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Abstract: Mesozoic gabbro from the Stanovoy convergent margin and adakitic dacite lava from the
Pliocene–Quaternary Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–
sulfate (ITOASS) microinclusions along with abundant isolated iron–titanium minerals, sulfides and
halides of base and precious metals. Iron–titanium minerals include magnetite, ilmenite and rutile;
sulfides include chalcopyrite, pyrite and pyrrhotite; sulfates are represented by barite; and halides are
predominantly composed of copper and silver chlorides. Apatite in both gabbro and adakitic dacite
frequently contains elevated chlorine concentrations (up to 1.7 wt.%). Mineral thermobarometry
suggests that the ITOASS microinclusions and associated Fe-Ti minerals and sulfides crystallized
from subduction-related metal-rich melts in mid-crustal magmatic conduits at depths of 10 to 20 km
below the surface under almost neutral redox conditions (from the unit below to the unit above the
QFM buffer). The ITOASS microinclusions in gabbro and adakite from the Russian Far East provide
possible magmatic links to iron oxide–apatite (IOA) and iron oxide–copper–gold (IOCG) deposits
and offer valuable insights into the early magmatic (pre-metasomatic) evolution of the IOA and ICOG
mineralized systems in paleo-subduction- and collision-related geodynamic environments.

Keywords: Stanovoy convergent zone; Kamchatka arc; gabbro; adakite; iron–titanium oxide–apatite–
sulfide–sulfate (ITOASS) microinclusions; magmatic crystallization; IOA and IOCG deposits

1. Introduction

Iron oxide–apatite (IOA; “Kiruna-type”) and iron oxide–copper –gold (IOCG; “Chilean-
type”) deposits contain major resources of a wide range of critical (iron, copper, phospho-
rous, rare earths, uranium, etc.) and precious (gold, silver) metals [1–10] and are commonly
found in arc-related, orogenic and post-orogenic tectonic settings [1–3,7,11–20]. The forma-
tion of most current models involves multi-stage magmatic–hydrothermal processes and hy-
drous halogen-rich fluids, which scavenge metals from primary mantle-sourced, metal-rich
silicate melts [9,21–31]. Evaporitic basin-derived sources were also invoked for ore-forming
fluids in some IOCG-IOA systems; for example, the giant Olympic Dam Fe-REE-Cu-Au-U
district in Australia, Fe-Cu-Au-mineralized systems in Central Chile and magnetite–apatite
deposits along the Middle and Lower Yangtze River in China [6,32–38]. Several IOA
and IOCG deposits in orogenic and post-orogenic environments contain magnetite-rich
lavas, suggesting the involvement of Fe-rich melts in their formation [10,39–49]. Although
these melts occasionally carry a subduction-related geochemical signature, the presence
of metal-rich iron oxide–apatite (with carbonate, sulfide and sulfate) melts at convergent
margins is poorly documented and their possible sources and modes of origin are still
rather inadequately constrained [50–52].

Most studies tend to agree that IOA-IOCG and related mineral systems reflect a com-
plex interplay of crustal magmatic and hydrothermal processes [1–3,5,7,9,10,19,21]. The
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occurrence of magnetite lavas with andesitic cement along with cogenetic pyroclastics and
even magnetite volcanic bombs [39–41,43,46–48] and the frequent association of IOA-IOCG
deposits with plutonic and volcanic rocks of intermediate to felsic compositions (granodi-
orites and diorites, andesites and dacites) [4,5,10,11,15,20,21] indicate presence of some
magmatic component, at least during the early stages of the evolution of IOA, IOCG and
related mineral systems. Additional geochemical characteristics such as the Fe isotope
signature [29,45] and trace element composition [31] of early-generation magnetite, distri-
bution of F-rich and Cl-rich domains in apatite [28] and Os isotope geochemistry [40] also
support petrologic models suggesting that IOA-IOCG deposits can be rooted in evolving
lithospheric magmatic systems. On the other hand, evidence for participation of hydrother-
mal processes appears to be rather overwhelming and, on many occasions, overshadowing
presence of magmatic precursors for these extremely complex magmatic-hydrothermal
ore environments.

We report a new set of data generated during detailed Scanning Electron Microscopy–
Energy-Dispersive Analysis (SEM-EDA) study on two samples representing (1) the plutonic
root system of the Stanovoy Suture Zone (SSZ, Mesozoic Stanovoy convergent margin)
and (2) Late Cenozoic adakitic dacite lava from the Bakening behind-the-front volcanic
complex (BVC) in Kamchatka. The primary goal of this study includes documentation
of iron–titanium oxide–apatite–sulfide–sulfate microinclusion assemblages in arc-related
plutonic and volcanic rocks with inferences on their igneous origins and possible links to
IOCG and IOA deposits. We also hope to shed some new light on the formation of these
complicated ore systems and the potential role of magmatic processes in their evolution
and genesis.

2. Geologic Background

The Stanovoy Suture Zone is located on the northeastern part of the Central Asian
Orogenic Belt and is related to the northward subduction of the Mongol–Okhotsk ocean
floor beneath the southern edge of the Siberian Craton [53–55] (Figure 1). The Central Asian
Orogenic Belt is composed of various metamorphic, ophiolitic (both MORB and SSZ-types)
and arc-related terranes [56–58], some of which were either accreted or subducted along
the SSZ in Early Mesozoic [59]. The northward subduction of the Mongol–Okhotsk ocean
floor beneath the SSZ is marked, in particular, by mineralized ultramafic-mafic plutonic
complexes, which form a linear belt roughly parallel to the southern edge of the Siberian
continent [55,60–62]. One of the best developed and certainly most studied (including
drilling) intrusions in this magmatic belt is the Ildeus mafic–ultramafic complex, which
carries multi-stage polymetallic Ni-Co-Cu-Pt-Pd-Au-Ag mineralization [55,60–62].

The Ildeus mafic–ultramafic intrusion consists of an ultramafic core composed of
plagioclase-bearing dunite, harzburgite, lherzolite, wehrlite and websterite rimmed by
norite, pyroxene–amphibole gabbro and gabbro-anorthosite. Both mafic and ultramafic
rocks are intersected by numerous dikes of clinopyroxenite, websterite, granodiorite and
Ti-lamprophyre [55,60–62]. Some core-related ultramafic cumulates and pyroxenitic dikes
were locally subjected to several episodes of metasomatism, resulting in hydrated (talc
+ serpentine + chlorite ± carbonate) and alkali-rich (quartz + albite + potassic feldspar +
biotite + sericite ± muscovite) assemblages. Ultramafic rocks display exotic disseminated
sulfide-native metal-alloy mineralization [60–62] summarized in Table 1. Ildeus mafic-
ultramafic rocks follow a calc-alkaline differentiation trend in AFM diagrams and display
prominent high-field-strength element depletions coupled with large-ion lithophile and
light rare earth element enrichments characteristic of subduction zone magmas [61,62].
Granodiorites display very low Y concentrations (<10 ppm) and high Sr/Y ratios (50–400)
typical of adakites [63–65]. Lamprophyres exhibit high total alkalies, Ti and Nb content,
and are classified as arc-related high-Nb basalts [65,66].
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Figure 1. Location of Ildeus mafic–ultramafic arc root complex in the Stanovoy Suture Zone and
Bakening volcano in the Kamchatka arc. Map of the main geologic structures and elements of Eastern
Siberia and the Russian Far East is modified after [62]. Locations of IOA and IOCG deposits and
showings in the Russian Far East are also shown for comparative purposes.

The volcanic province of Kamchatka in the NW corner of the Pacific Ring of Fire
records protracted subduction of the Pacific plate beneath Eurasia and consists of three
sub-parallel volcanic chains populated by more than 300 active and dormant volcanoes.
Most active volcanoes are located in the Eastern Volcanic Front (EVF). The intra-arc rift of
the Central Kamchatka Depression, which includes the most productive Eurasian volcano
Kluchevskoi, separates the EVF from the Sredinny Range volcanic zone with four active
volcanoes [67,68]. The EVF, in turn, is characterized by a complex crustal architecture and in-
cludes several cross-arc volcanic chains, such as the Kozelsky–Avachinsky–Koryaksky–Aag–
Arik–Kupol–Bakening chain, located just north of the city of Petropavlovsk-Kamchatsky.
Bakening is a predominantly andesitic-to-dacitic stratocone built upon older orthopyroxene–
clinopyroxene–plagioclase–phyric basaltic andesites and andesites located approximately
110 km to the northwest of the Koryaksky volcano [68,69]. It is composed principally
of amphibole–plagioclase–phyric dacites with adakite-like geochemical characteristics
(Sr/Y = 30–60) surrounded by primitive olivine–pyroxene basaltic cinder cones and a sin-
gle mantle xenolith-bearing high-Nb basalt lava flow [68]. Although most volcanic rocks of
the Bakening center are consistent with derivation from a variably depleted mantle wedge
fluxed by slab fluids [69], the prominent adakitic signature in younger cone dacites and
the presence of high-Nb basalt indicates the involvement, however limited, of a slab melt
component [68]. A fresh sample of an amphibole–plagioclase–phyric dacite from the main
stratocone was selected for our detailed petrologic and SEM-EDA study.
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Table 1. Metal and mineral assemblages in the Ildeus mafic–ultramafic intrusion (Stanovoy Suture
Zone, Russian Far East).

Metal/Mineral
Assemblages/Stages of

Evolution
Native Metals Alloys Sulfides/Sulfosalts/

Halides/Sulfates/Tellurides Associated Minerals

Early-stage magmatic W, Pt, Zn, Bi, Pb, Au

Fe-W, Ti-Co-W, Fe-Pt,
Cu-Pt, Ni-Rh-Pt, Pd-Pt,
Ni-Cu, Cu-Zn, Cu-Ag,
Sn-Zn-Cu, Zn-Cu-Ag,

Cu-Ag, Cu-Ag-Au,
Cu-Ag-Au-Zn-Ni

Pn, Co-Pn, Po, Mlr, Ccp, Bn,
Cu-Ag-S, Fe-Ni-Co-Zn-S, Ag2S,

Brt, Pb-Sn-Cl, AgCl, AgI

Ol, Mg-Opx (1), Cpx,
Mg-Fe-Cr-Al Spl, Mag,

Ilm, Ttn, Rt, Cl-Ap,

Late-stage magmatic Au
Cu-Ag, Pb-Sb,

Ni-Ag-Zn-Cu-Au,
Zn-Cu-Au, Cu-Sn

Pn, Po, Ni-Po, Bn, Mlr, Co-Ni-Sp,
Co-Ni-Zn-S, Ag2S, Cu-Ag-Pb-S,

Ni-Gn, Sp, Brt

Fe-Opx (2), Amp (3), Bt, Pl,
Mag, Ilm, Ttn, Ap, Bdy,

Zrn, Aln, Qz, Cer, Aln, Dol

Metasomatic/Hydrothermal Ag, Zn, Ni, Au Cu-Ag-Au, Ag-Au, Cu-Ag,
Cu-Zn

Pn, Ccp, Cct, Dg, Hzl, Py, Brt,
Cst, Cu-Ag-S, Ag2S, Gn, Cu-Gn,

Sb-Pb-Cl, Ag-Cl-S, Cu-Ag-Cl,
AgCl, Bi-Cl, Cu-Sb-Ag-Se-S,

Cu-Pb-Fe-As-S, Pb-As-S,
Cu-Pb-As-S, Ag2S,

Fe-Cu-Zn-Pb-S, Ni-Zn-Fe-Cu-S,
Cu-Ag-Pb-Se-Te,

Tlc, Chl, Srp, Tr, Cb, Ep,
Ab, Or, Ba-Or, Qz, Mag, Rt,

Ttn, Aln, Mnz, Xtm

Table includes data from [60–62]. (1) Mg-rich orthopyroxene (enstatite/bronzite). (2) Fe-rich orthopyroxene
(hypersthene). (3) Al-rich (5–12 wt.% Al2O3) pargasitic hornblende [69]. Mineral abbreviations: Ol—olivine,
Opx—orthopyroxene, Cpx—clinopyroxene, Pl—plagioclase, Amp—amphibole, Tr—tremolite, Bt—biotite,
Ab—albite, Or—orthoclase, Ba-Or—Ba-rich orthoclase, Ep—epidote, Spl—spinel, Mag—magnetite, Ilm—ilmenite,
Rt—rutile, Ttn—titanite, Ap—apatite, Cl-Ap—Cl-rich apatite, Bdy—baddeleyite, Zrn—zircon, Aln—allanite,
Mnz—monazite, Xtm—xenotime, Cb—carbonates, Cer—cerussite, Dol—dolomite, Pn—pentlandite, Co-Pn—Co-
rich pentlandite, Po—pyrrhotite, Ni-Po—Ni-bearing pyrrhotite, Py—pyrite, Ccp—chalcopyrite, Cct—chalcocite,
Bn—bornite, Mlr—millerite, Gn—galena, Cu-Gn—Cu-bearing galena, Ni-Gn—Ni-bearing galena, Sp—sphalerite,
Co-Ni-Sp—Co- and Ni-bearing sphalerite, Hzl—heazlewoodite, Dg—digenite, Cst—cassiterite.

3. Analytical Methods

Petrographic studies of gabbro from the Ildeus mafic–ultramafic complex and adakitic
dacite from the Bakening volcano in Kamchatka were carried out using an Imager A2m
petrographic microscope (Carl Zeiss, Jena, Germany).

A comprehensive study of metal and mineral microinclusions in rock-forming miner-
als in gabbro and adakite was completed using a VEGA 3 LMH TESCAN (TESCAN, Brno,
Czech Republic) scanning electron microscope (SEM) with the Oxford X-Max 80 Gb energy-
dispersive spectrometer (EDS) (Oxford Instruments, Abingdon, United Kingdom) with the
following operating conditions: accelerating voltage of 20 kV, beam current of 530 nA and
beam diameter of 0.2 µm. Reference samples including 37 natural and synthetic oxides,
minerals and pure native metals (Oxford/108699 no. 6067) were used as standards. Co-
standard Oxford Instruments/143100 no. 9864-15 was used for daily calibration of the SEM
instrument. The accuracy of the EDS analyses was estimated to be ± 0.1 wt.%. Special sam-
ple preparation protocols reported in detail in [70] and designed to prevent contamination
were utilized to expose metallic phases in situ and determine their relationships with host
silicate and oxide phases as well as associated rock-forming and accessory minerals. Petro-
graphic and SEM studies were completed at the Khabarovsk Innovative Analytical Center
(KhIAC) of the Institute of Tectonics and Geophysics, Khabarovsk, Russian Federation.

Microprobe analyses of phenocrysts in adakitic dacite from the Bakening volcano in
Kamchatka were carried out using the JEOL-8600 Superprobe at the University of Alabama
(Tuscaloosa, AL, USA). Operating conditions were 15 kV accelerating voltage, 20 nA sample
current, 40 s maximum counting time and beam diameters of 20 microns for plagioclase
and 10 microns for all other mineral phases. A set of natural and synthetic standards was
used and the data were processed using the corrections procedure of [71] modified by [72].
Additional details for microprobe procedures used in this study are summarized in [73].
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4. Results

Both marginal gabbro from the Triassic Ildeus plutonic root complex in the Stanovoy
Suture Zone and adakitic dacite from the Pliocene–Pleistocene Bakening volcano in Kam-
chatka carry iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions in
association with a wide range of precious metal minerals and alloys. These mineral as-
semblages occur in igneous rocks with different textural, mineralogical and geochemical
characteristics, which were formed and emplaced within the broad context of a Mesozoic
(Ildeus) and Late Cenozoic (Bakening) subduction zone environment.

4.1. Petrology of Gabbro and Adakite

Marginal gabbro in the Ildeus mafic–ultramafic plutonic complex is characterized by a
hypidiomorphic–granular texture (Figure 2a) composed of orthopyroxene, clinopyroxene
and plagioclase with minor amphibole. Petrographic observations from this marginal
gabbro as well as other mafic–ultramafic rocks throughout the Ildeus intrusion [55,62]
suggest that Al-rich (SEM-EDA determinations) amphibole is always clearly interstitial
(intercumulus, late-stage magmatic; cf. Figure 2c–e in [60]) and never a pyroxene replace-
ment (metasomatic) phase. In fact, all rock-forming minerals in the Ildeus marginal gabbro
are quite fresh and do not carry any signs of hydrothermal alteration [62]. Some parts of
marginal gabbro display a poikilitic texture with amphibole forming euhedral to subhedral
inclusions in calcic plagioclase (Figure 2d in [55]), attesting to the magmatic nature of both
silicate minerals. Accessory minerals include abundant apatite, magnetite, ilmenite and
sulfide with subordinate zircon, rutile and barite. Sulfides are represented by pentlandite,
pyrrhotite, chalcopyrite, Ni-bearing pyrite and pyrite. In some cases, Ni-bearing pyrite
appears to form pseudomorphs replacing corroded grains of primary pentlandite. Lo-
cally, marginal gabbro from the Ildeus mafic–ultramafic complex is cut by thin (several
millimeters to centimeters across) veins of felsic plagioclase-rich material. Geochemical
features, especially high Sr/Y (>50) and La/Yb (>30), identify these veins and veinlets
as adakite [62]. Adakite veins contain abundant elongated euhedral apatite crystals and
minor zircon (Figure 2b).

Adakitic dacite from the Bakening volcano contains euhedral phenocrysts and mi-
crophenocrysts of unzoned amphibole, zoned plagioclase and subordinate interstitial
quartz and magmatic biotite (Figure 2c,d). Some amphibole grains appear to be corroded
and partially abraded (Figure 2c) and most of them are characterized by well-developed
opacitic (reaction) rims (Figure 2d), suggesting at least some degree of chemical disequi-
libria with the surrounding groundmass due to the degassing and slight temperature
variations in the ambient melt [74–77]. The groundmass in Bakening adakite displays a
classic trachytic texture and is composed of elongated euhedral plagioclase laths, equant Ti-
magnetite, quartz, rare ilmenite and potassic feldspar crystals along with varying amounts
of silica-rich glass (Figure 2c,d).

Amphibole phenocryst compositions are characterized by relatively high TiO2 con-
centrations (1.11–2.66 wt.%; Table 2), high Al2O3 content (10.46–12.95 wt.%; Table 2),
Mg-numbers of 62.2–71.3 and variable Cr2O3 content (0.01–0.20 wt.%; Table 2). Plagioclase
compositions vary from An45 to An94 and all plagioclase phenocrysts contain some iron
and, in many cases, very minor but detectable amounts of magnesium and manganese
(Table 2). Magnetite contains variable but generally high TiO2 and V2O5 (up to 15 wt.% and
2 wt.%, respectively; Table 2) and is classified as V-bearing titano-magnetite characteristic
of subduction-related magmas [78,79]. Ilmenite microphenocrysts and discrete equant
grains in the groundmass can be sub-divided into two principal compositional types:
(1) relatively MnO-rich and MgO-poor (analysis 12 in Table 2) and (2) relatively MgO-rich
(up to 3–4 wt.% MgO) and MnO-poor (analysis 11 in Table 2). While the first type of ilmenite
is quite common in evolved island-arc volcanic rocks such as dacites and rhyolites [78–80],
the MgO-rich variety is rare and is possibly of a deeper megacrystic (high-pressure phase)
or even xenocrystic origin. The elevated geikeilite content of dacitic ilmenites may also
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reflect the relatively low oxygen fugacity of magma differentiation as suggested by some
experimental data [81].
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(a,b) and adakitic dacite from the Bakening complex (c,d). (a) Hypidiomorphic–granular texture of
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nicols). (c) Plagioclase-dominated porphyritic texture of the Bakening adakitic dacite (crossed
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Table 2. Representative phenocryst compositions (wt.%) in the Bakening volcano adakite.
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MgO 14.39 14.09 14.23 12.33 13.68 14.03 0.01 0.05 3.49 2.90 3.47 1.80
CaO 11.78 11.40 11.11 11.81 10.98 12.09 14.83 10.97 NA NA NA NA

Na2O 2.01 2.26 2.10 1.87 2.57 2.32 2.86 4.84 NA NA NA NA
K2O 0.28 0.25 0.29 0.22 0.24 0.27 0.05 0.13 NA NA NA NA
Total 97.56 97.33 97.07 98.14 97.27 100.34 99.05 99.01 94.02 96.95 97.65 95.15
Mg# 71.3 69.8 69.5 62.2 69.2 68.8 - - - - - -
An - - - - - - 73.9 55.2 - - - -

P (kb) * 4.8 5.1 5.0 4.8 5.8 5.5 - - - - - -

Note. Mg# = Mg/(Mg + Fe). * —Ti-magnetite analysis in Mg-number: Mg/(Mg + Fe) (at.%). NA—not analyzed.
Amp—amphibole, Cpx—clinopyroxene, Pl—plagioclase. * P (kbar)—pressure calculated using the empirical
Al-in-hornblende geobarometer (Equation (5)) from [77].

Compositions of phenocrystic amphibole in Bakening adakitic dacites range from
pargasite through pargasitic and edenitic hornblende to edenite (Figure 3a) chemically
similar to amphibole phenocrysts from the Shiveluch volcano adakites in Central Kam-
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chatka [82,83]. Plagioclase compositions vary from andesine to almost pure anorthite
(Figure 3b). Anorthite megacrysts, frequently in association with Mg-olivine, are found in
high-alumina basalts from the Japan [84], Izu–Mariana [85] and Kurile [86] arcs, but are
extremely rare in more evolved dacitic-to-rhyolitic magmas [80]. Crystallization pressure
for amphibole phenocrysts in Bakening adakite calculated using a refined Al-in-amphibole
geobarometer (Equation (5) in [77]) ranges from 4.8 to 5.8 kbar, averaging at around 5 kbar
(Table 1). Estimates of oxygen fugacity for the Bakening volcano lavas using Fe-Ti-Mn-Mg
oxybarometers developed in [87,88] yielded values of 1–2 units above the quartz–fayalite–
magnetite (QFM) buffer. This is similar to the redox conditions (0.5–2.5 units above QFM)
typical of modern Kamchatka magmas in particular [89–91] and worldwide arc melts
in general [92,93].
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Figure 3. Chemical composition of amphibole (a) and plagioclase (b) phenocrysts in adakitic dacite
from the Bakening volcano (Kamchatka). Fields of amphibole phenocryst compositions in the
Shiveluch (Central Kamchatka Depression) and Valovayam (Northern Kamchatka) adakites are based
on data from [65,82,83].

4.2. ITOASS Microinclusions in the Ildeus Arc Root Complex (Stanovoy Suture Zone)

Marginal gabbro from the hole ILN-009 in the Ildeus arc root complex contains several
quasi-spherical (droplet-like ?) and partially resorbed (multiple textural embayments and
locally uneven, undulating contacts with magmatic gabbroic matrix) magmatic segregations
typically ranging in size from 0.25 to 5 mm, which are composed of various iron–titanium
oxide, apatite, sulfide and sulfate minerals (ITOASS microinclusions; Figure 4). Some well-
defined, quasi-spherical segregations have sharp contacts with host late-stage magmatic
amphibole (Figure 4a) and contain microinclusions of chalcopyrite along with smaller grains
of magnetite, apatite, pyrite and amphibole. Based on the SEM-EDS results, amphiboles
inside and outside the ITOASS segregations have slightly different chemical compositions.
Primarily, amphibole in the segregations contains elevated Al content (~5–6 wt.%). In
comparison, all secondary amphiboles (actinolite, tremolite) with clear replacement textures
in the Ildeus complex are characterized by low Al (<2 wt.%) content [55,60–62]. An isolated
microinclusion of ilmenite was also observed immediately adjacent to the larger inclusion
clusters (Figure 4a), although it is unclear from the textural data if this minute ilmenite
could, at some point, have been considered an integral part of the larger ITOASS segregation
in Figure 4a.
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Figure 4. BSE images of quasi-spherical segregations of microinclusions in marginal gabbro from the
Ildeus arc root complex. (a) Partially deformed and compacted segregation of magnetite, apatite, chal-
copyrite, pyrite and barite microinclusions. (b) Spherical-type mineral segregation composed of rutile,
apatite, orthopyroxene, pyrite and barite. Opx—orthopyroxene, Amp—amphibole, Qz—quartz,
Mag—magnetite, Ilm—ilmenite, Rt—rutile, Ap—apatite, Ccp—chalcopyrite, Py—pyrite, Brt—barite.
Original SEM-EDS spectra used for identification of the indexed mineral phases in these BSE images
are summarized in Figure S1 (Supplementary Materials).

Other spherical-type microinclusions have slightly more diffuse boundaries with the
host gabbroic rock (Figure 4b) and are surrounded by various minerals, including amphi-
bole, plagioclase, apatite, quartz and pyrite. These segregations typically include magnetite,
rutile, apatite, pyrite and barite, but may also contain minute crystals of orthopyroxene and
amphibole (Figure 4b). Similar minerals, especially magnetite, ilmenite, rutile, apatite and
pyrite, are disseminated in the pyroxene–amphibole–plagioclase–quartz gabbroic matrix
and may possibly represent disintegrated ITOASS-type microinclusion clusters.

Other types of ITOASS microinclusions in marginal gabbro from ILN-009 are com-
posed of the following mineral assemblages: ilmenite–rutile (Figure 5a), rutile–chalcopyrite–
pyrrhotite–pyrite–barite (Figure 5b) and magnetite–chalcopyrite–barite (Figure 5c). These
ITOASS assemblages are also found in the Ildeus marginal gabbro together with microin-
clusions of nickeliferous pyrite (Figure 5d), Cu–Ag–chloride (Figure 5e) and cupriferous
silver (Figure 5f).

4.3. ITOASS Microinclusions in the Bakening Volcano (Kamchatka)

Adakitic dacite lava from the Bakening volcano in central Kamchatka contains several
inclusions of ilmenite (Figure 6a) and magnetite (Figure 6b) hosted in siliceous glassy
groundmass. Both larger ilmenite and magnetite oikocrysts contain euhedral to subhe-
dral oval-shaped apatite microinclusions, which range in size from several microns to
10–15 microns across (Figure 6a,b). Some apatite microinclusions in ilmenite contain up to
0.7 wt.% of chlorine as determined by the SEM-EDA (Figure 6a). Both ilmenite–apatite and
magnetite–apatite inclusions in the Bakening adakitic dacite are surrounded by numerous
micron-sized magnetite crystallites included in silicic glass (Figure 6a,b).

Ilmenite–magnetite–apatite intergrowths are closely spatially and texturally associated
with grains of magnetite and various sulfides (Figure 7). Euhedral to anhedral magnetite
crystals ranging in size from 100 to 500 microns are included in amphibole (Figure 7a),
primary magmatic biotite (Figure 7b) and K-Na feldspar (Figure 7c). In one particular
case, euhedral magnetite contains a minute inclusion of silver chloride and is hosted
by amphibole and glassy aphyric groundmass (Figure 7d). In another case, a euhedral
magnetite crystal 50 microns across is included in Fe-K-rich glass (Figure 7e), which is also
enriched in manganese (0.48 wt.% Mn; SEM-EDA). Another textural type of magnetite in
the Bakening adakitic dacite is shown in Figure 7f, where numerous small (about one or
two microns in size) euhedral angular-to-roundish magnetite grains are tightly packed
into an ovoid-shaped crystalline form along the contact between amphibole and quartz
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crystals. This magnetite texture very closely resembles framboidal magnetite aggregations
in some sedimentary rocks, where the formation of framboids is believed to be a reflection
of changes in the overall redox conditions of mineralization [94].
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Figure 5. BSE images of microinclusions in marginal gabbro ILN-009 from the Ildeus arc root
complex. (a) Ilmenite–rutile microinclusion in amphibole. (b) Rutile–chalcopyrite–pyrrhotite–
pyrite–barite microinclusions in amphibole. (c) Magnetite–chalcopyrite–barite microinclusion in
quartz–plagioclase–amphibole matrix. (d) Euhedral Ni-bearing pyrite microinclusion in amphibole.
(e) Microinclusion of Cu-Ag-Cl halide in amphibole. (f) Microinclusion of cupriferous silver in quartz.
Mineral abbreviations: Amp—amphibole, Qz—quartz, Ilm—ilmenite, Rt—rutile, Mag—magnetite,
Ccp—chalcopyrite, Py—pyrite, Po—pyrrhotite, Brt—barite.
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Figure 6. BSE images of iron oxide–apatite inclusions in adakite lava from the Bakening vol-
cano (Kanchatka). (a) Ilmenite grain with microinclusions of chlorapatite in association with
magnetite in silica-rich glass. (b) Magnetite grain with apatite microinclusions in silica-rich glass.
Ilm—ilmenite, Mag—magnetite, Cl-Ap—chlorine-bearing (0.7 wt.% of chlorine based on the SEM-
EDS analysis) apatite.

Isolated sulfide grains in adakitic dacite lava from the Bakening volcano are less
common in comparison with Fe-Ti oxides and are represented by pyrite and acanthite
(Figure 8). Pyrite forms equant subhedral to anhedral grains 1 to 5 µm across which
are included in quartz–plagioclase groundmass (Figure 8a) or silica-rich residual glass
(Figure 8b). Silver sulfide (acanthite Ag2S) occurs as an anhedral, possibly partially resorbed
inclusion in quartz (Figure 8c). In addition, a single anhedral grain of barite approximately
3 microns across is included in quartz microphenocryst (Figure 8d) in the adakitic dacite
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lava from the Bakening volcano. Besides pyrite, acanthite and barite, amphibole and
plagioclase phenocrysts and groundmass phases in the adakitic lava also contain spongy-
like grains and aggregates of non-stoichiometric silver chloride (Figure 8e,f). We have
previously shown that the non-stoichiometric ratio of Ag to Cl in the halide microinclusions
in magmatic rocks is due to their exposure to light during sample preparation and to
electron beams during SEM-EDA studies [61].
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Figure 7. BSE images of magnetite microinclusions in adakitic dacite from the Bakening volcano.
(a–c) Magnetite inclusions in amphibole (a), biotite (b) and K-Na feldspar (c). (d) Magnetite inclusion
in amphibole and glassy groundmass. (e) Magnetite inclusion in Fe-K-rich glass. (f) Framboidal-type
magnetite aggregate at the contact between amphibole and quartz. Amp—amphibole, Bt—biotite,
K-Na Fsp—K-Na feldspar, Qz—quartz, Mag—magnetite.
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Figure 8. BSE images of sulfide, sulfate and halide microinclusions in adakitic dacite from the
Bakening volcano. (a) Euhedral pyrite inclusion in the quartz–plagioclase groundmass. (b) Subhedral
pyrite inclusion in silica-rich groundmass glass. (c) Anhedral acanthite (Ag2S) inclusion in quartz.
(d) Barite inclusion in quartz microphenocryst. (e) Anhedral inclusion of spongy silver chloride in
amphibole phenocryst. (f) Anhedral aggregate of spongy silver chloride in plagioclase phenocryst.
Amp—amphibole, Pl—plagioclase, Qz—quartz, Py—pyrite, Aca—acanthite, Brt—barite.
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5. Discussion

Triassic marginal gabbro from the subduction-related mafic–ultramafic plumbing
system in the Mesozoic Stanovoy convergent margin and Pliocene–Pleistocene adakites
from the Bakening volcano in Kamchatka contain multiple microinclusions of iron–titanium
oxide–apatite–sulfide–sulfate (ITOASS) composition. The iron–titanium oxides in the
ITOASS are magnetite, ilmenite and rutile, the sulfides are chalcopyrite, pyrite and pyrrhotite,
and the sulfate is barite.

ITOASS-type microinclusions in marginal gabbro from the Ildeus mafic–ultramafic arc
root complex are characterized by the following mineral assemblages: (1) magnetite–apatite–
chalcopyrite–pyrite–pyrrhotite–amphibole–barite; (2) magnetite–apatite–rutile–orthopyroxene–
pyrite–barite; (3) rutile–chalcopyrite–pyrrhotite–pyrite–barite; (4) magnetite–chalcopyrite–
barite; and (5) ilmenite–rutile (Figures 4 and 5). Although no halogens were detected
by SEM-EDA in apatite from the marginal gabbro, apatite in two-pyroxene gabbro, norite,
pyroxenite and websterite from the Ildeus complex contained elevated chlorine and fluorine
concentrations [55]. The marginal gabbro sample analyzed in this study also contained
a single inclusion of Cu–Ag–chloride in amphibole (Figure 5e). Based on the textural
and compositional features of ITOASS-bearing magmatic rocks summarized in [55,60–62]
along with the occurrence of ITOASS microinclusions in unaltered magmatic rocks, the
quasi-spherical shape and sharp contacts with the surrounding magmatic matrix, we infer
that the assemblage of magnetite + apatite + ilmenite + chalcopyrite + pyrrhotite + barite I
(inclusions inside the ITOASS segregations), along with pentlandite that occurs in some
samples containing ITOASS-type associations, is of primary magmatic origin and crystal-
lized from primitive metal-rich subduction-related melt under slightly reduced to slightly
oxidized (−1 to +1 ∆QFM mineral buffer) crustal conditions [55,60–62]. It is worth noting
here that barite is stable under a wide range of thermodynamic conditions and can be
hosted by sedimentary, metamorphic and igneous rocks [95]. Based on the same textural
and compositional criteria, mineral association of amphibole + quartz + pyrite + barite
II (rims on ITOASS microinclusions and isolated anhedral grains in mafic and ultramafic
intrusive rocks) are considered to represent the late magmatic stage in the evolution of the
Ildeus magmatic plumbing system [61,62]. It is important to emphasize here that amphibole
inside the ITOASS-type clusters appears to contain more Al in comparison with amphibole
that hosts the iron–titanium oxide–apatite–sulfide–sulfate microinclusions. This can be
interpreted as the reflection of protracted magmatic differentiation history of primary
melt that leads to the formation of ITOASS mineral assemblages in the Ildeus arc root
mafic–ultramafic complex, as well as similar magmatic hydrothermal systems [62,96,97].
Petrologic conditions of this differentiation inferred from the available mineral composi-
tions and associations, along with the ubiquitous presence of chalcophile metal chlorides
and the Cl-rich nature of apatite in the Ildeus arc root complex, suggest that the formation of
ITOASS-type microinclusions most probably took place in mid-crustal magmatic plumbing
conduits in the presence of a sulfur- and chlorine-rich fluid phase [55,60–62]. It was pro-
posed previously that “IOA deposits typically evolve from subduction-related water-rich
and chlorine-rich intermediate magmas under a wide temperature range, almost spanning
the whole igneous-hydrothermal spectrum (~1000 to 300 ◦C)” [19]. Several other studies
of well-exposed IOA and IOCG systems also emphasize the importance of chlorine-rich
fluids for scavenging and transporting ore metals during the differentiation of primary
metal-rich melt and subsequent construction of the upper crustal mineralized magmatic–
hydrothermal systems [22–26,30,98–100]. Although the sources of these fluids vary from
magmatic mantle- and crustal-derived to basinal evaporitic and meteoric [6,19,22,24], the
involvement of sulfur- and chlorine-bearing fluids in the magmatic crystallization of the
ITOASS-type microinclusions during development of the Ildeus arc root plutonic com-
plex is well documented and supported by the ubiquitous presence of Cl-rich apatite and
copper–silver–lead–antimony–bismuth chlorides in mafic and ultramafic rocks from the
Ildeus intrusion [55,60–62].
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Iron–titanium oxide–apatite–sulfide–sulfate (ITOASS-type) microinclusions in the
adakitic lava from the Bakening volcano are represented by ilmenite–apatite and magnetite–
apatite intergrowths (Figure 6) along with isolated individual magnetite and rare ilmenite
crystals (Figure 7) in association with pyrite, acanthite and abundant non-stoichiometric
silver chloride (Figure 8). Most iron–titanium oxides in the Bakening adakite contain
variable V2O5 contents (up to 2.8 wt.%) [68,78], potentially indicating substantial vari-
ations in redox conditions during the crystallization of the parental subduction-related
magmas [101,102]. Apatite microinclusions in ilmenite imbedded in silicic glass from the
Bakening adakite (Figure 6a) contain up to 0.7 wt.% of chlorine, suggesting the involvement
of Cl-rich fluids in magma genesis and evolution beneath the Bakening volcanic center
in the Kamchatka volcanic arc. This is consistent with the ubiquitous presence of silver
and silver–copper chloride microinclusions in the Bakening adakitic dacite (Figure 8e,f).
Chlorine-rich fluids are integral in promoting the differentiation and evolution of volcanic
arc magmas [103–107] and facilitating the transport of ore metals such as copper and gold
in crust–mantle systems above active subduction zones [108–110]. High concentrations
of chlorine and sulfur have been measured directly in melt inclusions from calc-alkaline
lavas [111], as well as in thermal and mineral waters discharged from the volcanic edifices
between active volcanoes in Kamchatka [112], suggesting the presence of chlorine-rich
fluid in both the mantle wedge and island-arc crust beneath the Kamchatkan volcanic
province [65,68,70,113–115].

Ilmenite–apatite and magnetite–apatite microinclusions appear to be in textural equi-
librium with residual silicic glass in the adakitic dacite from the Bakening volcano (Figure 6),
suggesting crystallization from evolved arc magma within a mid-crustal magma chamber
beneath the southern segment of Kamchatka arc. Previous geophysical studies suggested
the presence of such magmatic conduits beneath several volcanoes in the vicinity of the
Bakening volcanic center, specifically Avachinsky and Koryaksky, located within 100 km
to the southeast from the BVC [116,117]. Pressure estimates for the depth of fractionation
of parental adakite magma beneath the BVC based on an Al-in-hornblende geobarometer
(Table 2) are within 12–17 km, which is consistent with geophysical data from modern
Kamchatka volcanoes [117–120] and petrologic constraints from arc-related plutonic com-
plexes exposed at the surface [121–123]. Apatite is a common accessory mineral in most
hydrous calc-alkaline magmas [124–126] and, together with magnetite, ilmenite and rutile,
is stable under a range of pressures, temperatures and oxygen fugacity values typical of the
moderately thick (30–40 km) island-arc crust [127–129]. Experimental and geochemical data
suggest that sulfur partitioning between apatite and intermediate to felsic melts in typical
crustal volcanic conduits is controlled by decreasing the temperature of crystallization
and increasing oxygen fugacity and not so much by the original sulfur enrichment of the
parental mantle-derived melt and presence in the fractionating melt of igneous sulfate
minerals such as anhydrite [130]. Since no sulfur was detected in either apatite grains from
the ITOASS microinclusions or individual apatite crystals in gabbro and adakite from the
Russian Far East, we conclude that the decrease in oxygen fugacity during their formation
in the crust was negligible and almost all sulfur was partitioned into early magmatic sul-
fides (pentlandite, pyrrhotite and chalcopyrite in the case of the Ildeus gabbro [55,61,62]
and pyrite and acanthite in the case of the Bakening adakite, Figure 8a-c) and late magmatic
barite in the case of both Ildeus gabbro (Figure 5b,c) and Bakening adakite (Figure 8d).
This interpretation is consistent with the results of Fe-Ti oxide oxybarometry described in
Section 4.1 of the Results. Volatile element budgets of apatites in the ITOASS inclusions in
both gabbro and adakite from the Russian Far East were controlled by high-temperature
hydrous chlorine-rich fluids that assisted differentiation in mid-crustal magmatic con-
duits and promoted the partitioning of iron, copper, gold, silver and associated critical
metals into the later-stage exsolved mineralizing fluids associated with IOA and IOCG
systems [7–10,19,25,29,50–52]. Several iron oxide–apatite deposits are known within the im-
mediate vicinity of the Ildeus intrusion [131] and multiple IOCG mineralized systems were
reported from the Aldan shield region north of the SSZ [132] (Figure 1). The presence of
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ilmenite–Cl–apatite and magnetite–apatite microinclusions in differentiated siliceous glass
in the Bakening lava provides direct evidence for the crystallization of iron oxide–apatite
assemblage from evolving adakite melt in a S-Cl-rich-fluid-saturated magmatic conduit
beneath an active arc volcano in Kamchatka. If these ITOASS segregations represent actual
melts, then we argue that these could give rise to IOA-IOCG systems.

In several cases, magnetite–apatite intrusions and associated IOA deposits are lo-
cated in the vicinity of each other (e.g., the Ildeus intrusion is surrounded by multiple
IOA metal showings; Figure 1) and even interlayered [11,12,133–135], suggesting close
spatial, temporal and, perhaps, even genetic link between subduction-related magmas
and Kiruna-type mineralization [5,9,20,49,135–138]. Several IOA deposits and showings
are known in the vicinity of the Ildeus intrusion in the SSZ and IOCG-type mineral-
ization occurring NW of the Bakening volcano in the Sredinny Range of Kamchatka
(Figure 1). Similar geologic, petrologic and metallogenic relationships have been docu-
mented in magmatic terranes hosting IOCG deposits in the Andes of South America and
elsewhere [1,3,10,13,15,20,139]. Arc-related magmatic roots of IOCG deposits are further
emphasized by the frequent occurrence of magnetite lava (similar to the “classic” El Laco
locality in northern Chile) in association with magnetite, hematite, chalcopyrite, bornite
and gold mineralization [20,39–41,43,47–50], as well as the igneous geochemistry of early
generations of magnetite and pyrite in such IOA and IOCG deposits as Carmen, Fresia, El
Romeral, El Laco, Los Colorados, Cerro Negro Norte and many others [4,8,18–20,140–144].
We propose that the iron–titanium oxide–apatite–sulfide–sulfate (ITOASS-type) microin-
clusions in gabbro and adakite from the Russian Far East provide some potential links to
the early magmatic stages of formation of IOA and IOCG deposits and offer new insights
into the magmatic–hydrothermal evolution of subduction-related mineralized systems in
orogenic terranes.

6. Conclusions

1. Mesozoic gabbro from the Stanovoy active margin and Quaternary adakitic dacite lava
from the Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–
sulfate (ITOASS) microinclusions. Iron–titanium oxides are composed of magnetite,
ilmenite and rutile; sulfides are composed of chalcopyrite, pyrite and pyrrhotite; and
sulfates are represented by barite.

2. Textural and compositional data suggest that ITOASS assemblages crystalized from
metal-rich, mantle-derived (Ildeus) or slab-derived (Bakening) fractionating magma
at mid-crustal levels (15–20 km below the surface) under slightly reduced to slightly
oxidized conditions (from one unit below to one unit above the QFM mineral buffer).

3. Magmatic crystallization and metal mobilization within the ITOASS microinclusions
in Stanovoy gabbro and Kamchatka adakite were assisted by S-Cl-rich fluids, as
indicated by the presence of Cu–Ag–chlorides in plutonic amphibole and volcanic
phenocrysts in adakite lava and the elevated chlorine content of apatite in both gabbro
and adakite.

4. Although ITOASS microinclusions in the Stanovoy intrusion were possibly affected
by hydrothermal processes during later collision and post-collision tectonic events,
primary igneous ITOASS assemblages in the Russian Far East most probably represent
the early magmatic roots of some mineralized IOA and IOCG systems.
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