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Abstract: Lithium is an important mineral resource and a critical element in the production of lithium
batteries, which are currently in high demand. Oilfield brine has significant value as a raw material for
lithium extraction. However, it is often considered a byproduct of oil and gas production and is either
abandoned or reinjected underground. Exploration and development of oilfield brines can enhance
the economic benefits of oilfields and avoid wasting resources. Current methods for predicting brine
distribution rely on geological genetic analysis, which results in low accuracy and reliability. To
address this issue, we propose a workflow for lithium brine prediction that uses seismic and logging
data. We introduced waveform clustering control and used the mapping relationship between seismic
waveforms and well-logging curves to predict high-quality reservoirs based on the electrical and
physical properties of lithium brine reservoirs. In this workflow, the seismic waveforms were first
clustered using singular value decomposition. The sample sets of well-logging properties were
established for the target location. The target properties were divided into high- and low-frequency
components and predicted separately. The predicted results of the high-quality reservoirs in the study
area were verified using elemental content test results to demonstrate the effectiveness of the method.
Our study indicates that well-logging property prediction constrained by waveform clustering can
predict lithium brines in a carbonate reservoir.

Keywords: oilfield brine; waveform clustering; inversion; carbonate

1. Introduction

Lithium has attracted much attention in the 21st century as a new energy source or
strategic resource (He et al., 2020) [1] and has been listed as a critical or near-critical element
in several recent studies (Bradley et al., 2016; Cabello, 2021; He et al., 2020) [1–3]. Its
significance is further magnified considering advancements in lithium battery technology
and its utilization in controlled nuclear fusion. The metal Li has been identified as a
promising anode material for next-generation Li-based batteries (Liu et al., 2022) [4]. A
sustained annual growth rate of 7%–11% in the global demand for lithium resources has
been recorded in recent years (Gil-Alana and Monge, 2019) [5]. Lithium resources are
predominantly found in brine and granitic pegmatite deposits (Kesler et al., 2012) [6],
accounting for 87% of the global lithium resources (Christmann et al., 2015; Gil-Alana and
Monge, 2019) [5,7]. China has abundant lithium brine resources, with its reserves ranking
third globally, after Bolivia and Chile, comprising approximately 30% of the world’s total
reserves (He et al., 2020) [1].

Brines are categorized into three types: geothermal, continental, and oilfield brines
(Meng et al., 2021) [8]. Oilfield brine, a byproduct of petroleum development, is easier
to obtain (Li et al., 2019) [9] and has a more stable chemical composition (Gong et al.,
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2020) [10] than continental and geothermal brines. However, because oilfield brine is often
regarded as waste, large amounts are directly discharged or stored, resulting in a waste
of resources and environmental pollution (Al-Thukair et al., 2013) [11]. The detection
and development of lithium oilfield brines can help convert them into valuable resources,
which is significant for improving energy utilization efficiency and reducing environmental
pollution (Moosavi et al., 2020) [12]. Owing to the active oil and gas development activities
in the Sichuan Basin (Yang et al., 2018; Yi et al., 2019) [13,14], the total production of oilfield
brine is increasing. Lithium resources from the oilfield brines in this basin have potential
for development. Lithium oilfield brine reservoirs in the Sichuan Basin are generally
developed in dolomites (Wen et al., 2014; Ni et al., 2018) [15,16]. Furthermore, because of
the reef-flat sedimentary environment and multiple stages of dolomitization, the reservoirs
exhibit rapid lateral changes (Zhao et al., 2011) [17]. Therefore, high-resolution methods
are required for accurate reservoir prediction.

Numerous methods are currently used for predicting oilfield brine. These methods
can be grouped into two categories. The first includes indirect exploration methods based
on geological genesis. These methods use factors such as oilfield geological structures,
sedimentary environments, and groundwater movement to predict the content, composi-
tion, and distribution of brine in oilfields (Araoka et al., 2014; Orberger et al., 2015; Zhang
et al., 2022) [18–20]. The basic principle is to predict the sources, evolutionary processes,
and hydrogeological characteristics of oilfield brines with a comprehensive analysis of the
geological characteristics, genesis, and evolution of oil and gas reservoirs (Yu X. C. et al.,
2022) [21]. These methods require geological prediction models and data; however, due to
the limitations in obtaining data from wells, achieving reliable results in areas with few
wells is difficult. Additionally, the distribution of brine between wells cannot be predicted
directly. The second category involves direct exploration methods that use geophysical data.
Currently, electrical exploration is the primary method used. Based on the large difference
in electrical properties between brine layers and surrounding rocks (brine rock layers have
low electrical resistivity) and the spatial patterns of electrical resistivity, the distribution of
oilfield brine was successfully predicted (Jiao et al., 2005) [22]. However, this method has a
low resolution and limited exploration depth, making detecting brines in deep oilfields
difficult. Additionally, a combination of seismic and well-logging methods has been used
to predict oilfield brines based on their acoustic characteristics (Yan et al., 2013; Huang
et al., 2014) [23,24]. Based on a neural network method, a relationship between resistivity
and seismic attributes was established and used to obtain resistivity information from
seismic data to identify brine reservoirs (Hou et al., 2022) [25]. However, these methods
utilize only the acoustic or electrical characteristics of the brine reservoir, thus resulting in
high ambiguity.

With increasing exploration and development activities, an increasing number of
reservoir prediction methods have been proposed (Smith et al., 2009; Ruiz and Cheng,
2010; Lu et al., 2016; Yang et al., 2022) [26–29]. By combining seismic and logging data
and using different rock physics models, it is possible to estimate the elastic information
of a target reservoir and predict the distribution of oil, gas, and water (Khoshdel et al.,
2022) [30]. In general, petrophysical parameters (such as porosity and fluid saturation)
can be predicted from elastic parameters using different rock physics models, such as
sandstone (Keys and Xu, 2002; Mavko et al., 2009; Dvorkin and Nur, 1996) [31–33], shale
(Ruiz and Azizo, 2011) [34], carbonate (Xu and White, 1995; Xu and Payne, 2009) [35,36], and
fracture (Schoenberg and Sayers, 1995; Bakulin et al., 2000) [37,38] reservoir models. Elastic
parameters are commonly obtained with seismic inversion, which uses elastic information
contained in seismic waves. Common inversion methods include model-based (Cooke and
Schneider, 1983; Russell and Hampson, 1991; Kumar et al., 2016) [39–41], prestack elastic
(Aki and Richards, 1980; Zong et al., 2012, 2017; Lu et al., 2015, 2018) [42–46], nonlinear
(neural networks and support vector machines) (Liu and Liu, 1998; Torresa et al., 2013;
Cheng and Fu, 2022) [47–49], and geological statistical (Wu et al., 2008; Giroud et al., 2017;
Mosser et al., 2020) [50–52] inversion. Model-based inversion has low lateral resolution
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and is unsuitable for reservoirs with rapid lateral changes (Yao and Gan, 2000) [53]. Pre-
stack elastic inversion has resolution limitations within the seismic resolution range (Yin
et al., 2014) [54]. Nonlinear inversion has strong multi-solution characteristics and lacks
geological constraints. Geological statistical inversion results typically exhibit strong
randomness in situations with few wells. Furthermore, when non-elastic parameters, such
as resistivity and natural gamma, are required to predict reservoir properties, it is difficult
to implement an inversion process by establishing an objective function.

It is a feasible strategy to predict electrical parameters using the elastic parameters
obtained with inversion. Currently, several models can describe the relationship between
elastic and electrical parameters (Pan et al., 2019) [55]; however, these models do not con-
sider the presence of water, making their application in predicting oilfield brine reservoirs
difficult. Seismic meme inversion (SMI), a high-resolution seismic inversion method (Yu Z.
C. et al., 2023) [56], can improve both the vertical and horizontal resolutions of inversion
results by establishing a mapping relationship between the seismic waveform and high-
frequency well-logging curve. This method constructs Bayesian inversion frameworks for
different seismic facies types to achieve facies-controlled inversion. Chen et al. (2020) [57]
obtained wave impedance parameters based on SMI under the constraints of convolution
models and identified thin layers in sandstone reservoirs.

To predict lithium brines in the L area of the Northeastern Sichuan Basin in China, we
propose a workflow using seismic and logging data. In this workflow, seismic waveforms
were clustered to establish a dataset for mapping the relationship between the waveforms
and well-logging properties. Subsequently, the target properties were divided into high-
and low-frequency components according to the best cutoff frequency of the well-logging
data and predicted separately. Finally, the lithium brine reservoirs were predicted based on
the anticipated results of the target properties, which were verified to match the geochemical
test results of the validation wells.

2. Methodology
2.1. Porosity and Water Saturation Calculation

High porosity and water saturation are prerequisites for high-quality lithium brine
reservoirs (with high total water content); therefore, it is necessary to estimate and predict
the porosity and water saturation in the formation. Clavier et al. (1971) [58] improved the
equation for calculating shale content (Vsh) using gamma-ray logs based on the sedimenta-
tion time of different rocks, as follows:

Vsh =
[
1.7 − (IGR + 0.7)2

] 1
2 , (1)

and

IGR =
GRlog − GRmin

GRmax − GRmin
, (2)

where GRlog is the gamma-ray log reading, GRmax is the gamma-ray with 100% clay, and
GRmin is the gamma-ray with 100% dolomite. The presence of pores has a significant impact
on the elastic properties of rocks. Atlas (1995) [59] proposed that density logging is an
effective way to measure porosity. The equation for calculating porosity based on the
density logging curves is

ϕT =
ρm − ρb
ρm − ρ f

, (3)

where ρm, ρb, and ρf are the densities of the matrix, fluid, and bulk fluids, respectively.
However, because of the presence of mud in the rock and the inconsistency between the
density of the mudstone and that of the matrix, it is necessary to correct Equation (3) for
the mud content as follows:

ϕ = ϕT − Vsh ×
ρm − ρsh
ρm − ρ f

, (4)



Minerals 2024, 14, 159 4 of 25

where ρsh is clay density, which is generally obtained from a density-neutron crossplot.
Water saturation is an important physical parameter that quantifies the water content in
brine reservoirs. Water saturation (Sw) in carbonate reservoirs can be calculated using the
following equation proposed by Archie (1941) [60]:

Sw =

[
aRw

ϕm × Rt

] 1
n

, (5)

where a, m, and n are the formation-factor coefficient, cementation exponent, and satura-
tion exponent, respectively. Rw and Rt represent the formation water and deep resistivity,
respectively.

2.2. Prediction of Well-Logging Properties Constrained by Waveform Clustering

Another characteristic of high-quality lithium brine is its low resistivity caused by its
strong conductivity. Predicting electrical properties using seismic inversion methods is
challenging because seismic data reflect the elastic characteristics of the medium rather
than its electrical properties. To address this issue, we propose a novel workflow for
high-quality lithium brines based on waveform clustering constraints. The lateral variation
in seismic signals represents geological features, such as sedimentary facies and reservoir
characteristics. This variation also reflects changes in the logging curves, such as natural
gamma rays, resistivity, and acoustic impedance. Therefore, under the constraint of the
lateral variation in seismic signals, information on the spatial location between wells can
be obtained from the corresponding relationship between the logging data and seismic
signals. This correspondence connects relatively high-frequency logging information
with low-frequency seismic information. The waveform-constrained logging property
prediction method includes the following steps: seismic waveform clustering analysis based
on singular value decomposition (SVD), establishment of logging curve sample sets for
different seismic faces, analysis of the cutoff frequencies, establishment of an initial model
with the average value of logging attributes in the sample sets, and random prediction and
iterative updates of logging attributes in different seismic faces and frequency ranges.

2.2.1. Waveform Clustering Based on SVD

SVD is a commonly used data-transformation method that aims to cluster data by
transforming them into low-dimensional coordinate systems. The seismic signal matrix S
consists of m seismic waveform samples, each with n sample points, forming an m × n
matrix as follows:

S =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

, (6)

where cmn denotes the n-th sampling point of the m-th seismic wavelet unit. Matrix S can
be derived from the orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as:

S = UΛVT

Λ =

[
Λ1 0
0 0

]
, (7)

where the column vectors of the orthogonal matrix U = [u1, u2, . . . , um] are the eigen-
vectors of AAT and orthonormal, respectively. The column vectors of the orthogonal
matrix V = [v1, v2, . . . , vn] are the eigenvectors of ATA and are orthonormal to each other.
Λ1 = diag

(
λ1, λ2, . . . , λp

)
, where Λ1 is a diagonal matrix whose diagonal elements are the
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singular values of A sorted in descending order (λ1 ≥ λ2 ≥ . . . ≥ λp). Equation (6) can be
expanded as follows:

S = UΛVT

=
[

u1 u2 · · · um
][ Λ1

0

][
v1 v2 · · · vn

]T

=
[

λ1u1 λ2u2 · · · λnun
]


v1
T

v2
T

...
vn

T


=

n
∑

i=1
λiuivi

T

, (8)

Consider a seismic waveform Sk in matrix S as an example, which can be derived
using Equation (8):

sk =
[
λ1u1,k λ2u2,k · · · λnun,k

]
·
[
v1

T v2
T · · · vn

T
]T

, (9)

where un,k represents the coordinate of vector un at point k.
The aforementioned matrix transformation process involves constructing a new or-

thogonal coordinate system with the direction vector v1 v2 · · · vn as the coordinate
axis. The singular value λi is the scaling factor from vector ui to coordinate axis vi. λiui,k
represents the coordinate value of the seismic waveform sk on the coordinate axis vi. Addi-
tionally, larger singular values correspond to larger scaling factors and larger variance and
dispersion of coordinate values on the coordinate axis vi. Therefore, larger singular values
correspond to more important coordinate axes (Golub and Loan, 2013) [61].

Therefore, the part corresponding to the smaller singular values can be considered to
represent a negligibly weak signal. According to Equations (8) and (9), only the dominant
q (q < p) singular values are retained, and the matrix S and seismic waveform sk are
simplified as:

S ≈
q

∑
i=1

λiuivi
T =

[
λ1u1 λ2u2 · · · λquq

]
·
[
v1

T v2
T · · · vq

T
]T

, (10)

and
sk =

[
λ1u1,k λ2u2,k · · · λquq,k

]
·
[
v1

T v2
T · · · vq

T
]T

. (11)

From Equations (10) and (11), the coordinate system v1 v2 · · · vn is simplified
into a low-dimensional coordinate system v1 v2 · · · vq after ignoring the directions
with smaller data variances. After simplification, the coordinate values λiui,k of the seismic
waveform sk in the low-dimensional coordinate system can be used to reflect the charac-
teristics of the seismic waveform. In a low-dimensional coordinate system, the seismic
waveforms that are closer in coordinates are more similar. The coordinates of the seismic
waveform sk on the first q-coordinate axes can be used as indicators for dimensionality
reduction and can be set as follows:

Yk =
[
yk,1 yk,2 · · · yk,q

]
=

[
λ1u1,k λ2u2,k · · · λquq,k

]
. (12)

Subsequently, the number of samples used to construct each seismic waveform is
reduced from n to q. Yk, as the kth element, constitutes the set of m seismic waveforms:

Y =
[
Y1 Y1 · · · Ym

]
(13)
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The singular values corresponding to each coordinate axis represent the importance of
that direction; therefore, they should be used as weights for dimensionality reduction. After
normalizing the singular values to sum them to 1, a weight vector can be constructed as:

W =
[
w1 w1 · · · wq

]
. (14)

Subsequently, the clustering of the dimensionality-reduced data was based on the
K-means algorithm (Hartigan and Wong, 1979) [62]. The weighted Euclidean distance
was used as the similarity criterion. Assuming the presence of r clusters, r samples were
randomly selected from set Y as the initial cluster centers. All samples were divided into the
nearest cluster centers based on their weighted Euclidean distances. The weighted distance
from sample Yk to the t-th cluster center mt =

[
mt,1 mt,2 · · · mt,q

]
was derived as:

d(k, t) =

√
w1

∣∣yk,1 − mt,1
∣∣2 + · · ·+ wq

∣∣∣yk,q − mt,q

∣∣∣2. (15)

The mean value of each cluster of samples was used as the new cluster center. The
termination condition for the iterative update was whether the cluster center converged.
This process performs the clustering analysis of seismic waveforms.

2.2.2. Sample Set of Well-Logging Properties and Frequency Analysis

After completing the waveform clustering analysis and well seismic calibration, well-
logging properties (such as resistivity and density) in the well were also clustered based on
their corresponding seismic waves. Subsequently, the mapping relationship between the
seismic waves and well-logging properties was established. Although seismic waves in
the same waveform cluster may correspond to some well-logging property segments, the
logging properties in this cluster had certain differences. To distinguish the differences in
well-logging properties in a seismic waveform cluster, the properties of the target position
were not predicted by selecting all well-logging properties in the cluster; however, the
c wells (the number of effective samples) that have the closest seismic waveform as the
sample set of that position were selected.

The well-logging properties in the sample set did not match completely; however,
they did match in certain frequency ranges. Therefore, it was necessary to perform a
matching analysis of well-logging properties in the sample set. The wavelet transform
can simultaneously characterize the signals in both the time and frequency domains and
quantitatively predict the low-frequency stable part and high-frequency abrupt change
part of the signals; therefore, it is suitable for the matching analysis of well-logging data.
To obtain the best cutoff frequency of the well-logging curves in the sample set, the wavelet
transform algorithm was used to calculate the difference between the well-logging property
L and average value L in different frequency ranges (0, f ):

O( f ) = arg(min
∥∥L − L

∥∥) = arg(min
∥∥∥∥∫ f

0
φ(ω, t)− L

∥∥∥∥), (16)

where φ(ω, t) is the wavelet transform function, and ω and t are the frequency and time,
respectively, as the parameters of wavelet transform.

2.2.3. Prediction in Different Frequency Ranges under Seismic Waveform Constraints

Based on the best cutoff frequency, the logging properties of the target location were
divided into low- and high-frequency parts (the high and low frequencies of this band
were relative to the logging data, and this frequency was generally higher than the seismic
frequency band). Under the constraint of waveform clustering, the low-frequency part uses
a Markov Chain Monte Carlo random simulation algorithm (Zhu and Gibson, 2018; de
Figueiredo et al., 2019) [63,64].
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Firstly, a Markov Chain, denoted as Xn, was constructed. It comprised random variables,
and it was used for sampling and satisfied conditional probability distribution function:

P(Xn+1 = x|X0, X1, . . . , Xn−1) = P(Xn+1 = x|Xn). (17)

It should also satisfy the property that different states converge to a stationary distri-
bution after successive iterations over time. When the Markov Chain reaches a stationary
distribution, the sampled points (h(Xi)) are used to estimate the expectation of a target
parameter’s function with Monte Carlo integration:

E =
1

n − m

n

∑
i=m+1

h(Xi), (0 < m < n). (18)

Subsequently, an appropriate distribution of random sample points was obtained
based on the conditional probability distribution function of reservoir parameters. By
iteratively perturbing model parameters and performing multiple random simulations
of initial model parameters, reservoir parameters were simulated using the stochastic
sampling algorithm.

The high-frequency part also used a random simulation algorithm; however, it did not
require the constraint of seismic faces but required that of the prior probability distribution
in the sample set. The common part, which is the average value of the sample set, was
used as the initial model for performing the iterative calculations to obtain high-resolution
simulation results. Therefore, the results of the high-frequency part were simulated based on
existing probability distributions. The reliability of the high-frequency part was lower than
that of the low-frequency part. Additionally, during the property prediction process, a strati-
graphic smoothing constraint was used based on a certain smoothing radius. The predicted
results for the target points must satisfy the average value within the smoothing radius.

2.3. Workflow

In summary, the prediction of a lithium brine reservoir based on seismic data and well
log data included the following steps: First, the sensitive logging properties of the reservoir
were determined based on known well information as the target property to be predicted.
Subsequently, clustering analysis of the seismic waveforms was performed using the SVD
algorithm. Logging property sample sets were established for the target locations based
on their waveform clusters. Based on the cutoff frequency, the logging properties were
divided into low- and high-frequency parts, which were then separately predicted with
random simulations. The workflow is illustrated in Figure 1.
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3. Geologic Setting and Data Description

Sichuan Foreland Basin is a basin in western China, located on the western margin of
the Yangtze Plate, bordered to the north by the Qinling orogenic belt, the southeast by the
Qiye Mountains, and the west by the Songpan–Ganzi orogenic belt. The basin took shape
during the Indosinian period, and the Late Triassic Indosinian movement formed an inland
lake basin. The current structural topography was formed after the intense folding and
faulting effects of the Himalayan movement. Area L (the blue quadrilateral in Figure 2)
is located in the northeastern Sichuan Basin, a steep structural belt in the eastern Sichuan
Basin (Gu et al., 2019) [65] The stratigraphic column of the Triassic strata in this area is
shown in Figure 3. This study examined Lower and Middle Triassic strata (consisting
of the Feixianguan, Jialingjiang, and Leikoupo Formations from bottom to top), which
comprise marine carbonate deposits formed during the late Indosinian tectonism with a
thickness of approximately 900–1700 m. The maximum exploration depth in this study
area is 6000 m. This area belongs to a continental shelf-type carbonate platform mainly
formed by evaporation and includes facies, such as grain beaches and restricted lagoons,
with uneven lateral variation. The main lithology is dolomite, followed by limestone, with
interbedded gypsum salt distributed between the dolomite and limestone. Some strata
in the target layers contain tuffaceous rock, indicating that the formation belonged to a
salt-lake sedimentary environment at that time. The gypsum salt layers within the Triassic
strata provide a material basis for enriching lithium brines.
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During the sedimentation process, the climate is arid, and seawater gradually evapo-
rates and concentrates. The area of marine evaporite gradually increases, causing various
elements to converge toward the center of the basin and accumulate rich mineral deposits
(Zhang et al., 2022) [21]. The strong evaporation of seawater and dry air leads to a con-
tinuous concentration of seawater, and the concentration of internal elements gradually
increases (Huang, 2013) [66]. The hot and arid ancient climate also accelerates the chemical
reaction process of substances, leading to the rapid precipitation of minerals containing
multiple ions.

As a typical carbonate reservoir, the target reservoir exhibits large lithological differ-
ences, a complex pore–permeability relationship, and irregular changes in the physical
property. The complex lithological variations in this area pose challenges to the resolution
of seismic data. A total of 1200 km2 of three-dimensional (3D) seismic data are available for
area L (Figure 4). Twenty-two wells are located within the seismic data region. The three
seismic sections (sections 1–3 in Figure 4) are shown in Figure 5. The amplitude spectrum
of the seismic data within the target layer had a dominant frequency of 40 Hz (Figure 6).
The lateral variation in the seismic waveform was unstable. The known chemical properties
of the brine in the eight wells (Table 1) show that the brines from three wells (L11, L172,
L3) contain relatively high amounts of lithium. The well log curves and interpretation data
for well L11 are displayed in Figure 7. The Li-rich brine reservoir is in the layers of the
Feixianguan Formation. The dominant porosity range of the dolomite reservoir in this
target layer was 2%–8%, with a range of water saturation of 10–100 (Figure 7).
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Table 1. Elemental content of the brine in various wells.

Well Name Stratum Li+ (mg/L) Br− (mg/L)

L11 T1f 32.95 150
L172 T2l4 25.9 116

L3 T1f3-T1f1 25.1 225
L177 T2l4 17.7 105
L16 T2l4 13.18 709
L21 T1f3 10.4 173
L170 T1j4 7.565 156
L17 T2l4 7.79 /
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Figure 7. Logging data and interpretation results for well L11. These log curves are the sonic
differential time of P-wave (AC), natural gamma (GR), resistivity (RT), the volume of shale (VSH),
porosity (Por), water saturation (SW), and lithology (Lith) from left to right.

4. Application

The proposed workflow was applied to real 3D seismic data for lithium brine reservoir
prediction in the Lower and Middle Triassic strata in the L area.

4.1. Sensitive Parameter Analysis

The lithium brine layer was identified based on the elemental content of the brine
produced in the production well. To analyze the sensitivity parameters of the target
reservoir, a cross-plot was compiled using well-logging data from the known brine layer
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wells in the study area (Figure 8). Most Li-rich and other formations have the same acoustic
time difference and natural gamma, and their distribution range has no clear boundary.
Therefore, the natural gamma and acoustic travel times are insensitive to the brine layers.
In contrast, the distribution range of resistivity between the Li-rich and other formations
in Figure 8 has a relatively clear boundary (near 200 ohm·m). Resistivity is a sensitive
parameter for distinguishing the brine layers because of the presence of lithium ions in the
brine, which enhances the conductivity of the reservoir and results in lower resistivity.
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The relationship between brine layers and lithology is influenced by the genesis
of the brine layers. Studies have indicated that brine deposits in the Sichuan Basin are
widely developed within the Middle–Lower Triassic shallow marine carbonate series and
the carbonate–evaporite series formations (Li et al., 2018) [67]. In the present area, the
dominant lithologies include dolomite and gypsum rocks. Considering geological genesis
analysis, the study area possesses favorable lithological conditions. Consequently, this
predictive workflow does not further differentiate lithologies but directly uses the physical
parameters in subsequent steps to predict areas of the lithium brine.

4.2. Number of Effective Samples Analysis

Firstly, we used a waveform classification approach based on SVD to classify the
seismic signals within the target layer of the study area. Five classifications were conducted,
and the classification results are illustrated in Figure 9. The results indicate that Wells
L1-3, L161, and L1-2 belong to the same waveform category (waveform 4 in this figure).
Multiple known wells belong to the same seismic cluster and serve as optional samples for
that cluster. The computational efficiency of the prediction process is reduced when the
number of samples is extremely large. When it is too small, it will reduce the accuracy of
the calculation results. To determine the optimal number of effective samples, we analyzed
the correlation between the logging properties of a certain well in the sample set and
the known logging properties for different effective sample numbers. The correlation
coefficients between the known resistivity properties of the well locations and those of the
effective sample wells were calculated. The results for the four wells are shown in Figure 10.
The correlation coefficients increased with an increase in the number of samples. In this
study, six samples were selected between the top and bottom horizons as when the sample
point is higher than six, the coefficient’s increase is not significant. Under these conditions,
the correlation coefficients of the four wells ranged from 0.54 to 0.64.
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4.3. Best Cutoff Frequency Analysis

To analyze the optimal cutoff frequency, we selected two wells belonging to the same
seismic waveform cluster. The seismic sections of the two wells are shown in Figure 11a.
A comparison of the seismic traces near the two wells after layer matching exhibited a
correlation coefficient of 0.93 (Figure 11b), indicating that the seismic waveforms of these
two wells have similar characteristics. The original resistivity curves of the two wells had
correlation coefficients of 0.686 (Figure 12a).
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log curves to time domain based on time–depth relationships), retaining frequency ranges 
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cients of 0.720, 0.745, 0.879, 0.927, and 0.945, respectively. As the cutoff frequency de-
creased, the correlation coefficients of the resistivity curves of the two wells increased. In 
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Figure 11. The seismic section (a) and seismic waveforms (b) of wells L17 and L1-2. Well L17 is
matched along the horizon to the time domain of well L1-2.

We performed wavelet transform filtering on the well log curves (we converted well
log curves to time domain based on time–depth relationships), retaining frequency ranges of
0–500, 0–300, 0–200, 0–150, and 0–100 Hz (Figure 12b–f), resulting in correlation coefficients
of 0.720, 0.745, 0.879, 0.927, and 0.945, respectively. As the cutoff frequency decreased, the
correlation coefficients of the resistivity curves of the two wells increased. In the frequency
range of 0–100 Hz (Figure 12f), the correlation coefficient was comparable to that of the
seismic waveforms. This result indicates that when the seismic waveforms corresponding
to well-logging properties are similar, they can also exhibit a relatively high degree of
similarity within a certain frequency band. This similarity was higher in the low-frequency



Minerals 2024, 14, 159 16 of 25

range and lower in the high-frequency range. The high-frequency part of the well log
properties was not influenced by the seismic waveforms. Therefore, predicting the target
well log properties in different frequency bands is necessary.
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RT denotes the resistivity.

To determine the optimal cutoff frequency, we calculated the correlation coefficients
of well logs from all wells in the study area. The correlation coefficient represents the
correlation between the resistivity data in the different frequency bands and the average
resistivity log of the effective samples. The results from the four wells are shown in
Figure 13; the correlation coefficients decreased with increasing frequency. The optimal
cutoff frequency divides the target property into two parts for prediction. If the cutoff
frequency is too low, the low-frequency part is consistent with the seismic data band,
resulting in a high correlation coefficient. However, the resolution is limited within the
seismic band. If the cutoff frequency is too high, the correlation coefficient is low, and the
reliability of the low-frequency part decreases. Therefore, an appropriate cutoff frequency
must be selected. In this study area, we selected a cutoff frequency of 120 Hz, which
exceeded the seismic frequency band and had a high correlation coefficient.
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4.4. Prediction and Verification Results

To compare the inversion results between the inversion method constrained by wave-
form clustering and the conventional model-based inversion method, we present the wave
impedance inversion results of both approaches, as shown in Figure 14. The compara-
tive analysis of the outcomes from these two methods reveals that the inversion method
constrained by waveform clustering exhibits significantly higher resolution than the con-
ventional model-based inversion method.
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Using a waveform cluster-controlled well-log property prediction method based on
3D seismic and well log data, we predicted the porosity, water saturation, and resistivity
properties of the study area. The results are presented in Figure 15. The prediction results of
the well-log properties showed high resolution, displaying distinct thin layers in the vertical
direction and variations in biogenic reefs and flats in the horizontal direction. The results
include the geological strata of the Feixianguan, Jialingjiang, and Leikoupo Formations.
The results in Figure 15a indicate that the top layers of both the Jialingjiang and Leikoupo
Formation are characterized by relatively high porosity, with uneven and discontinuous
lateral variation. The results in Figure 15b indicate that the bottom layers of the Jialingjiang
Formation had higher water saturation. The resistivity results in Figure 15c show that the
Feixianguan and Leikoupo Formations had lower resistivity features. Combining the results
of porosity, water saturation, and resistivity properties, the Feixianguan Formation in the
middle of the study area was determined to be a high-quality reservoir. The prediction
results of the resistivity based on the neural network method (Fu, 1997) [68] are shown in
Figure 16.

To analyze the accuracy of the predicted well-log properties, the predicted results
near the L1-23 well were compared with the information obtained from the well log
(Figure 17). The comparison results in Figure 17a–c show better consistency than Figure 17d.
Furthermore, we quantitatively compared the differences between the predicted results
and actual values, as shown in Figures 18 and 19. Near the depth of 3900 m, there were
relatively larger errors in both water saturation and porosity than at other depths. Although
the predicted resistivity values using the proposed workflow had mostly large errors, the
variation trends matched well with the true values. In contrast, the resistivity predictions
based on the neural network had larger errors; however, the variation trends did not match
with the true values.
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Figure 17. Local prediction results of porosity, water saturation, and resistivity near well L1-23.
(a–c) are the results of the porosity, water saturation, and resistivity from the proposed workflow,
respectively, and (d) is the results of the resistivity from the neural network-based method.



Minerals 2024, 14, 159 19 of 25Minerals 2024, 14, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 18. Comparison between predicted results (the red curves) and true logging data (the black 
curves) of well L1-23 from the proposed workflow (cf. Figure 1). (a–c) are the porosity, water satu-
ration, and resistivity, respectively. 

 
Figure 19. Comparison between predicted resistivity results (the red curve) and true logging data 
(the black curve) of well L1-23 from the neural network-based method. 

We generated horizon slices of the Feixianguan Formation, as shown in Figure 20 
(Figure 20a–c are the water saturation, porosity, and resistivity results, respectively). Wells 
L11 and L3 exhibit relatively high water saturation, porosity, and low resistivity, which 
belong to high-quality reservoirs. Well L16 shows high water saturation and low resistiv-
ity but lower porosity. Although well L21 has high water saturation, its porosity is rela-
tively low, and resistivity is high. Well L17 shows relatively high water saturation and 
porosity but high resistivity. These three wells do not belong to high-quality reservoirs, 
which is consistent with the variation in lithium content shown in Table 1. 

Figure 18. Comparison between predicted results (the red curves) and true logging data (the black
curves) of well L1-23 from the proposed workflow (cf. Figure 1). (a–c) are the porosity, water
saturation, and resistivity, respectively.

Minerals 2024, 14, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 18. Comparison between predicted results (the red curves) and true logging data (the black 
curves) of well L1-23 from the proposed workflow (cf. Figure 1). (a–c) are the porosity, water satu-
ration, and resistivity, respectively. 

 
Figure 19. Comparison between predicted resistivity results (the red curve) and true logging data 
(the black curve) of well L1-23 from the neural network-based method. 

We generated horizon slices of the Feixianguan Formation, as shown in Figure 20 
(Figure 20a–c are the water saturation, porosity, and resistivity results, respectively). Wells 
L11 and L3 exhibit relatively high water saturation, porosity, and low resistivity, which 
belong to high-quality reservoirs. Well L16 shows high water saturation and low resistiv-
ity but lower porosity. Although well L21 has high water saturation, its porosity is rela-
tively low, and resistivity is high. Well L17 shows relatively high water saturation and 
porosity but high resistivity. These three wells do not belong to high-quality reservoirs, 
which is consistent with the variation in lithium content shown in Table 1. 

Figure 19. Comparison between predicted resistivity results (the red curve) and true logging data
(the black curve) of well L1-23 from the neural network-based method.

We generated horizon slices of the Feixianguan Formation, as shown in Figure 20
(Figure 20a–c are the water saturation, porosity, and resistivity results, respectively). Wells
L11 and L3 exhibit relatively high water saturation, porosity, and low resistivity, which
belong to high-quality reservoirs. Well L16 shows high water saturation and low resistivity
but lower porosity. Although well L21 has high water saturation, its porosity is relatively
low, and resistivity is high. Well L17 shows relatively high water saturation and porosity
but high resistivity. These three wells do not belong to high-quality reservoirs, which is
consistent with the variation in lithium content shown in Table 1.
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5. Discussion

The initial model of the waveform cluster-controlled well-log property prediction
method was established using well log data acquired in the field. This model connects well
log curves or log interpretation results to seismic waveform data. Therefore, it has a higher
resolution than the seismic waveform data. The results within the optimal cutoff frequency
based on the matching analysis of the well-log properties are highly reliable. However,
outcomes that exceed the cutoff frequency range are acquired with random prediction, and
their dependability is limited even when governed by the probability distribution.

During the process of establishing the well log property sample set, the geological
horizons of different wells could not be completely matched in the depth domain, which
led to the stretching and compression of different well log properties. Therefore, the
control of geological horizons is necessary during this process. The more detailed the
geological horizon interpretation, the more accurate the matching between different well
log properties. Therefore, an accurate and adequate interpretation of geological horizons
is a prerequisite for this method. The number of effective samples and optimal cutoff
frequency are two important parameters in the workflow. The values of these parameters
must be adjusted based on the actual situation. In practical applications, both the efficiency
and accuracy of the method must be considered. Further research is needed to quantify
how these parameters affect the workflow results.

The workflow predicts high-quality reservoirs based on the electrical characteristics,
water saturation, and porosity of the lithium brine reservoirs. However, in oilfield brines,
other elements, such as potassium, often coexist with lithium, enhancing conductivity
and lowering resistivity, thereby leading to ambiguity in interpretation. This implies
that locations with low electrical resistivity and high water saturation may contain other
elements leading to low water resistivity within the reservoir. The presence of lithium
elements in the reservoir near a specific well can only be confirmed when the lithium
content of that well is known. Therefore, this method is reliable near wells with known
lithium content, and the results are constrained by the hydrochemical test data. However,
the reliability of predicting lithium brine reservoirs in other wells was low. Currently,
it is difficult to distinguish between different elements in oilfield brines with different
geological origins using seismic data only. Therefore, in future studies, we plan to integrate
this workflow with geological genesis methods to predict the distribution of brine reservoirs
containing different elements.
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6. Conclusions

Variations in seismic waveforms are caused by changes in geological and reservoir
characteristics. Therefore, a mapping relationship exists between the seismic waveforms
and well-logging properties, which can be used to predict well-logging properties. This
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is the basis for predicting the well-logging properties constrained by seismic waveform
clustering. In this study, we proposed a robust workflow for lithium brine prediction
with the first application of well-logging property prediction constrained by waveform
clustering using 3D seismic and well log data. Waveform clustering analysis based on
the SVD algorithm is a matrix-based method with high computational efficiency and
accuracy. This method can achieve clustering analysis of seismic waveforms, thereby
realizing the partitioning of seismic faces. The number of effective samples is a parameter
of the workflow. It is necessary to select a small amount of similar well data for the
calculation, which affects the computational efficiency and accuracy of the process. Another
important parameter is the optimal cutoff frequency. The well log data did not vary
with changes in seismic waveforms over the entire frequency band, especially in the
high-frequency region. Thus, it is necessary to distinguish between the low-frequency
part that is controlled by seismic waveforms and the high-frequency part that is not
controlled by seismic waveforms. This affected the resolution and reliability of the results,
specifically the reliability of the results outside the seismic frequency band range. In
practical applications, these two parameters must be comprehensively considered and
determined using a correlation analysis.

The results in our study area indicate that the proposed workflow can accurately
predict well-logging properties with high resolution. Compared with conventional neural
network methods for predicting well-logging properties, the waveform-constrained method
had evident geological significance. The prediction results of the high-quality reservoirs in
our study area were verified by the elemental content test results, which demonstrated the
effectiveness of the method. However, it was almost impossible to distinguish between the
different elements in brines using seismic methods. This indicated that the same results
may be obtained when brine contains other elements. Therefore, the elemental content
test data in wells are important for controlling, and the more information there is, the
more reliable the prediction results. This is one disadvantage of the proposed workflow.
Incorporating geological genetic methods into this workflow is expected to enhance the
reliability of the results, which will be the focus of future research.
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