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Abstract: Organic-rich shale rocks from the Paleocene–Eocene Palana Formation in western Rajasthan,
India, were systematically investigated based on inorganic and organic geochemistry combined
with microscopic examinations to evaluate the sedimentary paleoenvironmental conditions and
volcanic activity and their impact on the high organic carbon accumulation. The Palana shales are
categorized by high organic matter (OM) and sulfur contents, with total values up to 36.23 wt.% and
2.24 wt.%, respectively. The richness of phytoplankton algae (i.e., telalginite and lamalginite) together
with redox-sensitive trace elements further suggests a marine setting and anoxic environmental
conditions during the Paleocene–Eocene. The significant low oxygen conditions may contribute to
enhancing the preservation of organic matter during deposition. The mineralogical and inorganic
geochemical indicators demonstrate that the Palana organic-rich shale facies was accumulated in
a warm and humid climate with moderate salinity stratification conditions in the water columns,
thereby contributing to the high bioproductivity of the phytoplankton algae blooms within the photic
zone. The presence of significant contents of zeolite derived from volcanic material together with
silica minerals such as apophyllite and tridymite in most of the Palana organic-rich shales indicates a
volcanic origin and supports hydrothermal activities during the Paleocene–Eocene period. These
volcanic activities in this case are considered the influx of large masses of nutrients into the photic
zone due to the ash accumulation, as indicated by the presence of the zeolites in the Palana shales.
Therefore, the high bio-productivity associated with effective OM preservation led to the organic
carbon accumulation in the Palana Formation during the Paleocene–Eocene.

Keywords: organic-rich shale; bioproductivity; anoxia conditions; organic accumulation; Rajasthan;
western India

1. Introduction

Black shale sedimentary rocks, commonly referred to as organic-rich mudstone and oil
shale, are of great interest globally owing to their potential to act as sources and reservoirs
of hydrocarbon accumulations [1,2]. However, due to the rising demand for energy, both
marine and continental black shales have drawn more attention as conventional and uncon-
ventional petroleum resources [1–3]. Most of the back shale sediments contain appreciable
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amounts of organic matter (more than 1 wt.%) and are mainly accumulated under anoxic
bottom water conditions in the marine and continental sedimentary basins [4,5].

However, the diagenesis and accumulation of organic matter (OM) in these organic-
rich shale sediments are seriously limited by several factors, such as biological productivity,
continental weathering, sedimentation rates, clay mineralogy, water column oxygenation
levels, sea-level change, and the sedimentary environment of these shales [6–9]. The
productivity of organisms, together with the preservation and degradation of organic
matter, are the most important factors responsible for organic matter enrichment [10–13].
Bioproductivity is one of the major factors controlling organic matter input, whereas
the absence or depletion of dissolved oxygen in bottom waters fosters the preferential
accumulation and preservation of OM in sediments [14–16]. In this regard, multi-integrated
analytical methods are vital to the study of organic-rich shale systems, where organic and
inorganic geochemistry combined with microscopic examination can be used to assess the
origin of OM accumulation and their characteristics resulting from sedimentary factors
influencing the OM accumulation [15,16].

The key focus of the present study is Rajasthan state, which is one of the largest
hydrocarbon-containing sedimentary basins in western India (Directorate General of Hy-
drocarbons, India). Rajasthan is a part of the Indian Shield, which contains four basins,
including the Barmer, Bikaner-Nagaur, Jaisalmer, and Sanchore Basins (Figure 1). These
basins were developed by intracratonic sedimentation and are mostly located in the western
part of Rajasthan. These basins include a sizable lignite resource that is mostly composed
of thick organic-rich black shale partings, which are mainly found in the Paleocene–Eocene
sequences [17,18].
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The current research focuses on the Paleocene–Eocene Palana Formation. In the
Bikaner–Nagaur Basin, the Palana Formation has a thickness between 40 m and 120 m
(Figure 2).
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The Palana Formation has attracted the attention of academia and exploration compa-
nies due to the presence of OM-bearing black shale sediments as superior source rocks and
hydrocarbon generation potential. However, the lignite deposits in the Palana Formation
have been extensively investigated by many researchers to characterize their organic matter
and depositional setting and evaluate their hydrocarbon-generation potential [17,20–23]
using advanced petrological and geochemical techniques. Notably, the associated black
shale partings have received limited research attention [17] regarding their source rock
characterization and hydrocarbon generation potential. A preliminary study suggested
that Palana’s black shale deposits in the Gurha mines of the Bikaner–Nagaur Basin are
enriched in sapropelic OM, with an unimportant admixture of humic and/or zoogenic
substances locally, with mainly hydrogen-rich Types I and II kerogen, which have excellent
potential for oil generation [17].

Although previous geochemical assessments have focused on the OM in the black
shale facies within the Palana Formation and its potential for hydrocarbon generation [17],
the questions about the influence of the depositional environment and the reasons for high
organic carbon accumulation in the black shale rocks from the Palana Formation remain
largely unclear.

The main objective of the current research is to understand the source of OM, de-
positional environment factors (i.e., upwelling, reducing, and warm climatic conditions),
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and volcanogenic factors that influenced the high bioproductivity and organic carbon
accumulation in the black shale rocks from the Palana Formation. The current study inte-
grated previously published data from bulk organic geochemistry [17], with new findings
from lithotype and mineral composition together with petrographical and geochemical
characteristics of the black shale samples from the Palana Formation from the Gurha mine
in the Bikaner–Nagaur Basin, western Rajasthan (Figure 1) using multi-techniques, includ-
ing total organic carbon (TOC) and sulfur (S) contents, kerogen microscopy, quantitative
evaluation mineral-scanning electron microscopy (QEMSCAN), X-ray diffraction (XRD),
X-ray fluorescence (XRF), and scanning electron microscope (SEM) analyses.

2. Geological Setting

Rajasthan, which includes the Thar Desert in the northwest, is the largest state in India,
accounting for 10.75% of the country’s total land area [24].

In Rajasthan, four different sedimentary basins, including the Bikaner-Nagaur, Barmer,
Sanchore, and Jaisalmer Basins, were developed due to intracratonic sedimentation, with
an area of approximately 120,000 km2 [25]. The sedimentary basins of Rajasthan comprise
tectonic and lithological units spanning from the Archean to the Quaternary (Figure 1).

The Bikaner–Nagaur Basin was initially formed by extension along the Najd fault
system of the Arabian plate during the late Proterozoic–early Cambrian period, as suggested
by the paleogeographic reconstructions [26–28]. The western region of Rajasthan, including
the Bikaner–Nagaur Basin, has evolved through Cretaceous and Jurassic tectonic events
related to the separation of the Indian plate from the Gondwana supercontinent during
the Mesozoic era [21,29]. However, a new tectonic event during the Cenozoic era has also
been reported [30–33]. This is related to the Himalayan Mountains’ development as a result
of the Indian and Asian plates’ reactive convergence and collision during the Paleocene–
Eocene (Himalayan Orogeny) and the foreland basin of the Punjab in western India [33].
These tectonic events during the late Proterozoic–early Cambrian, Mesozoic, and Cenozoic
periods led to the formation of several fault systems in the Bikaner–Nagaur Basin [26–28].
Most of the faults in the basin resulted from an initial phase of rifting as a result of the
Pan-African orogeny during the Late Proterozoic [26–28]. However, this fault system in the
basin witnessed multiple phases of reactivation as a result of younger tectonic episodes
such as extension during the Permian–Triassic and early-to-mid Jurassic and compression
during the Cenozoic. These fault systems in the Paleozoic, Mesozoic, and Cenozoic eras
provided migration pathways for the potential rise of deep hydrothermal fluids.

However, the tectonic events during the late Proterozoic–early Cambrian, Mesozoic,
and Cenozoic also led to the formation of thick Neoproterozoic and Lower Palaeozoic
sediments with a maximum thickness of 1500 m [19], overlaid by a thin cover of upper
Palaeozoic, Mesozoic, and Tertiary sediments (Figure 2). However, multiple phases of
volcanic rock sequences and metasediment cycles occurred during the Precambrian. These
phases form a banded gneiss structure that acts as the basement rock. These oldest basement
gneiss rocks of the Archean age are collectively known as the Banded Gneissic Complex.
The lithostratigraphic column of the Bikaner–Nagaur Basin is presented in Figure 2. This
basin holds three groups of the sedimentary succession primarily from Neoproterozoic to
early Cambrian in age, namely the Jodhpur, Bilara, and Nagaur groups (Figure 2). The
sediments of these groups are a mixture of clastics, carbonates, and evaporites (Figure 2).
The Jodhpur Group is the deepest sedimentary succession in the Bikaner–Nagaur Basin,
which lies unconformably on the Precambrian basement rocks (Figure 2). The formations
of the Jodhpur Group were mainly composed of sandstones. These formations were
followed by the carbonate and evaporite sediments of the Bilara Group (Figure 2). The
Cambrian Nagaur Group includes Nagaur and Tunklian formations, which comprise
mainly sandstones for the Tunklian Formation and mainly shale for the Nagaur Formation
(Figure 2).

The Nagaur Formation is unconformably overlain by the Bap beds, consisting of
phyllite, gneiss, quartzite, and unmetamorphosed conglomerates [19]. Following the
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deposition of the Bap beds, clastic (i.e., sandstone and shale) was deposited during the
Permian, forming the Abu Badhaura Formation (Figure 2). The Badhaura Formation is
overlain by a thin layer of shale from the Jurassic Lathi Formation, with unconformable
contact (Figure 2).

Paleogene sediments are found internally in conformable contacts, such as the Jo-
gira, Marth, and Palana Formations. The detailed lithological sequence of the Paleogene
formations is illustrated in Figure 2.

The Paleocene–Eocene Palana Formation is the primary subject of this investigation,
which is mainly composed of lignite with carbonaceous black shale and sandstone (Figure 2).
The lignite-bearing Palana Formation in the Bikaner–Nagaur Basin includes land-derived
spore–pollen assemblages, showing that the floristic linkage was tropical to subtropical
and influenced by humid climatic conditions during peat accumulation [23]. The presence
of flora assemblages in the Palana lignite sediments also suggests the presence of a mixed
(i.e., rainforest/semi-arid/tropical evergreen) climatic condition in and around the mine
area [34–36]. The presence of suboxic-anoxic environmental conditions during deposition
of the Palana lignite and shale sediments was enough for accumulation and enhanced the
growth of algae and other microorganisms in the black shale of the Palana Formation [17,23].

3. Materials and Methods

Nineteen black shale samples from the Paleocene–Eocene Palana Formation were
collected from the exposed mine face of Gurha in the Bikaner–Nagaur Basin (Figure 3).
In the Gurha mine, the overall thickness of the Palana Formation is approximately 25 m,
which consists of a black shale sequence of approximately 8 m. In this case, each shale
sample was collected at a distance of approximately less than 0.5 m, following the sampling
method of Schopf [37]. The samples were subjected to multi-geochemical and petrological
analyses, as highlighted in the next subsections.
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3.1. Geochemical Analyses

Several geochemical measurements of TOC and S contents were carried out on the
studied black shale samples of the Palana Formation from Gurha mine in the Bikaner–
Nagaur Basin (Table 1). The collected samples were crushed into 72-mesh sizes using a
mortar and pestle and then used for TOC and S content measurements. However, the
preliminary geochemical results of TOC and S contents for most of the studied Palana shale
samples (14 samples) are available from our prior published research by Singh et al. [17],
and the other 5 new samples are added to the current study.

3.2. Optical-Microscopic Examinations

In this study, optical-microscopic examinations were conducted on the whole rocks
using a standard polished block method using a reflected light microscope [38].

The collected samples were milled into ±18 mesh (approximate ≤1 mm) sizes using a
mortar and pestle. For embedding the shale particulates into pellet mounts, epoxy resin, an
epoxy hardener, a release agent, and sample cups were used. The shale pellets were ground
for 3–5 min with a polishing machine using different silicon carbide waterproof papers
(mesh size: 180, 320, 600, 800, 1000, 1200, and 2000; speed: 150–180 RPM) under continuous
slow water flow. Buehler MicroCloth (Buehler, Lake Bluff, IL, USA) and MicroPolish gel
(0.05 micron) were used to polish the pellets. The polished blocks were then immersed
in oil and studied under white reflected light and cross-polarized under UV light with a
LEICA microscope (model DM6000M) (Leica Microsystems, Wetzlar, Germany), which had
fluorescence illumination capabilities that enabled examination of the organic facies and
differentiation of their assemblages.

3.3. Mineralogical and Elemental Composition Analyses

Various techniques are utilized to investigate the geochemical and mineralogical
compositions, including both bulk and surface analyses using different types of samples.

The bulk analysis is conducted using X-ray fluorescence (XRF) and X-ray diffraction
(XRD) techniques. In this case, ten black shale samples were crushed to less than 200
mesh and studied by an X-ray fluorescence (XRF) spectrometer using a PANalytical (EP-
SOLON3X) XRF spectrometer (Malvern Panalytical, Malvern, Worcestershire, UK). The
XRF analysis was used to determine the concentrations of the major oxides and trace
elements in the studied black shale samples.

Additionally, the bulk mineralogy of the targeted samples is investigated using X-
ray diffraction (XRD) with a Malvern PANalytical EMPYREAN Diffractometer (Malvern
Panalytical, Malvern, Worcestershire, UK) system at two theta ranges of 2–70 and 0.01
step size. The acquired XRD data were processed using X’Pert Highscore software. Qian
et al. [39] and Amao et al. [40] illustrated and discussed the concepts and experimental
design of such a technique.

For surface analysis, three polished shale samples were analyzed to obtain more
detailed information about the mineralogical and geochemical composition of specific
spots by scanning electron microscopy (QEMSCAN), including species identification (SPI),
scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The
QEMSCAN analysis is used to scan the sample with an electron beam and analyze the
backscattered electrons to determine the mineralogical and geochemical composition of
selected spots. The concepts, workflow, and applications of QEMSCAN are discussed in
the literature, including Qian et al. [39], Ayling et al. [41], and Alqubalee et al. [42].
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Table 1. Geochemical results of the analyzed black shales in the Paleocene–Eocene Palana Formation in western Rajasthan, India, including total organic carbon
(TOC) and total sulfur (TS) content and bulk mineral composition from XRD analysis.

Basin Mine Samples
ID

TOC
Wt.%

TS
Wt.%

Bulk Mineral Compositions (XRD Results)

Silica Minerals Clay Minerals Carbonate
Minerals Heavy Minerals Other Minerals

Quartz Olivine Apoph-
yllite

Tri-
dymite Albite Total Kao-

linite Dickite Mus-
covite Zeolite Total Calcite Cer-

ussite Total Anatase Zircon Clinopy-
roxene Ilmenite Rutile Total Gy-

psum Apatite Pyrite Total

B
ik

an
er

-N
ag

au
r

B
as

in

G
ur

ha

BSG-1 21.75 1.90

BSG-2 30.69 1.80

BSG-3 29.75 2.10

BSG-4 32.40 1.90

BSG-5 29.41 1.70

BSG-6 18.23 2.18 11.7 1.17 7.8 20.67 14.7 11.8 2.0 33.4 1.0 1.0 1.0 2.0 3.9 2.0 8.9 19.6 2.9 22.5

BSG-7 25.26 1.70 16.0 2.50 18.50 19.0 4.0 23.0 3.0 2.0 5.0 3.0 4.0 7.0 2.0 16.0 7.0 8.0 15.0

BSG-8 30.30 1.84

BSG-9 31.08 1.79 4.0 2.93 13.1 7.1 27.13 27.3 19.2 46.5

BSG-10 30.04 2.04 9.0 2.90 7.0 18.90 8.0 21.0 15.0 2.0 51.0 2.0 1.0 3.0 2.0 7.0 9.0 4.0 4.0 4.0 12.0

BSG-11 29.46 2.24 3.9 3.00 8.8 15.70 22.5 19.6 2.0 44.1 2.0 2.0 2.9 2.9 7.8 7.8

BSG-12 28.57 2.12

BSG-13 36.23 1.72 13.0 2.30 8.0 11.0 34.30 24.0 17.0 2.0 43.0 2.0 2.0

BSG-14 26.73 1.63 2.0 3.20 9.1 14.30 14.1 16.2 6.1 36.4 1.0 1.0 2.0 1.0 2.0 3.0 8.0

BSG-15 32.09 1.55 10.8 10.80 21.6 15.7 19.6 2.9 59.8 2.9 2.9 3.9 2.9 12.7 19.5 6.9 6.9

BSG-16 28.64 1.85

BSG-17 33.04 1.74 19.8 5.00 5.9 30.70 15.8 11.9 3.0 30.7 1.0 1.0 13.9 20.8 34.7

BSG-18 29.57 2.09

BSG-19 4.04 1.91 42.0 2.00 3.0 5.0 52.00 5.0 6.0 1.0 12.0 1.0 1.0 1.0 4.0 1.0 6.0 24.0 4.0 2.0 30.0
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4. Results
4.1. Total Organic Carbon (TOC) and Sulfur (S) Contents

The presence of organic matter in sediments is commonly inferred by the organic
carbon content (TOC), which is conventionally reported as a function of weight percent.
In this regard, the studied black shales of the Paleocene–Eocene Palana Formation are
enriched by OM with TOCs ranging between 4.04 and 36.23 wt.% (Table 1). Most of the
measurements indicate TOC > 10 wt.% (18.23%–36.23%), as shown in Table 1. The high
amount of OM points towards a reducing environmental condition during the deposition
of these studied black shale sediments. However, the conditions are constrained using
other geochemical data, which are detailed in the following sections.

In addition, the sulfur content in the studied shale samples ranges from 1.55 wt.% to
2.24 wt.% (Table 1). The S content usually differentiates between marine and -non-marine
environments [43]. High S content (i.e., >1 wt.%) denotes a marine environment [15,43,44],
which is the case for the Palana black shale facies. However, the relationship between TOC
and S contents also agrees that the analyzed black shales generally fall within the normal
marine environmental setting (Figure 4).
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4.2. Organic Facies Characteristics

Organofacies of the studied black shale samples of the Palana Formation in the Gurha
(Bikaner–Nagaur Basin) were identified using microscopic investigation under UV radia-
tion reflected light, as shown in Figure 5. The organofacies are dominated by high amounts
of liptinite, with small amounts of huminite maceral from the terrestrial organic matter
(Figure 5). The liptinite maceral in the studied shale samples is presented as structured
and unstructured organic matter, including alginate, sporinite, and resinite, which are
characterized by fluorescence emission colors ranging from orange to yellow (Figure 5).
However, the hydrogen-rich liptinites display a high abundance of alginate, and they
were classified into telalginite and lamalginite based on their morphologies (Figure 5a–e).
Telalginite arises from algae and occurs as fan-shaped, flattened discs and discrete lenses
(Figure 5a,b), whereas lamalginite occurs as thick lamellae (Figure 5c–e). In addition, most
of the sporinites in the black shale samples occur as thin-walled, isolated microspores
(Figure 5e,f). Other unstructured macerals, such as resinite, also occurred in the studied



Minerals 2024, 14, 126 9 of 32

shale samples (Figure 5). The resinite appears to be rounded, oval, and laminar-shaped
(Figure 5g,h).
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reflected UV light with a field width of 0.2 mm, including different organic matter assemblages of
liptinite such as alginite, sporinite, and resinite ((a–c) from the BSG-9 sample, (d) from the BSG-6
sample, and (e–h) from the BSG-11 sample).

4.3. Mineralogical Composition and Lithotype

The bulk mineral compositions of the analyzed black shale samples from the Palana
Formation were primarily determined by the XRD results coupled with QEMSCAN results
for the surface of the samples. According to the mineral composition distributions in the
XRD results, the clay (12.41%–59.8%) and silicate (10.8%–52.0%) minerals prevail over the
carbonates (1%–5%), with significant amounts of heavy minerals (2.0%–19.5%) and other
minerals (6.9%–34.7%), including gypsum, apatite, and pyrite (Table 1). Most of the clay
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minerals in the Palana black shale samples are kaolinite and dickite, with muscovite and
some zeolite, while the silica minerals comprise quartz, olivine, and other silica minerals
(i.e., apophyllite, tridymite, and albite). However, the prevalence of clay (12.41%–59.8%)
and silica (10.8%–55.0%) minerals in the Palana black shale samples is inferred as mainly a
clay-rich siliceous mudstone lithotype with silica-rich argillaceous mudstone and silica-
dominated lithotypes (Figure 6).
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Taylor [45]).

Such enrichment with clay and quartz minerals is also clearly demonstrated from the
species identification (SPI) of the QEMSCAN results (Figure 7). The QEMSCAN results
also deciphered that the Palana shale facies contains mainly organic matter associated with
siderite, gypsum, pyrite, and heavy minerals (Figure 7). In addition, the SEM results also
revealed that the analyzed Palana shale samples contain common clay minerals (Figure 8A),
including kaolinite, dickite, and chlorite (Figure 8A-1,A-2). The presence of barite was
also observed in the studied samples in the form of fabric (Figure 8B-1), associated with
organic matter (Figure 8B-2,B-3), and framboidal pyrite (Figure 8C-1). The occurrence of
foraminiferal assemblages in the studied samples (Figure 8C-2) suggests a marine envi-
ronment. The marine setting is also demonstrated by the presence of the coccolithophore
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plankton (i.e., Zeugrhabdotus erectus Sp.; Figure 9A), which is regarded as marine algae. The
SEM also shows that the fabric barite is mainly associated with algal- and bacterial-derived
organic matter (Figure 9B,C). From this point of view, the presence of barite in the studied
shale samples may have formed as a replacement for the gypsum due to bacterial mediation
in a humid climate [46,47].
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4.4. Major and Trace Elements Composition

The abundances of major oxides and selected trace elements, as well as their ratios, are
presented in Table 2. Most of the studied Palana shale samples are higher in SiO2 (42.49%–
51.69%), Al2O3 (26.68%–32.22%), and significant amounts of Fe2O3 (8.61%–22.68%), while
they are depleted in TiO2, SO3, CaO, MgO, P2O5, Na2O, and K2O, respectively (Table 2).

The correlation between the Fe2O3 and SO3, as indicated by the cross-plot Fe-S, shows
that the high concentrations of the Fe2O3 in most of the samples plotted to the right of
the pyrite defined line (Figure 10A), indicating that pyrite is not the main source of the
significant occurrence of the Fe fraction in the analyzed samples, suggesting other sources
like olivine. The XRD results confirm that olivine is also present in the analyzed shale
samples (Table 1); thus, olivine is the main source of Fe, as clearly demonstrated by the
direct proportional relationship between Fe2O3 and olivine, as shown in Figure 10B.
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Table 2. Inorganic data (X-ray fluorescence analysis), including major oxides (%) and trace elements (ppm) of the analyzed black shales of the Paleocene-Eocene
Palana Formation in western Rajasthan, India.

Major Oxides (%) Trace Elements (ppm)

Sample
ID SiO2 Al2O3CaO Fe2O3K2O MgO P2O5 TiO2

Na2
O SO3

Mn
O Al/K K/Al Ca/

Mg
Fe+Mn/

Ti
100*
Mg/Al CIA PIA V Cr Co Ni Cu Zn Ga Rb Sr Zr Cd Ba Rb/Sr V/Ni V/V+

Ni V/Cr Sr/Cu Sr/Ba Ga/
Rb

Co*
Mn

BSG-
6 46.58 31.31 1.45 13.20 0.12 0.46 0.25 3.64 0.24 1.97 0.01 260.9 0.004 3.15 13.20 1.47 94.54 94.90 1690 637.9 588.4 233.3 497.1 199.9 68.6 6.8 380.1 830.8 9.2 166.1 0.02 7.24 0.88 2.65 0.76 2.29 10.09 0.0006

BSG-
7 43.44 30.22 1.40 18.59 0.08 0.47 0.40 3.71 1.12 0.02 377.8 0.003 2.98 18.60 1.56 95.33 95.58 1660 647.8 258.7 438.6 154.6 582.4 825.8 6.42 0.87 2.56 1.33

BSG-
9 51.69 31.23 1.41 15.95 0.27 0.74 0.14 3.30 0.30 1.70 0.01 115.7 0.009 1.91 8.61 2.37 94.04 94.85 1550 590.5 391.3 220.2 435.5 292.0 73.2 21.7 347.5 786.4 39.6 206.2 0.06 7.04 0.88 2.62 0.80 1.69 3.37 0.0004

BSG-
10 43.40 26.68 1.14 22.86 0.18 0.61 0.22 2.61 0.27 1.47 0.02 148.2 0.007 1.87 22.87 2.29 94.38 95.01 1090 470.9 1050 139.8 312.3 180.2 46 15.6 276.7 606.5 26.0 0.06 7.80 0.89 2.31 0.89 2.95 0.0021

BSG-
11 46.53 31.27 1.63 12.95 0.10 0.51 0.29 3.48 0.24 2.24 0.01 312.7 0.003 3.20 12.95 1.63 94.07 94.37 1620 628.3 596.3 247.0 502.5 226.5 73.3 7.3 509.1 782.2 27.3 233.2 0.01 6.56 0.87 2.58 1.01 2.18 10.04 0.0006

BSG-
13 48.48 30.22 1.45 11.20 0.19 0.40 0.28 3.14 0.24 1.27 0.02 159.1 0.006 3.88 11.21 1.32 94.14 94.74 1590 537.6 598.4 223.3 397.1 299.9 68.6 7.8 280.1 850.8 28.8 186.1 0.03 7.12 0.88 2.96 0.71 1.51 8.79 0.0012

BSG-
14 42.49 32.22 1.60 15.59 0.09 0.57 0.50 3.51 0.33 1.32 0.02 358.0 0.003 2.81 15.60 1.77 94.10 94.36 1060 447.8 578.4 368.7 438.6 184.6 78.0 13.7 592.4 725.9 20.7 210.8 0.02 2.87 0.74 2.37 1.35 2.81 5.69 0.0012

BSG-
15 50.79 31.23 1.51 9.61 0.29 0.78 0.19 2.80 0.39 1.60 0.01 107.7 0.009 1.94 9.61 2.50 93.45 94.31 1650 580.4 491.3 240.5 415.5 299.8 65.2 23.7 357.5 656.4 35.6 209.2 0.07 6.86 0.87 2.84 0.86 1.71 2.75 0.0005

BSG-
17 45.90 29.65 1.24 18.86 0.22 0.69 0.32 2.91 0.29 1.57 0.02 134.8 0.007 1.80 18.87 2.33 94.43 95.13 1190 570.8 1090 159.2 212.3 150.5 46.0 17.6 256.7 696.5 29.5 143.2 0.07 7.47 0.88 2.08 1.21 1.79 2.61 0.0022

BSG-
19 49.83 28.27 1.23 8.61 0.08 0.61 0.31 3.18 0.26 2.34 0.01 353.4 0.003 2.51 15.95 2.16 94.74 95.01 1520 648.3 496.3 217.5 509.5 236.9 35.3 10.3 518.1 882.1 9.2 243.2 0.02 6.99 0.87 2.34 1.02 2.13 3.43 0.0005
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Figure 10. (A) Relationship between the F2O3 and TS contents (after Algeo and Maynard [48]);
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showing that the Fe element is mainly sourced from olivine.

The presence of the Si, Al, Fe, Ti, S, Ca, Mg, Na, Mn, and K elements, associated
with organic carbon (C), is also supported by the EDS results from the studied black shale
samples of the Palana Formation, as shown in Figure 11.
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Furthermore, the analyzed Palana shale samples show enrichment with V, Ni, Cr, Co,
Cu, Zr, Zn, Sr, and Ba trace elements (Table 2). The observed enrichment of trace elements
in the studied samples, especially V, Ni, and Sr, is suggestive of a marine environment [49].

The Palana samples also contain other trace elements in low amounts, such as Ga,
Cd, and Rb, respectively (Table 2). However, several geochemical ratios, such as V/Ni,
V/(V+N), V/Cr, Sr/Cu, Sr/Ba, and Ga/Rb, are in the ranges of 2.87–7.80, 0.74–0.89, 2.08–
2.96, 0.71–1.35, 1.51–2.81, and 2.61–10.09, respectively (Table 2). These ratios derived from
trace elements are commonly used to assess the paleoredox and paleoclimate conditions,
as discussed in the next subsections.

5. Discussion
5.1. Sedimentary Depositional Environment during the Paleocene–Eocene

The knowledge and information of the sedimentary depositional environment of
the black shales in the Palana Formation during the Paleocene–Eocene were studied by
employing multiple proxies, including elemental data, together with kerogen microscopy.
In this case, the sedimentary depositional environments and their impact on organic matter
accumulation in the black shale of the Palana Formation are discussed based on three main
factors, including paleoredox conditions, paleosalinity, and upwelling action.

The organic carbon accumulation and its preservation condition during deposition
are directly linked to the paleoredox conditions [7,14,50]. The paleoredox conditions are
divided into four levels based on the concentration of dissolved O2 in bottom water, as
follows: oxic, dysoxic, anoxic non-sulfidic, and anoxic sulfidic (euxinic) conditions.

In this study, anoxic conditions (low oxygen) during the Paleocene–Eocene period
were recognized based on the high amount of OM in the black shale facies of the Palana
Formation, with TOC up to 36.23 wt.% (Table 1), which increased the effective preservation
and resulted in organic enrichment. The finding of the anoxic condition (low oxygen)
during the Paleocene–Eocene is established using redox-sensitive trace elements (i.e., Ni, V,
and Cr) and their ratios as redox proxies [51].
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The V and Ni trace elements are commonly insoluble and are enriched under reducing
environmental conditions, whereby they can be used as redox-sensitive indicators for
anoxic environmental conditions [48,51,52]. In this case, the V concentration is higher
than Ni in the black shale facies of the Palana Formation, indicating that marine anoxic
environmental conditions were promoted during the Paleocene–Eocene, as indicated by
the relationship between the V and Ni (Figure 12A). The anoxic environmental conditions
during the accumulation of the Palana black shale facies can also be determined by V/Ni
and V(V+Ni) ratios [53,54]. The V/Ni ratio has been used by Galarraga et al. [53] as an
indicator for the interpretation of paleoredox conditions. According to this work, a V/Ni
ratio of <2 indicates an anoxic condition, while V/Ni ratios of >1 indicate deposition under
oxic conditions. Generally, the values of the V/Ni ratio recorded in the shale samples from
the Palana Formation are higher than 2 (Table 2), further suggesting anoxic conditions
during the deposition of these shale sediments. Moreover, the V(V+Ni) ratio of the Palana
shales under investigation is between 0.74 and 0.89, indicating anoxic environmental
conditions during the deposition [54]. This interpretation is also demonstrated by the
association between the V/(V+Ni) ratio and TS content, which alludes to marine anoxic
environmental conditions (Figure 12B).

In addition, the V/Cr ratio is also commonly used to provide information on the
oxygenation conditions in the environment of deposition [55]. Jones and Manning [55]
suggested that a V/Cr ratio higher than 4.5 shows anoxic conditions were predominant,
while a V/Cr ratio less than 2 indicates oxic conditions. Accordingly, the values from the
Palana shale samples are 2 < V/Cr < 4.5 (Table 2), resulting in anoxia beginning with less
prevalence during the period of their deposition. However, this study integrates the organic
matter content and enrichment in elements such as S and Fe to assess the environmental
conditions during deposition time, as reported by Algeo and Liu [56]. In this regard, the
concentrations of Fe2O3 and S, together with TOC content, were plotted on a Fe2O3-TOC-S
ternary diagram and generally show that the Palana black shale samples were plotted
in the zone of low oxygen conditions, as shown in the ternary diagram of Arthur and
Sageman [57] (Figure 13). The anoxic depositional setting (low oxygen) of the Palana black
shale facies during the Paleocene–Eocene was also recognized based on the isoprenoid
distributions and their narrow Pr/Ph ratio of less than 0.60 [17], where low O2 conditions
promote Ph enrichment when compared to Pr [58].

Therefore, these Paleocene–Eocene anoxic environmental conditions contribute to the
preservation of OM and maximize the effect of OM’s accumulation during the deposition
of the organic-rich shale sediments of the Palana Formation.

Furthermore, reconstruction of the paleosalinity condition is another important factor
that greatly helps in understanding the mechanism of organic carbon enrichment, including
the biological community and anoxic conditions of the water column [59].

In this study, salinity-sensitive elements in the studied Palana black shale facies,
including Ca, Mg, and Al, were used to assess the salinity condition during the Paleocene–
Eocene depositional time [60–62]. In this regard, the Sr and Ba trace elements and their
ratios of Sr/Ba (Table 2) are mainly used as an indicator for salinity and/or evaporation
conditions [63–67]. The high concentrations of Sr indicate high salinity and/or evapo-
ration conditions during the deposition of the sediments, with high values of the Sr/Ba
ratio [59,68]. Accordingly, a preliminary investigation of the studied Palana black shale
facies indicates that it was deposited in relatively high salinity stratification with a high
relative Sr/Ba ratio between 1.51 and 2.81 (Table 2).

This finding is also consistent with the Sr/Ba ratio versus V/Ni ratio diagram, as
the salinity stratification of the water columns regulates the anoxic conditions during the
deposition of Palana shale sediments (Figure 14A). This interpretation is also corroborated
by the association between the Ca, Mg, and Al elements and their 100 × Mg/Al and Ca/Mg
ratios [69,70]. In this case, a low 100 × Mg/Al ratio of <1 usually indicates freshwater
conditions, while values 1 < 100 × Mg/Al < 10 suggest normal seawater, and a 100 × Mg/Al
ratio of >10 implies high salinity—seawater in hypersalinity deposition conditions [69,70].
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In our case, the studied black shale facies in the Palana Formation exhibits 100 × Mg/Al
ratios between 1.32 and 2.5 (Table 2), indicating that it was deposited in a moderate
salinity (normal seawater) condition during the Paleocene–Eocene, as demonstrated by
the relationship between sulfur content and relatively high values of the Ca/Mg ratio
in the range of 1.8–3.88 (Figure 14B). However, the availability of the nannofossil taxa,
i.e., Zeugrhabdotus erectus, in the Palana shale samples (Figure 9A), was used as an
indicator for shelf species [71–73], where a condition of warm normal-salinity seawater
was prevailed.
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In addition, upwelling processes affect the periodic influx of large masses of nutri-
ents into the photic zone, and bioproductivity is closely related to nutrient supply in the
sea [74,75].

Currently, a number of inorganic geochemical elements such as Mo, Cd, Mn, and Co
have been used to indicate the impact of the vertical circulation of sea water (upwelling
systems) on the sedimentogenesis of black shale [76–79]. In this case, upwelling zones show
low abundances of both Co and Mn elements, while the contents of Co and Mn are relatively
high in restricted basins [77]. This may be attributed to an insufficient fluvial input supply
in regions affected by upwelling systems [77], where the Co and Mn enrichment in marine
sediments is controlled by detrital input and authigenic enrichment [80]. The Co × Mn
module has been developed to show that values above 0.40 indicate limitation in a marine
basin, and Co × Mn below 0.4 is typical for upwelling conditions.

In this study, high upwelling conditions during the Paleocene–Eocene period were
recognized based on the Co × Mn beginning smaller than 0.40 (0.004–0.22). This inter-
pretation is corroborated by the association between the Co × Mn module and the Al2O3
content, as shown in Figure 15A. Similarly, the relatively high Cd content, together with an
increase in organic matter in the studied black shales from the Palana Formation, indicates
upwelling processes in water bodies with high primary bioproductivity during the deposi-
tion period [81]. This finding is clearly matched with the direct proportionality between
the Cd and TOC contents (Figure 15B). In addition, the evidence of upwelling deposition is
the presence of phosphates, as indicated by the high P2O5 of up to 0.50% in the studied
Palana shale samples (Table 2).
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5.2. Paleoclimate Evolution during the Paleocene–Eocene

Paleoclimatic conditions have been suggested as one of the major factors controlling
the biological productivity within the photic zone of water columns, whereby the increased
bioproductivity in the water is related to enhanced humid–warm climate conditions [15,16,82].

In this study, the paleoclimate reconstruction during the Paleocene–Eocene was at-
tempted based on a variety of climate indexes, including Sr/Cu, Rb/Sr, Ga/Rb, and
SiO2/Al2O3 ratios. These ratios are proposed and widely used to reconstruct paleoclimate
conditions [15,16,82].

The Sr/Cu ratio is extensively used to differentiate between a hot–arid (Sr/Cu > 10)
and a warm–humid (1.3–5.0) climate [83,84]. In our case, the results show that the Sr/Cu
ratios for most of the studied Palana shales exhibit low Sr/Cu ratios of <5 (0.76–1.35),
suggesting that a warm and humid climate prevailed during the deposition of the Palana
black shale facies. This interpretation of warm–humid climatic conditions is also consistent
with the lower Rb/Sr values of less than 0.01, because high Rb/Sr ratios of >1 generally
indicate cold and arid climates [85].

This finding of warm–humid climatic conditions is clearly supported by the cross-plot
of Rb/Sr against Sr/Cu (Figure 16A).

Moreover, the major oxide-based observations, which involve SiO2, Al2O3, K2O, and
Na2O (Table 2), can also be used to characterize warm and humid climates [15,86]. The
Al2O3 and K2O major oxides and their associated trace elements gallium (Ga) and rubidium
(Rb) can be used to examine the paleoclimatic conditions during the depositional period of
the Palana organic-rich shale sediments [15]. The Ga is associated with Al2O3, whereas the
Rb is associated with K2O [87–89].

However, Al2O3 is generally enriched with kaolinite clay minerals and is known to be
associated with warm climates [87,88], while K2O is associated with illite clay minerals and
reflects dry and cold climatic conditions [89].

In this study, the studied black shale of the Palana Formation is enriched in Al2O3
compared to very low K2O, with a high ratio of Al/K (Table 2). The high abundance of
Al2O3 is probably attributed to a kaolinite content of up to 27.3%, as clearly shown from
the XRD and SPI-QEMSCAN results (Table 1; Figure 7). The presence of abundant kaolinite
within the studied samples is believed to confirm the warm and humid climates during
the Paleocene–Eocene, as supported by the Ga/Rb versus K2O/Al2O3 binary diagram
(Figure 16B) reported by Roy and Roser [90].

Moreover, the chemical weathering of the parent rock in the source area is generally
affected by the climatic conditions [86]. It can be estimated using mineralogy and several
geochemical indices of the major earth elements [91,92]. The chemical weathering intensity
for sedimentary clastic rocks in the source area was also widely evaluated using the miner-
alogical compositions together with several weathering indexes, including the chemical
index of alteration (CIA) and plagioclase index of alteration (PIA). These CIA and PIA
weathering indexes were calculated based on Al2O3, CaO, Na2O, and K2O, as proposed by
previous published works [91,93], and used by recent workers such as Armstrong-Altrin
et al. [92] (2018) and He et al. [94]. These authors reported that the CIA and PIA, with a
value of <60, indicate low weathering, 60–75 indicate moderate weathering, and values
of >75 indicate intensive weathering. Accordingly, the studied shale samples show high
values of the CIA and PIA indexes between 93.45 and 96.00 (Table 2), indicating a highly
intensive degree of chemical weathering. This interpretation of the high chemical weath-
ering trends is confirmed by the ternary diagram (A-CN-K) of Nesbitt and Young [95],
as shown in Figure 17. Based on the A-CN-K ternary diagram, most of the studied shale
samples of the Palana Formation plotted above the line of plagioclase and K-feldspar and
clustered near the A-CN line towards the kaolinite composition, exhibiting a high degree
of chemical weathering (Figure 17). This is in agreement with the high abundance of clay
minerals, with high contributions of kaolinite and dickite (Table 1) that were derived from
the weathering of silicates (primarily feldspar) [96]. Therefore, the original shale rocks
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of the Palana Formation were highly weathered in warm and humid climates during the
Paleocene–Eocene.
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In addition, the warm water period during the deposition of the Palana shale samples
(Paleocene–Eocene) is also confirmed by the high abundance of phytoplankton blooms
(Figure 5), since the growth and decomposition of phytoplankton are accelerated in warm
water and decreased during cold-water conditions. In this way, the presence of high phyto-
plankton algae and other microorganisms in the analyzed Palana black shale sediments is
probably due to the prevailing long warm-water episodes during the Paleocene–Eocene.
However, the evidence for the presence of the richness of phytoplankton algae during the
warm and humid climatic conditions is also demonstrated and supported by the occurrence
of barite associated with organic matter (Figure 8B) and the relatively high barium (Ba)
content in the black shale intervals of the Palana Formation (Table 2), which are tightly
connected with a high primary phytoplankton productivity [97–99], because the upwelling
brings abundant nutrients to the surface seawater during the same time (Figure 15A).

However, the nannofossil taxa, i.e., Zeugrhabdotus erectus, is considered a shelf
species, and it was used as an indicator of high fertility [71–73]. Accordingly, the availability
of Zeugrhabdotus erectus in the Palana shale samples (Figure 9A) is indicated by the high
nutrient level on the sea surface during the precipitation of Palana shale sediments on the
shelf. This high level of nutrients is associated with acceleration in hydrologic cycles and
the weathering rate of preexisting rocks that has been promoted by warming on the sea
surface [100,101].

5.3. Hydrothermal and Volcanic Activity during the Paleocene–Eocene

In order to estimate the hydrothermal activities during the Paleocene–Eocene, this
study used hydrothermal geochemical indicators and a discrimination diagram of major
and trace elements. The Fe and Mn elements can be employed to ascertain the influence of
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hydrothermal activity on sedimentary rocks, which are mostly easily and actively enriched
in sediments during hydrothermal activities [102]. The Fe and Mn were integrated together
with Ti and used to calculate the (Fe + Mn)/Ti ratio, which is a good indicator to evaluate
hydrothermal activities and their impact on the sedimentary rocks [102,103]. A (Fe + Mn)/Ti
ratio of <15 provides a strong hydrothermal indication, while a (Fe + Mn)/Ti ratio of >15
indicates the influence of week-long hydrothermal activities during deposition under oxic
conditions [60,104]. In this case, the studied black shale samples from the Palana Formation
exhibit (Fe + Mn)/Ti ratios between 8.61 and 22.87, with an average value of 14.75 (Table 2),
indicating generally strong hydrothermal activities during the Paleocene–Eocene. This
result is confirmed by the relationship between the Fe and Mn elements and the sum of
the Cu, Co, and Ni trace elements [104]. The richness of the Fe compared to Mn, Cu, Co,
and Ni in all examined samples (Table 2) supports the inference of strong hydrothermal
activities during the Paleocene–Eocene, which is quite similar to the Red Sea hydrothermal
sedimentary signature based on the Fe-Mn-(Cu + Co + Ni) × 10 ternary diagram of Qi
et al. [104], as shown in Figure 18.
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Moreover, the significant amounts of silica minerals (i.e., apophyllite and tridymite)
together with zeolites in the studied black shale intervals (Table 1) are mostly considered to
be of volcanic origin and support hydrothermal activities during the Paleocene–Eocene.
Further, the hydrothermal activities during the deposition of the Palana shale sediments are
also confirmed by the low concentrations of olivine minerals, which react with hydrother-
mal and weathering processes. Although the olivine is an unstable mineral and rapidly
reacts by hydrothermal and weathering, the preservation of the olivine in the Palana shale
sediments (Table 1) under humid and tropical conditions with hydrothermal activity dur-
ing deposition may be attributed to the presence of the Fe-rich olivine, as demonstrated
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by the high Fe content with a very low Mg content and the good correlation between
the Fe content and olivine (Figure 10B). The Fe-rich olivine (fayalite) is considered to be
more stable than the Mg-rich olivine (forsterite) [105], which could be brought both by
river flows from the continent during the weathering of the volcanic rocks. The Fe-rich
olivine (fayalite) varieties are found in intermediate and acidic igneous rocks [106]. This
is consistent with the intermediate igneous rock origin for the Palana shale sediments, as
demonstrated by a high abundance of SiO2 content [92], with values of more than 40%
(Table 2). The association between the Ti and Zr oxides also alludes to the intermediate
igneous rock (Figure 19).
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In addition, hydrothermal activity is commonly closely associated with the intrusion
or eruption of volcanic rocks and related to a strong tectonic event.

In India, the volcanic eruption is a result of younger tectonic episodes related to the
collision between the India and Asian plates during the Paleocene–Middle Eocene [30,31].
These volcanic activities provided an influx of large masses of ash accumulations in the
Palana shale facies, as indicated by the relatively high contents of zeolites (up to 6.1%).
However, when large amounts of volcanic ash are introduced into aqueous environments,
it may lead to the dissolution of absorbed elements, including metal salts, thus mainly
supplying a high concentration of nutrients for organisms and enhancing and increasing
the primary bioproductivity [108,109]. In this case, nutrients such as phosphorus (P) are
enriched in the studied Palana shale samples, with a P2O3 range of 0.14%–0.50% together
with high Fe contents (Table 2), indicating that nutrients were transported and concentrated
in these shales after deposition and hydrolyzation of volcanic ash [110]. This interpretation
is confirmed by the significant positive correlation between P2O3 and zeolite derived from
volcanic material (Figure 20), where the primary productivity of the aquatic organisms was
due to the input of volcanic ash containing abundant nutrients and salts [110].
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6. Conclusions

Organic-rich shale facies of the Palana Formation from a Gurha mine in western
Rajasthan, India, were investigated based on organic geochemistry, mineralogical, and
elemental composition, together with microscopic examinations to evaluate the main
sedimentary and paleoenvironmental factors and volcanic activity during the Paleocene–
Eocene that influenced the high organic carbon accumulation. Based on the results, the
following points are concluded:

• The black shale facies of the Paleocene–Eocene Palana Formation exhibit high TOC and
S contents of up to 36.23 wt.% and 2.24 wt.%, respectively, revealing normal marine
settings and anoxic environmental conditions.

• The Palana shales are clay-rich lithofacies, ranging from siliceous mudstone to silica-
rich argillaceous mudstone, with a high abundance of clay and silica minerals, as
indicated by XRD data together with species identification (SPI) and SEM of the
QEMSCAN results.

• Microscopic examinations reveal that the OM in the Palana clay-rich facies was pri-
marily derived from algae and other bacterial organisms, along with foraminifer
assemblages, which favored marine anoxic environmental conditions.

• Different redox-sensitive trace elements along with their ratios in the clay-rich shale
facies of the Palana Formation indicate anoxic environmental conditions were recog-
nized during the Paleocene–Eocene period.

• The mineralogical and elemental compositions show a warm and humid climate, with
an intensive degree of chemical weathering that took place during the deposition of
the Paleocene–Eocene Palana clay-rich facies.

• The results highlighted in this study suggest that the high organic carbon accumulation
in the black shale facies of the Palana Formation was mainly controlled by sedimentary
factors, i.e., high bioproductivity and preservation of organic matter together with
volcanic activities during the Paleocene–Eocene.
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