) [34–37] as follows:

Belite formation: 2CaO (s) + SiO2 (s) → Ca2SiO4 (s) (2)

2 CaCO3 (s) + SiO2 (s) → Ca2SiO4 (s) + 2 CO2 (g) (3)

Calcium aluminate formation: 3 CaO (s) + Al2O3 (s) → Ca3Al2O6 (s) (4)

Calcium ferrite formation: CaO (s) + Ca3Al2O6 (s) + Fe2O3 (s) → Ca4Al2Fe2O10 (s) (5)

Hatrurite formation: CaO (s, l) + Ca2SiO4 (s, l) → Ca3SiO5 (s) (6)

Quicklime is used in many industrial applications, such as steel production and other
metallurgical processes, pulp and paper production, and construction and environmental
applications [38,39]. Quicklime is available in a wide range of product qualities [40–42].
The main quality parameter and the main price driver is the CaO (s) content. The world
production of quicklime is estimated to be 430 Mt per year [43]. Although kiln setup
and fuel properties influence quicklime quality, the quality is primarily dependent on the
properties of the limestone feed [33,44].

Limestone can be classified based on the chemical purity of the rock (see Table 1);
limestone of higher purity results in quicklime of higher CaO (s) than quicklime produced
from lower-purity limestone under similar production conditions. For high-calcium lime-
stone, all compounds other than CaCO3 (s) are considered impurities. Impurities that
originate in materials deposited simultaneously with CaCO3 (s) and that are dispersed
throughout the formation are classified as homogeneous impurities. Impurities that appear
as inclusions or as loosely embedded materials formed during the sedimentation process
often occur as layers in the deposit [45] and are classified as heterogeneous impurities.
Common impurities are clay and siliceous matter, and the major impurity elements are Si,
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Al, Fe, and Mg [44,46]. The content of minor elements in commercial limestone is usually
low (see Table 2).

Table 1. Classification of high-calcium limestone based on chemical composition, expressed as major
oxides, in wt.% [47–49].

Classification CaO MgO SiO2 Fe2O3

Very high purity >55.2 <0.8 <0.2 <0.05
High purity 54.3–55.2 0.8–1.0 0.2–0.6 0.05–0.1

Medium purity 52.4–54.3 1.0–3.0 0.6–1.0 0.1–1.0
Low purity 47.6–52.4 >3.0 <2.0 >1.0

Impure <47.6 >3.0 >2.0 >1.0

Table 2. Typical minor elements in limestone, expressed as oxides, in wt.% [50].

Al2O3 BaO Cr2O3 CuO K2O Mn3O4 Na2O NiO P2O5 PbO SO3 SrO TiO2 ZnO ZrO2

<0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.2 <0.1 <0.1 <0.1

In quicklime production, elements such as Si, Al, Fe, and Mg can also originate
from other sources, e.g., fuel ash. Ash-forming elements in fuels have been related to
disturbances in kiln operations and reduced CaO (s) content in the product [15,32,33,51].
Fuel ashes were not considered in this investigation.

The limestone production process comprises operations such as blasting, hauling,
crushing, sieving, washing, and sampling, generating small particulate matter, i.e., quarry
dust. The amount of quarry dust generated will depend on several parameters, such as
the amount of heterogeneous impurities contained in the deposit, e.g., clay layers; whether
blasting, crushing, and hauling is performed in a manner that reduces the amounts of
small particulates generated; and whether the limestone processing plant is equipped with
encapsulation and suction with filters to capture the dust in a controlled way. Although
the quarry dust is enriched with soft materials such as clay, the composition generally
corresponds to that of the bulk of the quarry. For a limestone quarry, this means significant
quantities of Ca. This fine particulate material can adhere to the surface of limestone pebbles
fed to the kiln to such an extent that it affects quicklime production and product quality.
The amount of adhered quarry dust on the limestone surfaces will depend, not only on
the amount of quarry dust available, but also on wind and other weather conditions. The
experience of the lime kiln operator is that, especially in cold and wet weather conditions,
the amount of adhered quarry dust can be significant, resulting in a clear response in lime
kilns. Typical kiln responses are, e.g., reduced quicklime quality; an increase in buildups in
the channel system of the kiln, resulting in a decrease in kiln availability; and increased
dust load on kiln filters, forcing a reduction in kiln production. The aim of the present
study was to generate new knowledge on the impact of impurities that are attached to
limestone pebbles on the product quality of quicklime, defined here as calcium oxide and
designated CaO (s).

2. Materials and Methods

Limestone samples—A and B—originating from two different northern European
quarries were used in this study. Limestone A belongs to the Boda group in central Sweden.
The limestone is of Upper Ordovician age, shaped by a meteor during the subsequent
Devonian period just over 380 million years ago, and consists of Upper Katian deeper-water
carbonate mud-mounds bodie. These bodies overlay lower-to-middle Hirnantian-bedded
limestone strata. The limestone is fine- to medium-grained and has a micritic structure.
Limestone B belongs to the Slite group on Gotland, Sweden. The Silurian surface bedrock
on Gotland spans approximately 10 million years (428–418 million years ago). The bedrock
around the deposit consists of a sequence of up to 40 m thick limestone and reef limestone.
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Beneath the limestone layers, there are deposits dominated by marl and marlstone with
flank deposits.

In Swedish limestone quarries and lime kilns, the influence of wet and cold winter
conditions is clearly noticeable and manifests as an increased amount of adhered quarry
dust on the limestone products, even if the limestone is recently blasted, such as in this
study. Two samples of approximately 15 kg each of lime kiln feed limestone pebbles of
the fraction 40–90 mm were collected during the winter period. The samples represent
the momentary conditions in the quarry. A washing protocol was undertaken, wherein
material on the surface of the limestone products was manually removed by brushing in
water, after which, the washed lumps of limestone were removed from the washing water
and dried at 105 ◦C. The washing residue was separated through sedimentation, decanting,
and drying at 105 ◦C.

The elemental compositions of the samples were determined for both as-received
and washed conditions. A Panalytical Axios mAX WDXRF X-ray fluorescence (XRF)
spectrometer and a Leco CS744 IR carbon and sulfur analyzer (IR-C/S) (LECO Corporation,
St. Joseph, MI, USA) were used to determine the elemental compositions. Chlorine content
was not analyzed in the present study but was estimated based on long-term data from
the quarries. Loss on ignition (LOI) was determined by weighing before and after heating
to 1000 ◦C in a laboratory muffle furnace. In addition, the elemental composition of the
washing residue was characterized to assess whether it was likely that the surface materials
originated in the quarries. The assessment was based mainly on the Ca concentration of
the washing residue.

A predictive multi-component chemical equilibrium model was built based on com-
mercially available databases and software and published thermodynamic data. The
equilibrium model is based on the minimization of Gibbs free energy to determine the
stable phases of the system. The equilibrium condition implies that kinetics is not con-
sidered; further, the model assumes that all elements have access to each other. Despite
the limitations mentioned above, it has been proven to be a useful tool to predict and
interpret phase systems of high temperatures. The model was used to obtain global phase
diagrams of the high-order system in question, calculated as a function of temperature
in the range 1000–1500 ◦C, corresponding to the high-temperature zone of the lime kiln.
From the global phase diagrams, phase diagrams for Ca compounds were extracted. The
diagrams for Ca compounds were utilized to analyze the impact of the impurities on
limestone surfaces on the quicklime product quality. The model input was the elemen-
tal composition of samples, in both as-received and washed conditions, and comprised
15 elements: Al, C, Ca, Cl, Fe, H, K, Mg, Mn, Na, O, P, S, Si, and Ti. All calculations were
made at 1 bar and in an atmosphere of 50 mol-% CO2 and 50 mol-% O2. Thermodynamic
data from Lindberg et al. and Bale et al. [52,53] were used. The FactSage 7.3 software and
FACTPS and FToxid databases, comprising pure solids, an oxide melt, and solid solutions
for wollastonite (CaSiO3 (ss)), bredigite (Ca7Mg(SiO4)4 (ss)), olivine (Ca2SiO4 (ss)), melilite
(Ca2(Mg,Fe,Al)(Al,Fe,Si)2O7), calcium ferrite (Ca2(Fe,Al)2O5 (ss) notation: C2AF (ss)), belite
(Ca2SiO4 (ss) notation: C2S (ss)), calcium aluminate (Ca3(Al,Fe)2O6 notation: C3A (ss)),
and feldspar, were used. For the salt mixture system of Na-K-Ca-Cl-S-C-O, the database
from Lindberg et al. was utilized.

3. Results

The elemental compositions, expressed as oxides, of the samples derived from lime-
stone A and B, as determined by XRF, IR-C/S analysis, and LOI at 1000 ◦C, are presented
in Table 3.
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Table 3. Analysis results obtained for Limestone A and B, in wt.%, as determined by XRF and IR-C/S
analysis, and loss on ignition at 1000 ◦C. Expressed as oxides. * Cl content was estimated based on
long-term quarry data.

Limestone A A A B B B

Condition As-Received Washed Washing
Residue As-Received Washed Washing

Residue

CaO 54.06 54.14 47.39 54.06 54.43 44.31
MgO 0.47 0.46 1.02 0.76 0.71 2.65
SiO2 1.18 1.02 7.08 0.89 0.79 8.38

Al2O3 0.39 0.33 2.32 0.32 0.27 2.63
Fe2O3 0.17 0.14 0.88 0.19 0.18 2.12
MnO 0.10 0.10 0.12 0.02 0.02 0.04
P2O5 0.02 0.02 0.06 0.01 0.01 0.03
Na2O 0.05 0.05 0.46 0.06 0.05 0.24
TiO2 0.02 0.02 0.12 0.02 0.02 0.14
K2O 0.12 0.10 0.71 0.09 0.07 0.87

S 0.04 0.03 0.24 0.05 0.05 0.17
Cl * 0.01 0.01 0.01 0.01 0.01 0.01
LOI 43.11 43.33 38.97 43.23 43.06 37.86

Sum 99.8 99.8 99.3 99.7 99.7 99.5

The elemental compositions for as-received and washed materials were used as input
to the predictive multi-component chemical equilibrium model to determine the global
phase diagrams of the resulting quicklime. From the global phase diagrams, phase diagrams
for Ca compounds were extracted in the quicklime production temperature range of
1000–1500 ◦C. The resulting phase diagrams for Ca compounds are shown in Figures 1–4.
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Figure 1. Phase diagram for calcium compounds in quicklime product of Limestone A in as-received
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condition. Extracted from the global phase diagram calculated from the elemental composition of the
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Figures 1–4 describe the phase evolution of Ca compounds expressed as the weight
percent of condensed phases. The figures show the following:

That the phase evolution of Ca at 1000–1131 ◦C can be described as the formation of
the following:

• 90.7–93.0 wt.% of CaO (s).
• 3.8–5.6 wt.% of Bredigite (ss), a solid solution originating from Ca7Mg(SiO4)4 by the

substitution of some Ca by Mg.
• 1.7–2.4 wt.% of calcium aluminate Ca3Al2O6, designated C3A (ss), in solid solution

with Fe and Na.
• 0.4–0.5 wt.% of calcium ferrite, designated C2AF (ss), a solid solution of Ca2Fe2O5

with Ca2Al2O5.
• 0.1–0.5 wt.% of Ca2MnO4 (s).
• Traces of Nagelschmidtite (s), Ca7P2Si2O16.
• Traces of CaO (l), Ca dissolved into the oxide melt.

That in the temperature range 1132–1298 ◦C, the phase composition changed signifi-
cantly when α’-C2S formed. The composition can be described as follows:

• 90.1–92.7 wt.% of CaO (s).
• 3.9–5.9 wt.% of alpha′ belite, Ca2SiO4, designated α′-C2S (s).
• 1.7–2.4 wt.% of C3A (ss).
• 0.1–0.5 wt.% of Ca2MnO4 (s).
• 0.2 wt.% of CaO (l), Ca dissolved into the oxide melt.

That at 1298–1299 ◦C, Hatrurite is formed, significantly influencing the phase com-
position. The composition in the temperature range 1298–1500 ◦C can be described
as follows:

• 90.4–92.9 wt.% of CaO (s).
• 5.2–7.8 wt.% of Hatrurite (s), Ca3SiO5 (s).
• 1.6–2.3 wt.% of C3A (ss).
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• 0.1–0.5 wt.% of Ca2MnO4 (s).
• 3.6–5.4 wt.% of CaO (l), Ca dissolved into the oxide melt.

4. Discussion

Quicklime has many quality parameters, such as reactivity [54], available lime, and
residual CO2 content [55]; however, in the present study, the chemical quality of quicklime
is discussed in terms of the amount of calcium oxide, CaO (s), in the product, as described
by the phase diagram for Ca phases.

The elemental compositions of the limestone samples, shown in Table 3, facilitated
their chemical classification according to Table 1. Limestone A is of medium purity, with
CaO content of 54.06 wt.% in the as-received condition and 54.14 wt.% after washing. The
analyzed surface particles in the washing residue consisted mainly of Ca but showed high
concentrations of impurities, mainly of Mg, Si, Al, and Fe. The surface impurities decreased
the CaO content in the bulk feed by 0.08 wt.%. Limestone B is a medium- to high-purity
limestone: the CaO content was 54.06 wt.% as-received and 54.43 wt.% after washing. The
washing residue consisted mainly of Ca. The main impurities found in the washing residue
were Si, Mg, Al, and Fe. Removing the surface impurities through washing increased the
CaO content by 0.37 wt.%. For both A and B and the as-received and washed conditions,
the impurities in the samples were consistent with typical levels for commercial limestone
(see Table 2).

The surface particles, I.e., the washing residues, had a similar distribution of major
elements to the washed rock, i.e., dominated by Ca and with a relatively high LOI, consistent
with carbonate rock. It can thus be assumed that the surface particles originated from
within the quarry areas and not from outside the quarry.

The predictive multi-component chemical equilibrium model was used to obtain phase
diagrams of Ca compounds for the quicklime at kiln temperatures. The results are shown
in Figures 1–4.

The predicted Ca phases are in accordance with earlier work. Vola detected, by X-ray
diffraction, the main phases of calcium oxide (76–96 wt.%), Larnite (0–4 wt.%), Hatrurite
(0–2 wt.%), Dicalcium manganate (2–6 wt.%), and Tricalcium aluminate (0–2 wt.%) in laboratory
quicklime samples of different limestones cooled from 1050 ◦C and from 1150 ◦C [30]. In
addition, some samples were reported to contain Gehlenite, Srebrodolskite, Merwinite and
Anhydrite. Vola et al. also detected, by X-ray diffraction, the main calcium phases of calcium
oxide (56–100 wt.%), Larnite (0–30 wt.%), Hatrurite (0–6 wt.%), Dicalcium manganate (0–3 wt.%),
and Tricalcium aluminate (0–5 wt.%) in laboratory quicklime samples of different limestone
cooled from 1200 ◦C [30]. In addition, some samples were reported to contain Gehlenite,
Portlandite, and Brownmillerite.

Although the levels of impurities in the surface layers were high, clearly exceeding
that of the washed rock, the Ca content of the as-received limestone samples was only
marginally reduced (see Table 3). However, the results show that due to the interaction
between Ca and the impurities, mainly Si, Al, and Fe as described by Reactions (2)–(6),
and Mg and Mn by an unknown reaction mechanism, the CaO (s) content of the quicklime
was significantly reduced. To highlight this effect and promote comparison between the
as-received and washed samples, Figures 5 and 6 show the quality parameter of interest,
CaO (s), extracted from phase diagrams of Ca compounds, seen in Figures 1–4, as a function
of temperature. For all samples, CaO (s) reached a maximum at a temperature range of
1000–1100 ◦C. The minimum CaO (s) content was obtained near to the temperature of
Hatrurite formation, at 1300 ◦C. At temperatures exceeding 1300 ◦C, the phase diagrams,
seen in Figures 1–4, suggest that the equilibrium gradually shifted toward less Hatrurite
and increased amounts of Ca being dissolved into the melt and an increased level of CaO
(s). The stability of Hatrurite will depend on the global equilibrium, and it is reported to be
1799 ◦C in the CaO–SiO2 system used in the calculations [53].
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The results show that for Limestone A in an as-received condition, the CaO (s) content
varied between 88.2 and 90.7 wt.%, and in a washed condition, it was between 89.7 and
91.9 wt.%, with the surface impurities reducing CaO (s) by 1.2–1.5 wt.%. For Limestone B
in the as-received condition, CaO (s) varied between 90.3 and 92.2 wt.%, and in the washed
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condition, it was between 91.4 and 93.0 wt.%, with the surface impurities reducing CaO (s)
by 0.8–1.1 wt.%.

The results show that from a quicklime quality perspective, with respect to CaO (s),
limestone should be processed below a maximum temperature of 1300 ◦C, which likely
corresponds well to many current lime kiln design parameters. Above 1300 ◦C, the quality
is reduced due to Hatrurite formation. The results also show that even if the surface
impurities only marginally reduce the purity of the limestone, the impurities will reduce
CaO (s) in the quicklime by the formation of Ca compounds other than CaO (s), mainly
Bredigite, α′-C2S, C3A, and Hatrurite. For the investigated samples, the CaO (s) was
reduced by 0.8–1.5 wt.%, which is significant from a quicklime product quality perspective.
A limitation of the methods applied in this study is that all impurities were allowed to react
with the bulk limestone and reach equilibrium conditions. In actual kiln operations, all
reactions will not reach equilibrium, and since the quarry dust is located on the surface
of the limestone pebbles, some of it is expected to be released, e.g., due to pebble–pebble
abrasion in the kiln, and transported by the kiln gas flows.

The results could be assessed in relation to further investigations of the quarries, e.g.,
locating the main sources of quarry particulates with high concentrations of impurities,
e.g., dust, mud, or clay, and undertaking actions to reduce limestone feed product exposure
to impurities, e.g., by the encapsulation of equipment, or to remove adhered impurities,
e.g., by washing. This could be combined with a follow-up analysis of the quantities and
compositions of surface particulates for the purpose of verification.

5. Conclusions

Limestone quarry dust generally consists of fine particulates of limestone, mud, and
clay, high in impurities. If adhered to limestone lump surfaces, the bulk concentration of
impurities in limestone product is increased. The impacts of impurities adhered to the
surface of two different limestone samples were investigated. The elemental compositions
of the samples were determined through XRF and IR-C/S analysis. A predictive global
multi-component chemical equilibrium model was designed based on the elemental com-
position of the samples. The temperature range of 1000–1500 ◦C was used, corresponding
to the high-temperature zone of the lime kiln. From the global phase diagrams, phase
diagrams for Ca compounds were extracted. The Ca compound phase diagrams show
that the combined effects of impurities and kiln temperature on the main quicklime qual-
ity parameter, CaO (s), are significant. Since the price of a quicklime product is mainly
dependent on the CaO (s) content, a washing protocol has the potential to increase the
value of the product. The results create an opening for process optimization in the form of,
e.g., limestone washing procedures and temperature control in kilns based on limestone
compositional data. Based on the results, the following can be concluded:

• For both limestone samples, there was an accumulation of impurities on the surface.
This material could be separated through washing. The washed rock samples had
fewer impurities than the as-received samples and the washing residue. The composi-
tion of the washing residue indicated that the fine adhered materials likely originated
from within the quarry.

• Surface particles affected the quality of quicklime products; the developed predictive
multi-component chemical equilibrium model suggested a significant reduction in the
main quality parameter of the quicklime, CaO (s), of 0.8–1.5 wt.% for the investigated
materials, due mainly to the formation of Bredigite, α′-C2S, C3A, and Hatrurite.

• The amount of CaO (s) varied greatly with temperature. More impurities resulted in
more variation and a greater need for accurate temperature control of the kiln, where
keeping the temperature below approximately 1300 ◦C, that of Hatrurite formation,
allows for a product with higher CaO (s) content.
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