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Abstract: Gallium (Ga) is a typical scattered trace element that is irreplaceable in strategic sectors such
as national defense, wireless communications, new materials, renewable energy, and healthcare. The
coal–Ga deposit is an important complement to traditional Ga resources and has become a significant
focus for Ga mineral resource exploration. Therefore, there is an urgent need to research the coal–Ga
cooperative exploration model from both technical and economic perspectives. Taking the Heidaigou
coal–Ga deposit as an example, the enrichment zone of coal–Ga is predominantly situated in the
northern part of the exploration area, adjacent to the fault zone. The Ga concentration demonstrates a
gradual decline from the north–central region towards the northeast and southeast. Similar vertical Ga
distribution patterns are observed in adjacent drillings, with notably higher concentrations in the roof,
floor, and parting layers. The cooperative exploration model for coal–Ga deposits is proposed based
on the above features. The model employs a comprehensive set of cooperative technical methods,
such as remote sensing, geological mapping, seismic exploration, drilling, petrogeochemistry, and
well logging. The layout of exploration engineering and the concentration of Ga provide the basis for
the estimation of Ga resources. Additionally, the model provides an important scientific basis for the
improvement of the strategic coordination ability of Ga mineral resources.

Keywords: coal–Ga deposit; distribution characteristics; exploration technical; exploration engineering
layout; cooperative exploration model

1. Introduction

Gallium (Ga) is a typical scattered trace element, often termed the “food of the elec-
tronics industry” due to its widespread use in strategic sectors such as national defense,
wireless communications, new materials, renewable energy, and healthcare [1–7]. The
assurance of the Ga supply and the continual advancement of Ga-based technologies are
vital for the progress of the modern science and technology industry. Presently, dedicated
Ga mines are non-existent, and Ga production relies on the availability of bauxite [8,9];
thus, the search for new Ga resources has become a priority. Coal, as a unique sedimentary
deposit, not only serves as fuel but also harbors coal-type strategic metal deposits [10–12].
The 2006 discovery of an exceptionally large Ga-enriched coal deposit in the Inner Mon-
golia Jungar Coalfield has illuminated the metallogeny of dispersed elements, such as Ga,
positioning the study of coal–Ga resources at the forefront of research [13–29]. This has
led to the identification of several coal–Ga deposits ranging from medium to super-large
sizes, and the Ga resource ranges from 400 to over 2000 t [30–32]. The cut-off grade of Ga
in coal is 20 µg/g [33], and the industrial grade is 50 µg/g [34]. As a crucial supplement
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to traditional strategic metal resources, coal–Ga deposits have emerged as a significant
focus in mineral resource exploration. Investigating the joint exploration of coal and Ga is
therefore essential in ensuring a steady Ga supply and fostering the growth of a sustainable,
circular economy.

The mode of occurrence of Ga in coal either has an organically dominant or an
inorganically dominant association [35–39]. Inorganic forms of the specified element
or compound are primarily found in clay minerals and bauxite, due to the isomorphic
substitution of aluminum [12,16,40–43]. The organic state mainly occurs in the form of
humic acid adsorption and gelatinous components, etc. [44–46]. However, more studies
have shown an inorganic dominant association of Ga in coal [47–49]. Ga and its associated
mineral boehmite, found in the coal of the Heidaigou Mine within the Jungar Coalfield, are
of sedimentary origin [13,14], derived from the weathered bauxite of the Benxi Formation in
the northeast uplift of the Ordos Basin [43,44]. During the peat accumulation phase, gibbsite
colloids from this weathered bauxite were transported a short distance to the peat bog.
There, they transformed into boehmite throµgh processes like compaction, dehydration,
and coalescence during the early diagenesis stages [13,14].

The exploration and development of strategic metal elements dispersed in coal and
coal-bearing strata, which symbiotically coexist with coal, present complexities when they
are treated as separate deposits. Consequently, a cooperative exploration approach for coal
and strategic metal deposits within coal-bearing strata needs to be theoretically sound, eco-
nomically viable, and technically feasible. In coalfield exploration, the exploration model
that combines geological condition identification with exploration technology methods and
project layout planning has provided valuable insights for similar projects [50,51]. In recent
years, the cooperative exploration of coal-measure minerals has typically built upon the pro-
posed mechanisms of mineralization and prospecting prediction methods for coal-measure
minerals [52,53]. This approach has led to the formulation of fundamental principles for
cooperative exploration [54–56], the categorization of exploration types based on the combi-
nation of coal-measure mineral varieties and corresponding exploration techniques [57,58],
and the development of a cooperative exploration system for coal-measure minerals with
multi-positional resource characteristics, along with its implementation plans [59–63].

Currently, there is a lack of research on the cooperative exploration model for coal–Ga
deposits. This study focuses on the Heidaigou coal–Ga deposit, examining its distribution
characteristics and enrichment mechanisms, and discusses and optimizes the original ex-
ploration. On this basis, a cooperative exploration model for coal–Ga deposits is proposed.
This model is grounded in disciplines such as coal geology, geochemistry, and mineral-
ogy, as well as exploration engineering. It incorporates an integrated approach involving
remote sensing, geological mapping, drilling, well logging, seismic surveys, and petrogeo-
chemistry. Adhering to the standards for single mineral exploration and other relevant
guidelines, this research delineates the goals and objectives of coal–Ga deposit exploration.
It also establishes criteria for the assessment of the grade, occurrence, and quantity of
coal–Ga resources. In different coal–Ga deposits, the occurrence of Ga is similar, primarily
associated with clay minerals such as boehmite, diaspore, and kaolinite. The differences
among these coal–Ga deposits arise from the unique characteristics of each coal deposit.
Depending on these differences, the selection of exploration techniques, project layouts,
and resource estimation methods can be guided by the coal–Ga cooperative exploration
model proposed in this study, specifically the part concerning coal deposits. Therefore, the
coal–Ga cooperative exploration model introduced in this study is feasible across different
coal–Ga deposits.

2. Geological Background and Methodology
2.1. Jungar Coalfield

The Jungar Coalfield is located in the southwestern part of the Ordos Coal Gathering
Basin (Figure 1), which is a significant Late Carboniferous–Permian coalfield, characterized
by coal-bearing strata from the Shanxi and Taiyuan Formations. These formations represent
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a transitional phase of terrestrial sedimentation. The coalfield stretches approximately
73 km from north to south and around 40 km from east to west, covering an area of
2900 km2 [20]. Geotectonically situated on the eastern edge of the Ordos Plateau within the
North China Craton, the Jungar Coalfield predominantly features a monoclinal structure.
This structure is oriented almost north–south, inclining westward with a dip angle of less
than 10◦. Additionally, this monocline features small, undulating fold structures. Faults in
the region are infrequent and minor in scale, predominantly normal faults [13].
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2.2. Heidaigou Coal–Ga Deposit

The Heidaigou coal–Ga deposit is situated in the east–central part of the Jungar Coal-
field, which is largely covered by loess, but some bedrocks are exposed in the valleys.
The most ancient strata exposed in the coalfield are the Lower Ordovician Liangjiashan
Formation (O1l), which constitutes the foundational layer of the coal-bearing strata. Suc-
cessively overlying it are the Late Paleozoic coal-bearing strata comprising the Upper
Carboniferous Benxi Formation (C2b), the Taiyuan Formation (C3t), and the Lower Permian
Shanxi Formation (P1s). The sequence continues with the Middle Permian formations of
the Lower Shihezi (P1x) and Upper Shihezi (P2s), followed by the Neogene Upper Pliocene
red clay layer (N2), the Quaternary Upper Pleistocene Malan Formation (Q3), and the
Quaternary Holocene (Q4) [20]. The extractable coal seams in the area include Coal Seams
5 and 6, totaling two layers. Coal Seam 5 is the main extractable seam, while Coal Seam 6 is
extractable throµghout the area and is divided into coal seams 6-1, 6-2, 6-3, 6-4, 6-5, and
6-6 based on the coal quality characteristics and structure. The structural morphology of
the Heidaigou mining area is mainly controlled by the Jiaogeibu anticline located in the
eastern part of the area. Most of the region belongs to the western wing of this anticline,
which trends northeast and inclines southeast. The stratum has a gentle dip angle, with
the overall stratum trending NE40◦–55◦, inclining southeast, and the dip angle is generally
less than 10◦. There are few faults in the area, with only a few small faults developed in
the central–northern part [14,15]. Overall, the structure of the entire area is quite regular,
with both the fold axes and faults trending northeast. The fold axes incline from northeast
to southwest, and the general structural situation of the bedrock in the exploration area
is higher in the northeast and lower in the southwest. This pattern seems to control the
regular variation of the strata and coal seams from northeast to southwest. The main
coal-bearing formation, the Taiyuan Formation, tends to thicken gradually from northeast
to southwest. The main structural diagram of the Heidaigou coal mining area is shown in
Figure 1.

2.3. Methodology

A comprehensive analysis of borehole data and coal rock test data from the original
exploration was conducted. This study focuses on the following factors influencing the coal–
Ga deposits: the planar distribution of coal seams and the planar distribution characteristics
of the Ga concentration and the vertical variations in the coal seam thickness and Ga con-
centration, referenced to the original geological report on the exploration of the Heidaigou
mining area, Jungar Coalfield, Inner Mongolia [64]. The contour maps were created using
Golden Software’s Surfer software (version 8.0). Referring to the Specifications for Coal
Exploration [65] and Specifications for Rare Metal Mineral Exploration [66], an evaluation
of the combination of exploration techniques and the layout of exploration projects from
the original exploration was conducted, followed by proposed optimizations. Based on
the Guidance for Utilization and Classification of Concentration of Valuable Elements in
Coal [33], an estimate of the resource quantity for each coal layer in the exploration area
was obtained. The content of Ga in this study refers to the content of coal drying basic [66].
From this work, a cooperative exploration model for coal–Ga is proposed.

3. Distribution Characteristics of Coal–Ga Deposits
3.1. Plane of Coal Seams

The Heidaigou coal–Ga deposit is part of the Late Carboniferous–Early Permian
coalfield, characterized by the coal-bearing strata of the Shanxi and Taiyuan Formations,
which represent a transition to terrestrial sediments (Figure 2).
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In the Shanxi Formation, coal seam 5, extractable and situated in the middle to lower
part, varies in thickness from 0 to 4.27 m, averaging 1.59 m. This seam extends primarily
across the southeast, southwest, and central areas of the exploration zone, encompassing
a mineable area of 5.61 km2 and offering broad extractability across the region. In the
Taiyuan Formation, the mineable coal seam 6, a composite coal seam, resides in the upper
part, with a thickness ranging from 24.12 to 39.32 m and an average of 33.07 m. It is
subdivided into six seams, 6-1, 6-2, 6-3, 6-4, 6-5, and 6-6, differentiated by their coal quality
and structure. The uppermost coal seam 6-1 varies from 0 to 6.01 m in thickness, averaging
2.28 m. Sub-seam 6-2, known for its high ash concentration, ranges from 1.83 to 8.84 m
thick, averaging 5.53 m. Notably, coal seam 6-2 exhibits a complex stratified structure,
comprising extremely thin layers of inferior coal, high-ash coal, carbonaceous mudstone,
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or carbon-bearing mudstone interbedded vertically. Coal seam 6-3, with a thickness of 1.26
to 3.92 m, averaging 2.62 m, has a simple structure without intercalated gangue. Coal seam
6-4, ranging from 9.63 to 23.29 m thick and averaging 18.24 m, demonstrates a thickening
trend from north to south and from west to east. Finally, coal seam 6-5’s thickness varies
from 0.20 to 4.42 m, averaging 1.56 m, and it shows a thickening trend from south to north
and from east to west.

3.2. Plane of Ga Deposit

The Ga concentration in each coal seam is notably high, as indicated in Figure 3. Within
the exploration area, coal seam 5 varies in thickness from 0 to 4.27 m, averaging 1.59 m.
The Ga concentration ranges from 1 to 28 µg/g, with an average of 22.47 µg/g. There is a
discernible directional variation in Ga concentration, with higher concentrations observed
in the northwest and southeast regions of the mining area, and lower concentrations in the
southwest and northeast regions.

Minerals 2024, 14, x FOR PEER REVIEW 6 of 19 
 

 

3.2. Plane of Ga Deposit 
The Ga concentration in each coal seam is notably high, as indicated in Figure 3. 

Within the exploration area, coal seam 5 varies in thickness from 0 to 4.27 m, averaging 
1.59 m. The Ga concentration ranges from 1 to 28 µg/g, with an average of 22.47 µg/g. 
There is a discernible directional variation in Ga concentration, with higher concentrations 
observed in the northwest and southeast regions of the mining area, and lower concentra-
tions in the southwest and northeast regions. 

 
Figure 3. Ga concentration in (a) the 5 coal, (b) the 6-1 coal, (c) the 6-2 coal, (d) the 6-3 coal, (e) the 6-
4 coal, (f) the 6-5 coal, and (g) the 6-6 coal in the Heidaigou coal–Ga deposit. 

In the exploration area, the Ga concentrations within the 6-1 coal seam vary from 1 
to 41 µg/g, averaging 19.02 µg/g, with higher concentrations in the northern and southern 
regions and lower levels in the central area. In the 6-2 seam, the Ga concentrations range 
from 0 to 36 µg/g, averaging 23.89 µg/g, predominantly higher in the eastern region but 
lower in the northern and central regions. The 6-3 seam exhibits Ga levels from 1 to 31 
µg/g, with an average of 19.08 µg/g, and shows lower concentrations in the northeastern 
and northwestern areas. The Ga concentration in the 6-4 seam ranges from 1 to 28 µg/g, 
averaging 15.05 µg/g, with reduced levels in the northern, eastern, and central parts. The 

Figure 3. Ga concentration in (a) the 5 coal, (b) the 6-1 coal, (c) the 6-2 coal, (d) the 6-3 coal, (e) the
6-4 coal, (f) the 6-5 coal, and (g) the 6-6 coal in the Heidaigou coal–Ga deposit.



Minerals 2024, 14, 156 7 of 18

In the exploration area, the Ga concentrations within the 6-1 coal seam vary from 1 to
41 µg/g, averaging 19.02 µg/g, with higher concentrations in the northern and southern
regions and lower levels in the central area. In the 6-2 seam, the Ga concentrations range
from 0 to 36 µg/g, averaging 23.89 µg/g, predominantly higher in the eastern region but
lower in the northern and central regions. The 6-3 seam exhibits Ga levels from 1 to 31 µg/g,
with an average of 19.08 µg/g, and shows lower concentrations in the northeastern and
northwestern areas. The Ga concentration in the 6-4 seam ranges from 1 to 28 µg/g,
averaging 15.05 µg/g, with reduced levels in the northern, eastern, and central parts. The
6-5 seam’s Ga concentration, varying from 1 to 28 µg/g and averaging 17.63 µg/g, is higher
in the western part and lower in the northern, central, and southwestern sections. The
6-6 seam, with Ga levels between 1 and 28 µg/g and an average of 15.49 µg/g, exhibits
higher concentrations in the western and eastern regions and lower in the northern, central,
and southwestern parts. After averaging the Ga concentration across all coal seams by
thickness, the overall planar distribution trend of the coal–Ga deposit in the Heidaigou
exploration area becomes apparent. Enrichment points are concentrated near the developed
faults in the northern boreholes of the exploration area. The overall trend indicates a gradual
decrease from the north–central area towards the northeast and southeast. Ga is enriched
in the upper and lower layers of the coal seam. In the coal seams, partings are composed
of non-mineral rocks located between ore bodies. However, the Ga concentration in some
of these partings reaches 50 µg/g, which is the industrial grade for Ga in coal [34]. Since
Ga in partings is primarily found in clay minerals [12,40–43], consistent with the inorganic
state of Ga in coal, the Ga in partings represents a reservable resource for extraction and is
a potential mineral resource.

3.3. Vertical Direction of Coal–Ga Deposit

The structural complexity of the No. 6 coal seam is relatively simple, with minimal
variations in coal lithology and quality. A statistical analysis was conducted on the thickness
of the coal and Ga concentration within the six coal seams across 98 boreholes to assess
vertical variations.

Vertically, coal seam No. 6 features a high number of coal-bearing layers, with sig-
nificant variations in thickness and stability among these layers. The structure of thick
coal layers is complex, and coal seam No. 6 contains as many as 16 layers of intercalated
gangue. The bifurcation phenomenon in these thick coal layers is also notable. Frequently,
massive sandbodies are sandwiched in the middle, resulting in the reduced thickness of
the coal layers. The thin coal layers exhibit poor stability and have a limited developmental
range. The samples reach 50 µg/g, which is the industrial grade for Ga in coal that may be
found in any of the coal seams 6-1, 6-2, 6-3, 6-4, 6-5, or 6-6 in the exploration area [34], but
adjacent boreholes on the same exploration line show similar distribution characteristics.
Taking the east–west direction of exploration line XIV as an example (Figure 4), the Ga
concentration in drills 1404 and 1407 that have reached the industrial grade is concentrated
in seams 6-1-6-3, and the rest of the drills within the line also have similar characteristics.
These similar enrichment characteristics suggest that the formation of the coal-associated
Ga deposit in the Heidaigou mining area may be related to the convergence of terrigenous
materials during the peat accumulation period in the coal-forming basin, which is consis-
tent with previous studies indicating that the Heidaigou coal-associated Ga deposit has a
sedimentary origin [13,20,43]. The concentration of Ga in the coals of 6-1, 6-5, and 6-6 in
some of the drills reaches the industrial utilization grade, and the enriched layers are close
to the top and bottom plates of the coal seams; moreover, the concentration of Ga in the roof,
floor, and parting in the drills is higher, and parts of them reach the industrial utilization
grade of Ga, which indicates that epigenetic leaching and the action of groundwater may
be related to the enrichment of Ga in coal.
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3.4. Enrichment Genesis of Heidaigou Coal–Ga Deposit

The Ga concentration in the No. 6 coal seam of the Jungar Coalfield significantly
surpasses the arithmetic average of Ga in most Chinese coal seams, which is 6.64 µg/g [25].
This elevated concentration can be attributed to the provenance, paleo-sedimentary tectonic
conditions, and paleoenvironmental factors. Boehmite serves as the primary carrier of
Ga in coal [13,20,43]. During the formation of the 6-6 coal in the Jungar Coalfield, the
terrain was elevated in the northwest and declined towards the southeast. The terrigenous
clasts predominantly originated from the Middle Archaic, more extensively distributed
in the northwestern region of the Yinshan Paleoclast [67–75]. In the Heidaigou coal–Ga
deposit, the primary source of Ga in the coal is bauxite. During the deposition of the
No. 6 seam (comprising 6-2, 6-3, 6-4, 6-5), the northeastern part of the coalfield began
to elevate, revealing the bauxite of the Benxi Formation at the surface. Concurrently, the
coalfield was situated in a low-lying area between the northwestern Yinshan Paleoclasts
and the northeastern uplift of the Benxi Formation [76]. The coal-bearing strata of the
Jungar Coalfield are rich in clay minerals, which are prevalent not only within the coal
seams but also in the strata above and below the seams [20]. The boehmite in the middle of
the No. 6 coal seam of the Heidaigou coal–Ga deposit is morphologically varied, with part
of the boehmite filling in the cell for the colloidal genesis, which is the result of the primary
condition [13,14]. The enrichment of Ga in the top and bottom plates of the coal seams indi-
cates that the Ga-containing carriers in the clay minerals entered the coal seams through the
surrounding rocks under the action of groundwater, showing the influence of catagenesis,
which indicates that the catagenesis leaching action and the activity of groundwater are
other factors contributing to the enrichment of Ga in the Heidaigou coal–Ga deposit [20].
Moreover, in the clayey conglomerate of the Heidaigou coal series, significant quantities
of volcanic clasts and volcanic ash have been identified [67,77–79]. Earlier research on the
Taiyuan Formation revealed thin layers of volcanic tuff [80], indicating that these volcanic
tuff layers and clasts might have originated from volcanic activities along the orogenic belt
at the boundary of the North China and South Mongolia Plates. This suggests an additional
source of aluminum, Ga, and clay materials (Figure 5).
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4. Cooperative Exploration Model of Coal–Ga Deposit
4.1. Original Exploration Technical Means, Exploration Project Layout, and Resource Estimation
4.1.1. Exploration Technical Means

The original exploration employed traditional coal exploration techniques, consid-
ering the geological and topographical conditions, the complexity of structures, and the
stratigraphic occurrence characteristics of the Heidaigou mining area, including drilling,
3D seismic, geophysical well logging, borehole pumping tests, engineering geological tests,
petrogeochemistry, and engineering surveying. These methods were used to determine the
occurrence state, concentration, and resource reserves of the coal–Ga deposits [65].

4.1.2. Layout of Exploration Engineering

The drilling layout of the original exploration was based on the exploration line profile
method with vertical coal seams, the square exploration network system was selected for
the exploration layout, and the exploration line direction was arranged along the coal seam
trend and inclination. Previous exploration lines and boreholes were fully considered. The
main exploration lines were spaced at 250 m, and the typical distance between boreholes
was also 250 m. The feasibility resources of coal were defined by a grid of 1000 m × 1000 m,
the measured resources of coal were defined by a grid of 250 m× 250 m, and the drilling
was carried out to 10 m below the floor of the lowest coal seam to control the occurrence
conditions of coal layer resources.

4.1.3. Resource Estimation

The original exploration did not estimate the Ga resource reserves, put forward the
principle of determining the Ga grade, and used the geological ore block method to estimate
the resource reserves. The coal resource reserves in all categories are determined by a square
exploration network system with a corresponding mesh. In the original exploration, the
stratified resource quantities of the 6-1, 6-2, 6-3, 6-4, 6-5, and 6-6 coal seams were estimated
as proven resources. For the areas on both sides of the faults, the sections extending
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30 m outward from the intersection lines of the faults and coal seams were considered as
inferred resources.

4.2. Review of the Original Exploration Techniques, Exploration Project Layout, and
Resource Estimation
4.2.1. Review of Exploration Technical Means

Remote Sensing: The entire exploration area is crisscrossed with valleys and largely
covered by loess, making it a buried type of coal deposit. Remote sensing aerial surveys
are used to create topographic maps. These maps provide comprehensive physical fea-
tures, realistic geomorphic representations, the accurate and complete use of symbols,
and evenly distributed annotations, meeting the requirements for exploration and con-
struction mapping. Therefore, the choice of remote sensing in the original exploration
was appropriate.

3D seismic: The 3D seismic exploration area is located in the central–northern part
of the exploration area, centered around the speculated faults reported earlier. The area
has poor surface geological conditions but favorable deep seismic geological conditions.
The sedimentary environment of the No. 6 compound coal seam is relatively stable. By
selecting appropriate full three-dimensional interpretation techniques, it is possible to
precisely control the morphology of the coal seam floor undulations, faults, and collapse
columns within the exploration area. Thus, the use of three-dimensional seismic technology
in the original exploration was appropriate.

Drilling engineering: Most of the exploration area is covered by loess, the main strata
exposed in the gullies are the Permian Lower and Upper Shihezi Formations, and the
coal strata are not exposed. The depth of the uppermost recoverable coal seam (the No.
5 coal seam) is 65.43~180.04 m, indicating that it is a concealed coal deposit. The use of
drilling engineering can accurately expose the stratigraphy, control the ore layer, collect
samples, and determine the resources for the coal and Ga ore seams. Therefore, it is more
appropriate to choose drilling engineering in the original exploration.

Petrogeochemistry: The collection of coal core samples strictly adheres to the Coal
Resource Exploration Coal Sample Collection Procedures. Samples are promptly collected,
sealed in plastic bags, and, after inspection and weighing, transported promptly to the lab-
oratory for testing under conditions that ensure that the coal samples are sealed to prevent
oxidation [81]. In the original exploration, samples were combined from the coal seam top,
coal seam floor, and each layer of gangue. This approach failed to reflect the vertical varia-
tion of Ga, indicating that the sampling method in the initial exploration was not reasonable
and did not follow the principles of technical efficacy and progressive implementation.

Well logging: The original exploration conducted well logging on all boreholes, com-
plying with the Coal Field Geophysical Logging Standards for periodic calibration, scaling,
and adjustment. This approach accurately determined the depth, thickness, structure, and
stratigraphic position of mineable coal seams. It involved delineating geological profiles for
boreholes; establishing the depth, thickness, and stratigraphic boundaries of each rock layer;
enhancing the study of the geophysical properties of coal and rock layers; and comparing
these to understand the occurrence, variation patterns, and depositional environment of
coal seams. In the original exploration, conventional parameters from coal logging were
used, which can distinguish the lithology and differentiate coal seams, floors, and partings.
Acoustic logging can measure the elastic parameters of the coal rock, among which both the
bulk modulus and modulus ratio have a significant correlation with the Ga concentration
in coal rock [81]. This allows for the quantitative interpretation of the Ga concentration in
the coal rock. Therefore, the choice of well logging technology and logging parameters in
the original exploration was reasonable.

4.2.2. Review of the Layout of Exploration Engineering

The layout of exploration engineering in the original exploration followed the Mineral
Geological Exploration Standards for Coal [65], determining that the structural complexity
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of the exploration area was simple. The primary exploitable coal seam, No. 6, was
identified as stable, and the coal exploration was classified as Type 1, Category 2 [65].
The drilling project was principally arranged according to the exploration line profile
method perpendicular to the strata, with a 250 m × 250 m grid for the delineation of the
measured resource reserves and a 1000 m × 1000 m grid for the delineation of the indicated
resource reserves. Areas with a grid larger than 1000 m × 1000 m or only controlled by
sparse boreholes were designated for inferred resource reserves, meeting the line spacing
requirements of the coal geological exploration standards. The original exploration focused
solely on coal, with its layout designed accordingly, and did not consider the distribution
of Ga resources, thus lacking a corresponding exploration project layout for Ga.

4.2.3. Review of Resource Estimation

In the original exploration, coal seams 5, 6-1, and 6-2 (high-ash coal) were delineated
using the mine boundary, the exploitable boundary of the coal seam, and the boundary of
weathered coal, respectively. Coal seams 6-3–6-6 were defined using the mine boundary and
the boundary of weathered coal. These demarcations did not meet the basic requirements
for the division of resource estimation blocks as stipulated in the Mineral Geological
Exploration Standards for Coal [65].

In the original exploration, coal seams 6-1, 6-3, 6-4, 6-5, and 6-6 were estimated as
measured economic base reserves. On both sides of the faults, extending 30 m from the
intersection with the coal seam, the resources were classified as inferred resources. The
area surrounding weathered coal was also considered a measured resource. Coal seam
6-2 was treated as a measured resource, with inferred resources extending 30 m from the
fault intersections on both sides. Coal seam 5 was entirely classified as an inferred resource,
not meeting the resource estimation requirements of the Mineral Geological Exploration
Standards for Coal [65].

The original exploration estimated only coal reserves and did not assess Ga reserves.
The method of combining samples from the coal seam roof, floor, and each layer of gangue
during the original exploration did not reflect the vertical variation of Ga, leading to
significant discrepancies in the estimated Ga resource quantity.

4.3. Optimization of Coal–Ga Deposit Cooperative Exploration Technology, Exploration Project
Layout, and Resource Estimation
4.3.1. Optimization of Cooperative Exploration Technology Means

Based on the topography, surface characteristics, coal seam coverage, regional geolog-
ical background, stratigraphic features, and characteristics of the coal and Ga ore layers
in the exploration area, remote sensing, three-dimensional seismic assessments, drilling
projects, geophysical logging (scatter gamma, natural gamma, tri-lateral resistivity, acoustic
transit time, well deviation, well diameter), and petrogeochemistry were used to determine
the scale, morphological complexity, thickness stability, and structural complexity of the
coal and Ga deposits. Petrogeochemical exploration techniques were optimized for differ-
ent exploration stages, adhering to the principles of specificity, progressive implementation,
and economic rationality. During the general survey stage, a single full-layer sample was
taken for coal seams thinner than 3 m, and one sample every 3 m for seams thicker than
3 m. The same sampling strategy was applied during the detailed survey stage. During the
exploration stage, one sample was taken at every 1 m of the coal seam.

In the geophysical well logging analysis, the correlation of the Ga in coal and boehmite
was utilized. The elastic parameters of coal and rock, measured throµgh acoustic well
logging and seismic exploration, were used. Cross-plots of the bulk modulus and mod-
ulus ratio as interpretation templates enabled the quantitative interpretation of the Ga
concentration in the core. Therefore, these geophysical response characteristics were used
as geophysical indicators to obtain Ga resource estimates in the coal. In geophysical log-
ging analysis, acoustic logging and seismic exploration are utilized to measure the elastic
parameters of coal and rocks. By leveraging the correlation of the Ga and boehmite in coal,
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a cross-plot of the bulk modulus and modulus ratio can be employed for the quantitative
interpretation of the Ga concentration in coal

4.3.2. Optimization of Cooperative Exploration Project Layout

In the coordinated exploration of coal and Ga resources, it is crucial to thoroµghly
consider the uneven distribution and abrupt variations of elements, while adhering to
the principle of implementing differentiated strategies across various zones. In the study
area, different blocks should be delineated, and distinct engineering layout plans should
be adopted for each block. Taking into account the occurrence of coal-bearing strata, Ga
concentration distribution, and zoning, the layout of the exploration engineering system
should be strategically determined. For the general survey stage, a square exploration
grid system was used, while a rectangular exploration grid system was employed for the
detailed exploration stages. The orientation of exploration lines should be established by
thoroµghly evaluating the trend and inclination of coal seams, along with the variation
patterns of the Ga concentration. For the rectangular exploration grid, the longer axis should
be aligned in the northeast direction, perpendicular to the stratification of the coal and Ga
layers, while the shorter axis should align in the northwest direction, perpendicular to the
layer inclination. According to the specifications for coal exploration, it was determined
that the stability degree of the coal seam in the exploration area was a stable type, the
structural complexity was a simple type, and the exploration type of coal in the exploration
area was class 1 and type 2 [65]. The sum of the five geological parameter types of the
Ga layer was determined to be 3.0 according to the specifications for rare metal mineral
exploration, so the Ga exploration type was type I [66].

Considering the exploration types of coal and Ga layers, the engineering spacing
for coal and Ga deposits should be determined, and the exploration engineering layout
should be conducted in stages. During the general survey stage, a square exploration grid
system (1600 m × 1600 m) was used to understand the conditions of the coal layers and
Ga and to delineate high-Ga areas. During the detailed exploration stages, a rectangular
exploration grid system was employed, setting the indicated resource quantity grid for
coal at 800 m × 600 m, and the measured resource quantity grid for coal at 400 m × 300 m.
The indicated resource quantity grid for Ga was set at 200 m × 150 m, and the measured
resource quantity grid for Ga at 100 m × 75 m. This optimization divided the southwest,
southeast, and central zones of the exploration area into Ga resource potential areas, and
cooperative exploration project layout optimization was carried out in this area (Figure 6).
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4.3.3. Optimizing Resource Estimation

As the original exploration did not estimate Ga resources, this optimization used the
minimum utilization concentration of Ga in coal (20 µg/g) as specified in the Guidelines for
the Classification and Application of Valuable Elements in Coal [33]. The estimation of Ga
resources was conducted with the planar boundary defined by the Ga = 20 µg/g isopleth.

Utilizing the geological block method and adhering to relevant standards, resource
blocks were re-divided and coal resources for the principal mineable seams re-estimated.
The geological block method was reused for the correct delineation of resource blocks and
the reliable estimation of coal resources for the main recoverable coal seams and Ga based
on the corresponding specifications.

4.4. Coal–Ga Deposit Cooperative Exploration Model

Due to the trace and dispersed nature of Ga in coal, it is challenging to explore and
develop it as an independent mineral species. However, the enrichment of Ga in coal-
bearing sedimentary processes and its coexistence with coal and coal measures dictate
that simultaneous coal and Ga exploration is a necessary approach, grounded in theory,
technically feasible, economically rational, and strategically required. Building upon the
investigation into the occurrence characteristics of Ga in coal and coal measures, as well as
the regional metallogenic mechanisms, the principles for the coordinated exploration of
Ga-containing coal and coal measures have been refined. Following the existing coal explo-
ration models and the principle of maximizing benefits and interests, technical methods
for the coordinated exploration of coal-associated Ga and exploration engineering layout
plans have been proposed, thus constructing a model for the joint exploration of coal and
Ga (Figure 7).
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The process of the coal–Ga deposit collaborative exploration model follows the princi-
ple of research first (Figure 8). Coal–Ga cooperative exploration should be based on the
study of Ga enrichment mechanisms, compositional types, and occurrence patterns in coal
measures. It should utilize multidisciplinary theories like coalfield geology, geochemistry,
mineralogy, and exploration engineering as a foundation. Supported by a coordinated
exploration technology system composed of key technologies like precision drilling, de-
tailed geophysical exploration, and fine exploration, and guided by standards such as coal
exploration norms and solid mineral exploration norms, this approach involves analyzing
the rationality of existing exploration technical methods (combinations) and engineering
layout plans from aspects such as the orebody distribution, the control of the orebody mor-
phology by drilling projects, the selection of drilling project layout systems, exploration line
layout direction, and exploration project spacing. Proposals are made for the combination
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of technical methods for coal-type Ga exploration and exploration engineering layout plans
based on existing coal exploration models and the principle of maximizing benefits and
interests. This approach is designed to elucidate the occurrence characteristics and geo-
logical conditions conducive to Ga development in coal, ascertain the associated resource
quantities, and establish a geological framework for the comprehensive development and
utilization of Ga within coal.

Minerals 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 

deposits and a reasonable joint exploration engineering layout plan. Ultimately, the iden-
tification of coal and Ga deposit resources provides a geological foundation for the inte-
grated development and utilization of these mineral resources. 

 
Figure 8. Flow chart of cooperative exploration model of coal–Ga deposit. 

5. Conclusions 
(1) The Heidaigou coal–Ga deposit exhibits a distinct enrichment pattern, with the Ga 

concentration generally decreasing from the central–northern part of the exploration 
area towards the northeast and southeast. Vertically, the Ga concentration is une-
venly distributed within the coal seam and adjacent boreholes show similar distribu-
tion characteristics. 

(2) Considering the distribution characteristics of the Heidaigou coal–Ga deposit and the 
efficacy of exploration techniques for coal and Ga, the exploration methodologies, 
project configurations, and resource estimates outlined in the original report have 
been thoroughly reviewed and refined.  

(3) The cooperative exploration model for coal–Ga deposits emphasizes the distribution 
of ore bodies, managing the impact of drilling projects on the morphology of these 
ore bodies, and making systematic decisions regarding the layout of exploration en-
gineering and the concentration of Ga, providing the basis for the estimation of Ga 
resources. 

Figure 8. Flow chart of cooperative exploration model of coal–Ga deposit.

A remote sensing aerial survey is used to determine the main topographical and geo-
morphological features, exposed rock types, and coal seam coverage. Geological mapping
preliminarily establishes stratigraphic sequences, the geological characteristics of coal-
bearing strata, and geological structural features. Three-dimensional seismic exploration
precisely determines the depth, thickness, structure, and stratigraphic position of mineable
coal seams; understands the coal seam occurrence, variation patterns, and depositional en-
vironment; and infers the nature and morphology of underground strata. Drilling projects
reveal the stratigraphic positions of Ga ore layers, and the collection of geochemical sam-
ples and estimation of coal resources are carried out, with drilling depths set at 15 to 20 m
below the designed mining layer. Petrogeochemistry is an important basis for the accurate
evaluation of mineral resources. It is used to test the concentration of Ga in coal, assess
its occurrence characteristics, and estimate Ga resources. All boreholes in the exploration
undergo geophysical well logging, with the logging parameters primarily selected for
lithological division, coal seam differentiation, and the qualitative determination of the
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coal seam thickness. Acoustic well logging and seismic exploration are used to measure
the elastic parameters of coal and rock. Cross-plots of the bulk modulus and modulus ratio
serve as interpretation templates for the quantitative interpretation of the Ga concentration
in the core.

Based on the occurrence state of coal and coal measures both on the surface and verti-
cally, geological factors such as the thickness stability of coal seams, structural complexity,
scale of Ga ore layers, morphological complexity of ore bodies, uniformity of grade distribu-
tion, thickness stability of ore bodies, and the extent of structural influences are determined.
This information is used to determine the exploration type of coal and Ga deposits and a
reasonable joint exploration engineering layout plan. Ultimately, the identification of coal
and Ga deposit resources provides a geological foundation for the integrated development
and utilization of these mineral resources.

5. Conclusions

(1) The Heidaigou coal–Ga deposit exhibits a distinct enrichment pattern, with the
Ga concentration generally decreasing from the central–northern part of the explo-
ration area towards the northeast and southeast. Vertically, the Ga concentration
is unevenly distributed within the coal seam and adjacent boreholes show similar
distribution characteristics.

(2) Considering the distribution characteristics of the Heidaigou coal–Ga deposit and
the efficacy of exploration techniques for coal and Ga, the exploration methodologies,
project configurations, and resource estimates outlined in the original report have
been thoroughly reviewed and refined.

(3) The cooperative exploration model for coal–Ga deposits emphasizes the distribution
of ore bodies, managing the impact of drilling projects on the morphology of these
ore bodies, and making systematic decisions regarding the layout of exploration
engineering and the concentration of Ga, providing the basis for the estimation of
Ga resources.
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