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Abstract: Identifying minerals is essential for geology, mineral exploration, engineering, and en-
vironmental sciences. Recent advances in machine learning have illustrated its potential as a fast,
cost-effective, and reliable tool for identifying minerals from photographs or photomicrographs.
However, in the recent literature, few studies have been dedicated to image acquisition. Machine
learning generally requires reproducible, high-quality data to perform complicated tasks such as min-
eral identification to avoid common pitfalls. In this paper, we propose a practical image acquisition
protocol for optical microscopes. This protocol focuses on ensuring reproducibility and enhancing
image quality. To favor reproducibility, we detail dealing with camera errors, using reference color
gauges, and establishing experimental parameters such as the external light source and temperature.
For image enhancement, we explain the importance of lighting and its impact on machine learning
precision, selection of the objective, and white balance calibration. In addition, we trialed the protocol
on heavy mineral concentrate from till samples (20 species) with a typical deep learning model and
it revealed that minor lighting modification (<5% difference in one channel) significantly increased
misclassification rates: kyanite from 6.4% to 24.9% and monazite from 6.5% to 42.9%.

Keywords: machine learning; computer vision; image; acquisition; calibration; optical microscope;
mineral; protocol; identification; thin-section

1. Introduction

In many geological studies, knowledge of a sample’s mineralogy is essential through-
out a project. During the exploration phase, mineral species and their quantity in glacial
sediments provide information on the potential presence of a deposit, such as chalcopyrite
in the case of copper deposits or G10 garnets in the case of diamondiferous kimberlites [1,2].
During the exploitation phase of the deposit, mineralogical variation within the deposit
can affect performance. For example, phyllosilicates can decrease the efficacy of the crush-
ing process [3]. During the reclamation phase, pollutants may be released depending
on the minerals present and the local environmental conditions. In the case of acid mine
drainage (AMD), the alteration in sulfides under atmospheric conditions releases pollutants,
including arsenic, copper, lead, and zinc [4].

Despite being critical at each phase, mineral identification in sands (especially in
heavy mineral concentrates) is an exceptionally time- and resource-consuming process [5].
Identifying millions of submillimeter grains is an arduous and error-prone task. Thus,
multiple attempts have been made to pursue automated mineral identification via machine
learning [5–10]. One promising approach is optical mineral recognition from photomi-
crographs, as this approach can identify thousands of mineral grains simultaneously, as
opposed to current sequential techniques such as the use of a scanning electron microscope
(SEM) and identification under an optical microscope by a mineralogist, both of which are
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costly and long methods. Thanks to the processing speed of this new technique, minerals
can be pre-sorted before being sent for further analysis using the two previous methods. It
would help to increase analysis capacity.

However, most published AI mineral identification studies rely on their own data
sets and use the same photographs for learning and testing the algorithm by randomly
dividing the data set items [5,7,11]. The model can therefore be overfit to the specific
properties of the images acquired to build the data set and impede the generalization
against variability of photographs acquisition. For a more rigorous representation of the
algorithm’s true capabilities, tests should be performed on a different set of photographs
than that used for learning. In order to improve quality, robustness, and reproducibility,
a practical image acquisition protocol is proposed. The theoretical photomicrography
acquisition background and acquisition parameters are reviewed, followed by the best
practice recommendations. The protocol is applied and tested through a mineral recognition
study using machine learning. This protocol will ensure photomicrography quality and
reproducibility of mineral identification from an imaging suite.

2. Machine Learning and Optical Identification of Minerals

The number of published papers focused on optical mineral recognition based on
machine learning algorithms has increased markedly over the last few years (Figure 1).
This heightened interest can be explained by the recent successes of this approach as
demonstrated by Maitre et al. [5], Santos et al. [12], and Leroy and Pirard [10], among
others. Maitre et al. [5] achieved near 90% grain recognition in a heavy mineral concentrate
from till, whereas Santos et al. [12] achieved a success rate of over 80% for determining
collotelinite segmentation and coal reflectance. Leroy and Pirard [10] obtained 67% to 90%
real-time mineral recognition for particles suspended in water (slurry). Albeit imperfect,
these results testify to the enormous potential of machine learning-based optical mineral
recognition and quantification.
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Figure 1. Refereed publications focused on mineral recognition using machine learning algorithms
(1985 to 2023). Data provided by Scopus.

Mineral photomicrographs acquired with an optical microscope coupled with a ma-
chine learning recognition algorithm can provide a fast, low-cost, and reliable means for
mineral recognition and quantification. The particles analyzed are larger than those studied
via SEM, but they should be sufficient to provide a fast and cost-effective result in most
cases. These characteristics will help increase mineral recognition capacity, improve the
quantification of mineral abundance, and heighten the reproducibility metrics. The last two
benefits are particularly important, as the human eye is not always reliable for quantifying
minerals. The inadequate nature of visual identification has been known for decades, and
multiple charts have been published for visually estimating mineral percentages to decrease
quantification errors [13–15]. Visual estimation errors occur mostly because of differences
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in grain size, shape, and color of the observed grains. Visual estimation bias also comes
from the spatial distribution of objects, as observers tend to overestimate object clusters
and underestimate distributed objects [16]. A well-calibrated computer-based algorithm
does not suffer from these problems and should provide constant results within its bias.

Machine learning mineral recognition, when coupled with optical microscopy, appears
to offer an ideal solution. However, this method suffers from inferior attention to the
imaging protocol, as highlighted by Pirard and Lebichot [17], and remains inadequately
addressed. This lack of a reproducible and accurate image acquisition protocol raises many
issues, including segmentation problems and color and textural rendition issues (cleavage,
crystallographic form, abrasion, etc.). Changes in lighting and background colors can also
alter mineral coloration on the scanned image. Moreover, photographs selected for learning
should record identical characteristics as those acquired for mineral identification. Chow
and Reyes-Aldasoro [6] applied machine learning mineral recognition using internet-based
gemstone photography. They noted that the difference in contrast and saturation caused
problems during segmentation, showing the importance of data acquisition for machine
learning. As mineral recognition via machine learning is partially based on color, this issue
involving contrast and saturation could explain a part of their obtained low accuracy of
46.5% and 69.4% using a random forest and decision tree architecture, respectively, applied
to 68 gemstone classes. Jia et al. [9] achieved an excellent average recognition accuracy of
82.23% and 86.54% (ResNET-50 and Vgg16, respectively) for 22 common minerals. They
noticed that most misrecognized images originated from inappropriate acquisition condi-
tions that did not show the minerals’ important characteristics. These findings suggest that
the refinement of image acquisition protocols can contribute to substantial enhancements
in machine learning for mineral identification. Such improvements hold the potential to
foster greater robustness in deep learning models, facilitating better generalization across
varied acquisition conditions.

Therefore, the photographs used for learning should have identical characteristics
(e.g., white balance, color temperature, contrast, saturation) as the photographs of minerals
needing to be identified. The qualities of the photographs should be reproducible (precision)
and show all key inherent mineral characteristics to ensure proper identification. Moreover,
there is growing concern about a reproducibility crisis because of the lack of attention to
data acquisition [18,19].

3. Previous Work

The most recent and comprehensive imaging protocol applied to optical mineralogy
was performed by Pirard [20]. This protocol was designed specifically for multispectral
images, although this technique has much in common with our proposed protocol regarding
the acquisition instrument and bias.

Pirard’s protocol has about 350 words in the original article and can be explained as
follows:

1. Select and keep the same optics and filters throughout the study.
2. Set the illumination according to the most reflective mineral to ensure that the images

do not saturate.
3. Warm up the charge-coupled device (CCD) sensor for up to 90 min.
4. Ensure that all images have the same acquisition and processing parameters and

avoid file formats with compression.
5. Take a black reference image. This image can be obtained by not having any photons

hit the camera’s sensor during the acquisition.
6. Take a white reference image using a reflectance reference material.
7. Acquire a series of images without changing any parameters and apply the image

calibration of Equation (1).

Ox,y =

(
Ix,y − Blx,y

)(
Whx,y − Blx,y

) , (1)
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where Ox,y is the corrected pixel intensity at coordinates (x , y), Ix,y is the pixel intensity
at coordinates (x, y), Blx,y is the pixel intensity at coordinates (x, y) of the black reference
images, and Whx,y is the pixel intensity at coordinates (x, y) of the white reference images.

Equation (1) was designed for gray-level images, but it can also be applied to color
images by correcting the intensity of each channel. This correction allows for altering of
the pixel intensity value by considering the thermal noise (or dark current) with the black
reference image and the defaults in the optics with the white reference image (e.g., dust
and scratches).

This image acquisition protocol is a relevant reference; however, it is relatively simple
and short and does not include certain essential parameters to ensure image reproducibility.
Indeed, no precaution is given regarding room lighting, and exposure time is not discussed
despite its linkage with dark currents and camera noise. Moreover, the warm-up period is
arbitrary and does not rely on computation or actual observations.

4. The Theory behind Photomicrographs Acquisition

As photomicrograph acquisition involves many components and related parameters,
it is important to study them and describe the relationship between them in order to design
an appropriate image acquisition protocol. The three main components are the microscope,
camera and image, and the theory associated with each will be presented.

But first, the definitions of the terms used in this study are needed. A camera sensor is
composed of physical pixels, which are a group of photodiodes. The number of photodiodes
depends on the sensor type. These groups of photodiodes are called camera pixels, and they
have a physical size noted psize. In this paper, we use pixels as the smallest component of an
image with coordinates (x, y). An image thus comprises pixels, and the number of pixels
is given by the image size. The pixel value is composed of n numbers, often written into
brackets, where n is the number of channels of the image’s color space. Channel intensity
represents one of the numbers inside the bracket. In a usual 8-bits representation, the
intensity for each channel lies between 0 and 255 (28 values). However, many detectors
actually have a 12-, 14-, or 16-bit depth per channel. So, if the data can be saved in a RAW
format or a variety of proprietary data formats such as the Zeiss CZI, then full bit depth
is preserved. In an 8-bit red, green, and blue (RGB) color space, there are three channels:
one each for red, green, and blue. The white color is written [255, 255, 255], which is the
maximum intensity for the red, green, and blue channels, as white is the sum of all colors.
Finally, z-stacking means taking several images along the z-axis to obtain a perfectly focused
3D object over its entire surface.

4.1. Microscope

The microscope is particularly important, as its components play a major role in image
acquisition. The important characteristics are its type, objective (or lens), lighting, filters,
and software.

4.1.1. Type

Firstly, there are two main types of optical microscope used in geology depending on
the sample analysed: grains or thin sections. For thin sections, a petrographic microscope
is best because z-stacking will not be an issue. Manufacturers offer a wide range of
petrographic microscopes and tools that can be added for more specific applications. If
many thin sections are to be analyzed, a slide scanner can be used. An on-axis zoom
microscope is ideal for grains if the studied material is not too fine. The latter’s advantage
is that it gives a higher depth of field and a larger field of view than the petrographic
microscope. This advantage markedly reduces the acquisition time for grain analysis.

Essential options for both microscopes include a computer-controlled motorized stage
for seamless sample acquisition without continuous user intervention. For thin sections,
an x-and-y-axis-controlled stage is generally adequate, but non-flat-surface sections may
require z-stacking for precise mosaic photomicrography. Grain photomicrography necessi-
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tates a z-controlled axis. If a motorized stage is not available, photomicrographs can be
acquired, stitched, and Z-stacked manually. However, it would take an enormous amount
of time. Additional beneficial features comprise a computer-controlled rotating polarizer
for capturing polarized images at various angles without grain movement [21], enabling
simultaneous image capture without manual intervention. The optimal configuration
involves a fully computer-controlled microscope for this innovative technique.

4.1.2. Objective, Lighting, and Filters

Secondly, the objective, lighting, and filters must be taken together. A changeset in
one of them influences the others. Their relations are mathematically described through
the existence of parameters and equations linking them. These equations use a monochro-
matic light source instead of a polychromatic one but are still widely used for estimating
microscope parameters. The parameters related to the objective are the numerical aperture
(NA), magnification (M), and depth of field (DOF). The parameter related to the lighting is
its wavelength (λ). The filters are not properly defined in the following equations but play
an important role as they can modify the lighting wavelength, polarization, or intensity.

To compute the minimum spatial resolution (R) possible for an optical microscope, the
Rayleigh criterion is used and can be explained as follows (2). The microscope’s minimal
resolution is related to the diffraction itself, and the image of the smallest light point
through a microscope will be an airy disk. If two points are side by side, it is possible to
distinguish one from another only if the distance between each other is superior or equal to
their airy disk radius (rAiry) [22].

R = rAiry = 0.61 × λ

NA
. (2)

Nevertheless, the optical microscope in this study is paired with a camera that has
its own spatial resolution (Rc). This resolution limit is the camera pixel size ( psize). Thus,
it is possible to compute the camera spatial resolution mounted on the microscope by
multiplying psize with the magnification of all the microscope optical elements. In most
cases, they should have the objective and camera adapter magnification, respectively, Mobj
and Madp (Equation (3)).

Rc = psize × Mobj × Madp. (3)

The camera’s spatial resolution needs to be better than that of the microscope since the
microscope sets the highest-resolution limit. In the case of 3D object acquisition of mineral
grains, and because most microscopes have a short depth of field, multiple stacked images
are needed (z-stacking). Therefore, to calculate the total microscope depth of field, we must
sum the wave and geometrical depth of field (4).

DOF =
λ × γ

NA2 +
γ

Mobj × NA
× psize , (4)

where DOF is the depth of field, λ is the wavelength of the light source, γ representing the
refraction index of the medium (air in our case), NA is the objective numerical aperture
(given by the manufacturer), M is the objective magnification, and psize is the camera pixel
size (given by the manufacturer).

Equation (4) is from Inoué and Spring [23] and is slightly modified to match our
study’s needs. The geometrical depth of field (the last term in the equation) is multiplied
by psize, which is the physical size of a camera pixel. Normally, this parameter is called e
and represents the smallest distance resolved by a detector placed on the image plane of
the microscope [22]. The assumption in this equation is that the camera cannot resolve an
object smaller than its pixel size.

By dividing the height of the larger object (hmax) by the total depth of field, we can
determine the necessary number of z-frames (z f rames) (Equation (5)). Thin sections may
require z-stacking because of their uneven thickness, often z f rames = 2. For grains, the size
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of the coarsest grains can be obtained using sieves or laser diffraction. Adding one frame is
needed when the depth of field is larger than the object’s maximum height.

z f rames = 1 +
hmax

DOF
. (5)

For grain analyses, a low-NA objective is ideal as it requires the fewest z-frames.
Therefore, the spatial resolution of the microscope will increase, and the grain size will need
to be coarser to maintain an acceptable number of pixels per grain. For thin section analysis,
however, it is possible to choose a high-NA objective for more precise measurements, as
z-stacking is unnecessary. However, a smaller camera resolution is needed to match the
reduced microscope spatial resolution, leading to a greater demand for storage capacity for
the same study area (Equation (7)).

It is imperative to choose the objective carefully. In microscopy, numerical aperture
is often used to describe the light accumulation and resolution capacity of the objective
as opposed to the angular aperture (α, used in photography). However, these values are
linked by Equation (6) with γ representing the refraction index (γ ≈ 1 in air). As numerical
aperture and angular aperture are linked proportionally, only the numerical aperture is
discussed.

NA = γsin
(α

2

)
. (6)

Numerical aperture is proportional to the microscope’s spatial resolution, as a higher
numerical aperture results in a higher resolution (Equation (2)). However, the numerical
aperture is also directly related to the depth of field, a critical parameter for z-stacking and,
thus, grain photomicrography. The depth of field decreases as numerical aperture increases
(Equation (4)); therefore, the objective must be carefully chosen based on its numerical
aperture. The numerical aperture, via the presented equations, must match the camera’s
resolution, the size of the studied object, and the desired depth of field.

4.1.3. Microscope Hardware

Finally, the microscope software plays an important role in limiting the choice of image
file extension, color space and routine, or advanced parameterization options. The first two
of these issues will be addressed in the image sections, while the last will be covered in the
discussion.

4.2. Camera

The central piece of equipment for image acquisition is the camera. Even if the camera
is a component of the microscope, it needs its own section as its characteristics greatly
influence the image quality and reproducibility, such as the depth of field seen in the prior
section (4). The important camera characteristics are its type and manufacture quality,
noise, and warm-up period.

Two types of cameras are currently used in optical microscopy: charge-coupled de-
vice (CCD) and complementary metal–oxide–semiconductor (CMOS). Camera selection
depends on the study’s objectives. A CMOS camera has a good image quality and allows
for real-time data acquisition with its high frame rate [10]. Using an intensified CMOS
camera allows for measurements at very low illumination with a moderate signal-to-noise
ratio (SNR). SNR is the ratio between the mean signal value and its standard deviation.
However, using an intensified CMOS camera leads to a lower resolution. CCD cameras
have a high signal-to-noise ratio and a greater image uniformity than CMOS. This allows
for them to have a better image quality than CMOS; thus, CCD cameras should be used
for precision measurements [24]. However, recent articles indicate the quality difference
between CMOS and CCD in regard to high-quality imaging is narrowing [25,26].

Cameras are subject to three main noise sources: thermal noise, camera readout noise,
and shot noise. Thermal noise, or dark noise, stems from the charge induced by the thermal
fluctuation of the camera components. This noise depends on the camera itself, but external
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factors are also involved. Thermal noise is proportional to exposure time and temperature,
which limits the quality of the longest exposures. This noise can be markedly reduced by
cooling the camera. The camera readout noise is produced through its own architecture
and components; this noise is inherent to each camera and does not depend on external
factors. Finally, shot noise expresses the probability that a random photon hits the camera’s
photosensitive sensor. Thus, for each acquisition with the same lighting, exposure time, and
camera, different amounts of photons will hit the sensor. Moreover, the resulting images
differ slightly from each other [27].

Lastly, cameras are subject to thermal noise and their use generates heat, as is the
case with computer processors, so they require a certain warm-up period to reach a stable
temperature and error [20]. This parameter will be decisive for image acquisition, as it
maximizes noise but ensures reproducibility by having the same amount of noise for each
image.

4.3. Image

The final stage of acquisition is the image itself, but many parameters are linked to it.
Important characteristics of the image are the exposure and computer parameters: image
format, color space, and volume.

Exposure defines the time during which the camera accumulates light on its photodi-
odes. Exposure is therefore closely linked to illumination intensity, which depends on the
room lighting and microscope illumination voltage, as well as the presence of filters. This
parameter is crucial, as it can saturate mineral images if the time is too long and renders
the image completely black if it is too short.

Regarding the computer parameters, all are linked with each other. The first one to be
described is the image format. Depending on the microscope software, there is a limited
choice in image format. The most common image formats are JPEG, PNG, GIF, TIFF, and
BMP. JPEG is a compressed format with a loss of information, but it has great portability.
PNG files are compressed without information loss and also have great portability. GIF
format can undergo greater compression than PNG without any information loss; however,
it has a restricted number of color shades. TIFF is a very versatile format and accepts all
color formats and color spaces. It can also store raw data from the photographic sensor
(often called “RAW”) and multiple images per file. BMP files have very good portability
and are easy to use. BMP is an uncompressed file format; however, its size can be reduced
by using an algorithm like ZIP.

Another important parameter is the color space, which defines how colors are repre-
sented. A color space is an n-dimensional space in which each color is represented by a
vector with components equal to the dimensions of the color space [28]. The most common
color spaces are RGB and CMYK; they have 3 and 4 dimensions, respectively. Each existing
color space has its particularities and does not represent the entire color gamut. Depending
on the software, it may be possible to choose a color space such as AdobeRGB, sRGB, or
ProPhoto RGB. The ideal would be to choose the color space having the largest color range.
However, to represent all color possibilities, the bit depth (Bdepth) must be higher because
more information is needed. Thus, the image volume will increase (Equation (7)):

Vimg =
Hi × Li × Bdepth

8
, (7)

where Vimg is the image volume in octets, Hi is the image height in pixels, Li is the image
length in pixels, and Bdepth is the bit number per pixel or bit depth. Hi and Li are given
in the image resolution. For example, an image with a resolution of 1920 × 2560 means
that Hi = 1920 and Li = 2560 pixels each. The Bdepth should be specified in the microscope
software parameters; currently, it is generally 24-, or 8-bits per color channel. Thus, the
volume of this image would be approximately equal to 118 MB.

The photomicrography color space must also match the data sheet provided by the
reference color gauge manufacturer to compare the acquisition with its laboratory value.
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These choices depend on the computer, its storage capacity, and the microscope settings
(see the following section). It is possible to compute in advance the image volume for
equipment selection (7).

Nevertheless, the image acquisition of an entire thin section or grain mount requires
dealing with composite images, such as those generated via z-stacking. A major issue is
the storage capacity and the need to have a sufficiently large hard drive (the size depends
on how the software combines the images). The following equation assumes that the
microscope software starts processing the composite image only after all the temporary
images are taken (Equation (8)). Therefore, all the acquired photomicrographs must be
saved temporarily on the computer.

Vtemp = Vimg × Limg × Himg × zstack, (8)

where Vtemp is the total volume of the temporary images in octets, Limg is the length in
image number of the acquired zone, Himg is the height in image number of the acquired
zone, and zstack is the image number stacked vertically. An example of the total temporary
volume generated by the acquisition of one grain slide is 764.64 GB: each image weighs
118 MB and the mosaic image is composed of 12 × 27 photomicrographs with a stack of
20 photomicrographs along the z-axis.

5. Protocol Design Recommendation

As highlighted by the previous sections, each one of the main photomicrograph
acquisition components is strongly linked to the other by its parameters. It also appears
that photomicrograph acquisition is sensitive to external factors such as room temperature
and lighting. Moreover, it is important to design the acquisition according to the object
of study. The figure below shows the relation between the acquisition components and
related parameters (Figure 2).

The acquisition of a photomicrograph can be divided into three main parts: (1) The
purpose of the study, in which the object of the study is defined and the influence of external
factors is discussed; (2) The parameter settings, in which the parameters are tested in order
to find the best compromise; (3) The acquisition routine, in which the application of the
parameters and the analysis of reproducibility are discussed.

5.1. Study Purpose

First, it is important to define the type of sample and what we are looking for. Depend-
ing on the answer, it will be possible to define the resolution required for the study, and to
examine the most reflective or translucent mineral in the sample data set. External factors
remain the same and they will be considered in the following sections.

5.2. Parameters Settings
5.2.1. Lighting and Exposure

The lighting must be the same at each acquisition to ensure reproducibility by limiting
illumination variability. The position of the light source and its intensity must therefore be
set precisely and kept constant. If the light source is filtered, the same filter must be applied
for the entire study [20]. Note that the stronger the light intensity, the shorter the exposure
time, which decreases thermal noise and shortens the acquisition time. The best way to
calibrate light and exposure time is to set the light intensity at its maximum and increase
exposure time until the most reflective and the most translucent mineral or color gauge
saturates. The optimal exposure time will be just before saturation.
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5.2.2. Objective Choice

The numerical aperture is the most important parameter in the depth of field equation
and microscope spatial resolution. The choice of the other parameters, such as the camera
resolution and the frame number for the z-stacking (Equations (2)–(5)), depends on these
two computations. Also, the best way to choose your objective is by using its numerical
aperture and magnification. This makes it possible to model depth of field as a function of
the numerical aperture (Equation (4)).
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5.2.3. Room Lighting and Noise

The most critical parameter for image acquisition is light. Room lighting (e.g., artificial
lights, sun exposure) influences image acquisition and, more importantly, reproducibility.
The first step is to remove the microscope from ambient light. There are two means to
do this: by locating the microscope in a room where outside light sources are blocked or
by building an enclosure or shroud around the microscope (Figure 6). According to the
authors’ experience, an enclosure is preferred because:

1. No external light affects image acquisition.
2. Camera tests are much easier to perform.
3. Dust and unwanted particles are kept away from the microscope and samples.

However, enclosing the setup poses a drawback as it traps warm air generated by
the light source and electronics. Camera noise is influenced by temperature and exposure
time, and introducing a cooling system, such as a Peltier cooler or fans, can mitigate
this issue. Nevertheless, vibrations from these components may arise. Alternatively, a
ventilation system with openings at the top and bottom of the enclosure can be employed.
Air convection may suffice for camera cooling while maintaining a stable temperature.
Nonetheless, the ventilation design must effectively prevent external light pollution.

Cameras experience thermal noise and necessitate a warm-up period for temperature
stabilization. Pirard [20], in his image acquisition protocol for optical microscopes, recom-
mended letting the camera warm up for about 90 min. Although this recommendation can
be valid, it is advisable to determine a specific warm-up period for the camera in use. The
simplest way to do it is as follows:

1. Verify that the microscope camera is at room temperature.
2. Ensure that no stray light strikes the camera sensor (use an enclosure or other means

to ensure complete darkness).
3. Turn on the microscope, computer, software, and NO lighting.
4. Take pictures every 15 min for at least 3 h.
5. Use any coding language to extract the pixel intensity values for each channel from

the image. This must be performed for each image.
6. Plot a graph of the time using the equation (9, versus the mean intensity per image

for each channel) (see Figure 7).

t =
n f rame

frate
, (9)

1. where t is the time, n f rame is the frame number, and frate is the frame rate.
2. Analyze the graph. Ideally, the graph will show increasing mean pixel intensity value

for each channel up to a plateau. From the moment the curve stabilizes around a
particular value, the camera has warmed and the error is constant.

3. Identify the stabilization point marking the time needed to warm up the camera before
image acquisition.

4. This procedure will ensure the reproducibility of the acquisition. However, the dark
current error during the acquisition will be at its maximum. In most cases, this noise
will be minimal to negligible.

5.3. Acquisition Routine
5.3.1. Sample Preparation

We test two grain-mounting techniques (permanent and temporary), the choice of
mounting depending on the used ground-truth acquisition technique. Ground-truthing in
machine learning is defined as using an independent and accurate method to verify the
algorithm prediction. Here, we obtained our ground truths either by SEM cartography or
by visual sorting (handpicking) of the minerals by a qualified mineralogist.
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The permanent mounting technique must be vacuum proof, as the ground truth is
acquired by SEM X-ray fluorescence. The grains are glued onto a 1 mm thick glass slide
using epoxy. A permanent slide can be produced in three steps:

1. Place a glass slide on a perfectly horizontal plate covered with aluminum foil. Tape
the edges of the glass slide to secure it to the foil (Figure 3A). This step prevents the
epoxy from flowing underneath the glass slide and facilitates removing the glass slide
after the curing.

2. Apply epoxy to the glass slide (a 5 µm thick layer) using a micrometer-adjustable film
applicator (Figure 3B), powder the grain, and wait until the permanent slide is cured.
Powdering should be performed to minimize grain overlap and evenly distribute
grains. Curing time depends on the epoxy, and we suggest using transparent epoxy
with a high viscosity to prevent the grains from sinking too deeply.

3. Remove the adhesive tape and glass slide from the aluminum foil (Figure 3C).
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Temporary mounting consists of “sticking” grains with ethanol on a 1 mm thick glass
slide as follows:

1. Put a few drops of ethanol on the glass slide, just enough to have a thin film of ethanol
that does not flow outside the slide (Figure 4A).

2. Powder the grains uniformly so that the grains are evenly spaced on the slide (Figure 4B).
3. Wait approximately five minutes for the ethanol to evaporate (leaving a dry slide).

The slide is ready for photomicrography.
4. After photomicrography, grains can be easily scraped from the slide with a laboratory

spatula and recovered for another use (Figure 4C).
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No additional sample preparation is needed for thin sections, except dust particles
and potential oxidation of certain minerals like sulphides, which should be cleaned or
repolished.

5.3.2. Photomicrography

We acquired a color gauge from Image Science Associates (ISA) for this study. We
selected the Pico model for its size (9.5 mm large, 11 mm long, and 1.5 mm thick, the
smallest size available). Each colored square measures 1.58 mm on a side (Figure 5B). The
color gauge is provided with its color value datasheet in multiple color spaces: CIELAB,
Adobe RGB, sRGB, ProPhoto RGB, and ECI-RGB v2 (Figure 5A).
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A white balance must be performed on an 18% gray card before each acquisition
and at each lighting change to ensure that the acquisition method remains constant and
reproducible (Figure 5). A sample holder will help automate image acquisition; it ensures a
regular acquisition with fixed positions for the color gauge and, in some cases, the most
reflective mineral, the thin section, and the grid (Figure 6B). This grid can be added to
the sample holder to ensure that the microscope optics do not distort the objects on the
image [29].

We developed a routine for color gauge analysis to understand color acquisition as a
function of camera and lighting. We aimed to compare the mean value of the color gauge
photomicrography for each acquisition with its theoretical value. The routine steps are:

1. Set up the entire acquisition to respect all protocol recommendations and steps, such
as microscope enclosure, calculated camera warm-up period, and white balance
calibration.

2. Acquire a series of images of the color gauge at various times and moments of the day
to ensure that the color variation is not related to the ambient light change.

3. Segment the color gauge from the sample holder for the entire picture series to obtain
only the region with the given color(s). For example, if the color gauge comprises
several patches having different color codes, subdivide the image to achieve one
image per given color code.
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4. For each cropped image, compute the mean pixel intensity value of the acquisition
(Ia) and the standard deviation (σa) for each channel over the entire series.

5. Extract theoretical pixel intensity values for a given zone (Is) for the color gauge from
the manufacturer’s data sheet for the same color space.

6. Compute the difference (∆) between the theoretical pixel intensity values of the
color gauge (Is) and the mean pixel intensity values of the acquisition (Ia) using
Equation (10).

∆ = Is − Ia. (10)

Plot Is versus ∆ to compare the acquisitions. For each point, use σa for the error bars.
This diagram will present pixel intensity as a function of its theoretical intensity for each
channel (Figure 8).

This graph answers two critical questions: (1) Is camera color acquisition dependent
on pixel intensity? (2) Is the acquisition constant for each pixel intensity when using σa?

6. An Application of the Protocol

In our previous work [5,30], our team worked on mineral grain recognition. Like other
studies [5,7,11], we used a data set built from one acquisition session for both the training
and the testing. Testing in such a manner does not ensure generalization across acquisition
variability and may also impede the robustness of the model. To ensure fair assessment,
it would be better to test on a new acquisition. For that, our protocol may prove to be
quite useful since its aim is to provide a framework for repeatable and good quality image
acquisition. As a trial of this protocol, we applied it to a mineralogical recognition using a
heavy mineral concentrate from till sediments. We purposely made several acquisitions to
create the training and testing data sets. This section presents the details of the application
of our protocol for this example machine learning task.

6.1. Microscope Enclosure and Sample Holder

We built an aluminum box enclosure to prevent the impact of the room lighting
(60.5 cm large × 117.5 cm long × 76.5 cm high). Although microscope enclosure limits its
access, it is mandatory to limit external light source. Alternatively, the microscope can be
used in a dark room with all external lights off. (Figure 6A). The sample holder was of
poly(methyl methacrylate), known commercially as plexiglass—with a fixed position for
the color gauge and two mineral mounts (glass section), each 2.5 cm wide, 7.5 cm long, and
0.1 cm thick (Figure 6B).

6.2. Acquisition Settings

The camera and computer settings are given in Table 1. We used an annular LED light
that was added to a BX53M optical microscope equipped with a SC50 camera, both from
Olympus (Shinjuku, Tokyo, Japan). The light holder made for the study ensured a fixed
position.

6.3. Machine Learning Requirements and Sample Preparation

During the training, validation, and testing, the machine learning algorithm requires a
photomicrograph or photomicrographs and the corresponding label for each grain. The
label, in our case, is the grain’s mineralogy. This label is known through ground-truthing
and depending on the form of ground-truthing, some limitations exist. The mineral species
grain population must also be approximately balanced during this process as unbalanced
classes lower algorithm performance.
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Table 1. List of the acquisition parameters.

Component Details

Microscope BX53M from Olympus
Camera SC50 CMOS from Olympus

Objective UPLFLN4XP from Olympus: NA = 0.13 and Mobj = 4
Image resolution 1920 × 2560 pixels

Exposure time 5.993 ms
Color space Adobe RGB

Light source type Annular LED light
Light source intensity Maximum

White balance 18% gray square
Box enclosure Yes

z f rames 20

The permanent mounting can handle several types of mineralogy on the same glass
slide because of the fixed position of grains and SEM cartography where the coordinates
of each grain and its mineralogy are recorded. This is the approach we relied on in our
previous work [5,30]. However, this method involves higher risk. If the sample is poorly
prepared, it is impossible to recover it. For the temporary mounting, as the mineral grain
composition is known before the acquisition because of sorting by a mineralogist, it is
easier to adjust grain quantity and balance the different mineralogy. The easiest way to
acquire the data set is to take one mineral per image; this way, the image will work as the
label. Each grain present on the photomicrograph is from the chosen mineralogy. If several
minerals are mixed on the same photomicrograph, a map with the position and mineralogy
of each grain is needed. A drawback of this technique is that the temporary mounting is
highly dependent on the quality of the visual sorting phase.

Once the algorithm has learned from the training microphotographs, none of the pre-
viously announced limitations remain active. Both techniques can handle several minerals
per glass section, and an algorithm that has learned with the permanent mounting would
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be able to identify grains on a temporary mounting and vice versa. The only requirement
is that the optical properties of the grains are conserved for both techniques; thus, neither
the epoxy nor any alcohol must cover the grain. Table 2 describes the appropriate lighting
for each mounting technique.

Table 2. Comparison of the characteristics of the permanent and temporary mounting techniques.

Permanent Temporary

Mineral species for learning Several per glass slide One per glass slide
Mineral species to identify

unknown Several per glass slide Several per glass slide

Manufacturing time 24 to 48 h Less than 10 min
Conservation Permanent (vacuum proof) Temporary

Lighting type

Transmitted light
Reflected light
Annular light

Directional light

Transmitted light
Reflected light
Annular light

Directional light
Polarization Available Available
Specific risk Mounting failure Visual sorting errors

The grain mineral species collection for this study comprised 20 mineral species in the
learning data set, with two testing groups containing a minimum of 50 and 20 grains per
species. Some samples were obtained from Maitre et al.’s [5] analysis. Temporary mounting
was employed for image acquisition, enabling testing of various setups without fixing
grains and minimizing the risk of mounting failure.

6.4. Machine Learning Model

To demonstrate the added value of our methodology, we trained a convolutional
neural network (CNN) model for approximately 7.5 h (27,212.48 s) on a data set containing
the photomicrographs of the grain mineral species collection. The CNN is a standard
architecture of 8 convolution layers with filter size [32, 32, 64, 64, 128, 128, 256, 256] and
ReLU activation. The kernels are in decreasing size from (7, 7) for the first two layers, then
(5, 5) for the next two, and (3,3) until the end. All conv layers have stride (2, 2) to down
sample, batch normalization to stabilize the training, and pair layers have a drop out of
20%. The CNN ends up with a classic double layer of dense units, respectively, 256 and 128.
Then, after a final dropout, there is the last layer for classification (20 units). Overall, this is
a classic CNN for classification that has 1 418 548 trainable parameters.

The learning process comprised three steps: (1) training, (2) validation, and (3) testing.
For each step, a related data set was dedicated with a known number of images per mineral
(Table 3). The photomicrographs used for the CNN training followed our protocol (Table 2).
The accuracy of the trained model was 88.7%, the balanced accuracy was 87.7%, and
the Cohen–Kappa score was 88.1%. In this paper, we do not focus on the quality of the
classification results, only their reproducibility. For SoTA models, we instead refer the
reader to the literature on deep learning [31].

Table 3. Number of grain photomicrographs per mineral used for the convolutional neural network
(CNN) training.

Mineral Training (1) Validation (2) Testing (3) Total

Amphibole 105 22 23 150
Apatite 98 21 21 140

Arsenopyrite 71 15 16 102
Chalcopyrite 57 12 12 81

Diopside 102 22 21 145
Epidote 105 22 23 150
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Table 3. Cont.

Mineral Training (1) Validation (2) Testing (3) Total

Feldspar 70 15 15 100
Garnet 105 22 23 150

Hematite 74 16 16 106
Hornblende 55 12 11 78
Hypersthene 105 22 23 150

Ilmenite 105 22 23 150
Kyanite 105 22 23 150

Monazite 105 22 23 150
Olivine 105 22 23 150

Plagioclase 105 22 23 150
Pyrite 105 22 23 150
Rutile 40 9 8 57

Titanite 90 19 20 129
Zircon 89 19 19 127

7. Protocol Application Results
7.1. Warm-Up Period

We established the warm-up period (Figure 7) by capturing a black image every
15 min for 6 h (360 min). The acquisition resolution, exposure time, and all settings used
for this test were identical to those of the grain image acquisitions except the enclosure
presence (Table 1). The black image pixel intensity for the red, green, and blue channels
were extracted using the Python imaging library (PIL). In order to understand the role of
temperature, a thermocouple was installed on the top of the camera. The measure rate was
one per minute.
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The room temperature was measured for 179 h (n = 10741) at different times and on
different days, giving an average temperature of 22.13 ◦C ± 0.23. The starting temperature
of the warm-up period test is sometimes around 23 ◦C, as the microscope must be switched
on before the computer, and the temperature starts to rise at the same time. The warm-up
period diagram clearly shows that the temperature rises when the camera is used for an
extended period. Diagrams A and B show the impact of the microscope enclosure on
temperature. The first and second tests show an increase in temperature to 26.22 ◦C and
24.64 ◦C at the end of the test, respectively. This means that the presence of the enclosure
generates an overheating of 1.58 ◦C (Figure 7).
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However, despite the temperature difference, the error for each channel is very similar
for both tests. For diagram A, the mean values of the R, G and B channels for the whole test
are: 0.665 ± 0.501, 0.665 ± 0.501 and 0.301 ± 0.470. And for diagram B, the mean values of
the R, G and B channels for the whole test are: 0.660 ± 0.501, 0.660 ± 0.501 and 0.291 ± 0.465.
It appears that the first 150 min are more stable for the blue channel in both tests, but the
difference is not significant, as the error is around 0.3 on a scale of 255 (Figure 7).

Further tests were carried out with a higher exposure time (32.01 ms) and a smaller
enclosure (42 cm large × 47 cm long × 67 cm high), with a total of 8 tests. Except for the
higher temperature (27.82 ◦C) with the smaller enclosure, the error is still very similar
between these tests. The warm-up period is set at 150 min to ensure that the temperature
has reached a plateau.

7.2. Color Gauge Information and Analysis
7.2.1. Reproducibility Analysis

The theoretical intensity for each channel was calculated under the D50 illuminant.
The D50 illuminant represents daylight and is described by its spectral power distribution
(illuminants are defined by the Commission Internationale de l’Éclairage (CIE)). The light
source of our study differed from that used to calibrate the color gauge. Hence, we used
the theoretical pixel intensity as a reference, and an unknown portion of the difference (∆)
stemmed from the inequality of the lighting sources. The color gauge comprised 30 squares,
each having a red, green, and blue intensity value (Figure 5A).

For each color present on the color gauge, we used Python 3 to compute and extract
the mean pixel intensity of the acquisition (Ia), the mean pixel intensity standard deviation
(σa), the theoretical pixel intensity (Is), and ∆.

For presentation purposes, the reference colors were divided into two for plotting
pixel intensity as a function of its theoretical intensity (Figure 8). The grayscale squares
(Figure 8A) range from white to black. Their particularity is to have very similar red,
green, and blue channel values; for example, the gray square (1,1) intensity value of each
channel according to the manufacturer is [203,204,203] for the red, green, and blue channels,
respectively (Figure 5A). The second group, the color squares, is located on the border of
the color gauge (Figure 8B). Their particularity is to have a significant value difference for
at least two channels.

The grayscale and color squares behaved differently (Figure 8). The grayscale squares
had a negative ∆ for Is values between 23 and 118 and a positive ∆ for Is values between
148 and 242. Therefore, relative to the theoretical intensity, the low-intensity values were
overestimated, and the high-intensity values were underestimated. The grayscale range of
the acquisition was smaller. For the color squares, the ∆ values were positive and close to 0.
The exception was for seven color squares where the blue channel had a negative value
close to 0 (−2.1% maximum). Overall, the color squares intensity was well estimated, as
most ∆ values were between 0% and 5.9%. However, the color squares presented a smaller
range of Is values (53–227) and more extreme intensity values were missing, unlike the
grayscale group (23–242). Overall, this independent demonstration of machine learning
shows that the color gauge images have a very similar pattern and that their acquisition
was reproducible.
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7.2.2. Parameters Impact

To understand and demonstrate the impact of acquisition parameters, 8 tests were
carried out. During these tests, an epidote grain (Figure 9) was acquired with the color
gauge (Figure 5). Only the red, green, and blue squares were analyzed and are presented in
the graph below (Figures 10–12). The acquisition parameters are the same as those shown
in Table 1 and the whole protocol was respected, with specified variation.
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Tests 2 and 3 explore the impact of changes in room lighting after white balance cal-
ibration. And despite the visible difference on the epidote image (Figure 9), the graph 
above shows us that these variations remain below the 5% limit of difference with the 
reference image. Test 3 is more anomalous than test 2, with a higher average red intensity 
value for each square. In addition, each high intensity value representing the main color 
of the square shows a significant difference. Test 2 remains close to the y=x line, except for 
the red channel of the red square, where the difference is greater. The average blue inten-
sity value for test 2 is lower for each square (Figure 10). Finally, these tests show differ-
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The detailed test parameters are described in the Table 4. Test 1 aims to measure the
impact of the warm-up period, tests 2 and 3 simulate the impact of room lighting after
white balance calibration, tests 4 and 5 focus on the importance of exposure time, tests 6
and 8 on the role of light intensity, and finally test 7 will serve as a comparison as it fully
complies with the present protocol. Test 8 was an attempt to reproduce the images of test 7
with a medium light intensity, and the exposure time was modified accordingly.

Tests 2 and 3 explore the impact of changes in room lighting after white balance
calibration. And despite the visible difference on the epidote image (Figure 9), the graph
above shows us that these variations remain below the 5% limit of difference with the
reference image. Test 3 is more anomalous than test 2, with a higher average red intensity
value for each square. In addition, each high intensity value representing the main color of
the square shows a significant difference. Test 2 remains close to the y = x line, except for
the red channel of the red square, where the difference is greater. The average blue intensity
value for test 2 is lower for each square (Figure 10). Finally, these tests show differences
despite all respecting Pirard’s recommendation (Table 4).
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intensity value, the greater the difference caused by changes in exposure time. For exam-
ple, the reference blue intensity values are 28.24, 49.14, and 83.45 and the difference in-
creases for both tests by 10.11, 15.34, and 19.94 for test 4 and by 12.40, 18.73, and 20.37 for 
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Tests 4 and 5 show the impact of changing exposure time without changing light intensity.
Test 4, with its longer exposure time (8.991 ms), shows a higher average intensity value for
each channel. Test 5, with a shorter exposure time (2.999 ms), has a lower average intensity
value for each channel. The graphs also show that the higher the average intensity value, the
greater the difference caused by changes in exposure time. For example, the reference blue
intensity values are 28.24, 49.14, and 83.45 and the difference increases for both tests by 10.11,
15.34, and 19.94 for test 4 and by 12.40, 18.73, and 20.37 for test 5 (Figure 11).

Test 1, which is the replication of the protocol without the warm-up period, is close to
the y = x line, except for the blue channel of the blue square, where the difference reaches
3.09%. Test 6, which shows a decrease in light intensity, behaves similarly to the exposure
time. The difference is greater with a higher intensity value. Finally, test 8, which attempts
to reproduce the image of test 7 with lower light intensity and higher exposure time, shows
similar behaviour to tests 4, 5, and 6, consistent with the changes made to the acquisition
parameters (Figure 12).



Minerals 2024, 14, 51 21 of 28Minerals 2024, 14, x  22 of 29 
 

 

 
Figure 12. Mean intensity value of the tests 1, 6, and 8 against the mean intensity value of test 7, the 
black dashed line represents the y=x line and the grey dashed lines represent 5% variation from the 
y=x line, the first column is the channels of the red square image, the second for the green square 
and the third for the blue square, the error bar is the standard deviation. 

Test 1, which is the replication of the protocol without the warm-up period, is close 
to the y=x line, except for the blue channel of the blue square, where the difference reaches 
3.09%. Test 6, which shows a decrease in light intensity, behaves similarly to the exposure 
time. The difference is greater with a higher intensity value. Finally, test 8, which attempts 
to reproduce the image of test 7 with lower light intensity and higher exposure time, 
shows similar behaviour to tests 4, 5, and 6, consistent with the changes made to the ac-
quisition parameters (Figure 12). 

7.3. Impact of Warm-up Period and Room Lighting on Classification Results 
Two test groups were acquired five times at different moments and on different days, 

strictly adhering to the image acquisition protocol (AL series, Figure 13A–C). The test 
groups were also acquired for a warm-up period of 0 (labelled WP-0) and 100 min (la-
belled WP-100), rather than 150 min, as determined earlier (Figure 13D). To evaluate the 
reproducibility of our mineral classifications with modified acquisition parameters, we 
then modified the AL series to simulate a change in ambient light: a halogen light source 

Figure 12. Mean intensity value of the tests 1, 6, and 8 against the mean intensity value of test 7, the
black dashed line represents the y = x line and the grey dashed lines represent 5% variation from the
y = x line, the first column is the channels of the red square image, the second for the green square
and the third for the blue square, the error bar is the standard deviation.

Table 4. Acquisition parameter tests description.

Test Parameter Variation Respect Pirard’s Protocol
(without Correction)

Test 1 No warming period No

Test 2 No microscope enclosure and incandescent room
lighting Yes

Test 3 No microscope enclosure and LED room lighting Yes
Test 4 Exposure time change: 8.991 ms No
Test 5 Exposure time change: 2.996 ms No
Test 6 Medium light intensity No
Test 7 Protocol fully respected Yes
Test 8 Medium light intensity, exposure time of 8.991 ms No
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7.3. Impact of Warm-Up Period and Room Lighting on Classification Results

Two test groups were acquired five times at different moments and on different
days, strictly adhering to the image acquisition protocol (AL series, Figure 13A–C). The
test groups were also acquired for a warm-up period of 0 (labelled WP-0) and 100 min
(labelled WP-100), rather than 150 min, as determined earlier (Figure 13D). To evaluate
the reproducibility of our mineral classifications with modified acquisition parameters, we
then modified the AL series to simulate a change in ambient light: a halogen light source
with a color temperature of 4500 K (labelled 45K; Figure 13E) and overcast daylight with a
color temperature of 7500 K (labelled 75K; Figure 13F).
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Figure 13. The same epidote grain in each test series: (A) 05-07-2022 AL, (B) 06-07-2022 AL,
(C) 07-07-2022 AL, (D) 08-07-2022 WP-100, (E) 08-08-2022 45K, and (F) 12-07-2022 75K.

For the nine acquisitions of the AL–WP0–WP100 series (Figure 14), the number of
detected grains varied from 482 to 516 (mean: 501, SD 11.6). For the 45K and 75K series,
the number of detected grained varied from 465 to 492 (mean: 477, SD 11.4) for 45K and
from 474 to 497 (mean: 485, SD 8.42) for 75K. The difference in the number of identified
grains can be explained by 1) the presence of dust, which is segmented as a proper grain;
2) segmentation artifacts because of grain reflection and stitching errors; and 3) grains
segmented more than once because of their presence at the edges of several images.

We observed no significant difference between the acquisitions that strictly followed
the protocol and those with a warm-up period less than 150 min (Figure 14A,C). The propor-
tion of detected minerals was constant, except for diopside and rutile, for which the results
appear less precise, evidenced by the relatively high standard deviation (Figure 14B,D).
This lower precision is related to the low number of images in the learning data set for
rutile (Table 3) and the high similarity of diopside with amphibole.

Using the same photomicrographs with a change in the ambient light (Figure 15A,C), the
grain proportion per mineral varied markedly relative to the ideal acquisition (Figure 13A).
The mean relative difference of both the 45K and 75K series (Figure 15B,D) was also higher
than that for the AL series (Figure 14B). However, the repeatability of the classification
appeared stable using this changeset simulation, although some minerals were overrep-
resented: monazite (>40%) for the 45K series and kyanite (>25%) for the 75K series. This
overestimation explains why the relative standard deviation of the other minerals was high,
given their small proportion.
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Figure 14. Mineral proportions of the analyzed grains (A,C) and the relative difference in proportion
per mineral (B,D). The gray shading reflects the error, represented as twice the relative standard
deviation for the AL (green lines), WP-0 (blue lines), and WP-100 (yellow lines) series, each color
line represents one acquisition. Proportions are used to avoid issues with differences in total grains
among acquisitions.
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Figure 15. Mineral proportions of the analyzed grains (A,C) and the relative difference in proportion
per mineral (B,D). The gray shading reflects the error, represented as twice the relative standard
deviation for the 45K (brown lines) and 75K (blue lines) series, each color line represents one
acquisition.

The misclassification observed when simulating changes in lighting conditions during
acquisition could be due to a strong variation in the intensity of the red, green, and blue
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channels. However, by examining the intensity of each channel for all images in Figure 13,
the maximum observed difference is between the epidote A and E. The difference is 10.47
or 4.12% for the green channel. Moreover, these differences are in accordance with the
differences obtained using real LED and halogen lighting (tests 1, 2, 3, and 7). The standard
deviation within each image is high due to the presence of relief at the grain surface
(Table 5).

Table 5. Mean R, G, and B intensity values with standard deviation of images in Figure 13.

Image Mean R Intensity Value Mean G Intensity Value Mean B Intensity Value

A 50.55 ± 30.61 48.52 ± 29.95 26.94 ± 21.13
B 49.30 ± 30.27 47.37 ± 29.61 25.36 ± 20.22
C 48.96 ± 30.17 46.80 ± 29.34 26.41 ± 20.60
D 48.97 ± 30.09 46.77 ± 29.26 26.80 ± 21.01
E 45.99 ± 35.38 38.05 ± 29.63 19.76 ± 17.80
F 42.43 ± 32.52 41.34 ± 32.10 27.08 ± 24.33

Our classification showed great reproducibility, as the grain proportions per mineral
within a given series were very similar. Nonetheless, the low number of grains (approxi-
mately 20 per mineral) heightened the mean relative difference between each series and
the minerals. These tests also highlight the sensitivity of machine learning to change of less
than 5% in image intensity.

8. Discussion

This paper aimed to describe and demonstrate a protocol to ensure the reproducibility
and quality of image acquisition, making it suitable for machine learning applications in
mineralogy.

8.1. Grain-Mounting Technique

We presented two complementary techniques for mounting grains on a slide. The
critical element for mounting is that the adhesive medium does not alter the optical proper-
ties of the grain; thus, a variety of media are possible depending on availability, regardless
of the step in this machine learning-adapted protocol. The aim of the mounting is to
acquire photomicrographs with all the possibilities offered by a microscope. Selecting the
appropriate adhesive also depends on the lighting used. A future study should assess
the advantages of epoxy staining; such an approach could significantly improve the grain
segmentation for transparent minerals in grain mounts, such as quartz, that have a color
and transparency close to that of epoxy.

8.2. Cameras and Microscopes

We faced a disk space limitation due to the grain topography requiring a high number of
z-images, but it was set at 20, as this was the maximum possible. Decreasing the objective
magnification could have been a solution; however, the 2.5 objective was subject to vignetting.
This explained our recommendation to use an on-axis microscope for grain imaging as the
depth of field is higher and would have decreased the number of z-images necessary.

Our protocol also illustrates the need for more appropriate microscope software. Some
commercial software does not allow the user to adjust the acquisition parameters. For
example, it is often impossible to adjust the stitching margins, and only the completed
stitched photomicrograph is available, not individual photomicrographs. With Python
and ArcGIS, routines are readily available and are used extensively by industry, and such
an addition to optical microscope acquisition software would be beneficial. A huge step
forward for numerical petrography would be to develop more open software linked to the
microscope equipment. A second would be to make all microscope parameters computer
controlled, including lighting type and its focusing and its intensity, polarization filters and
their orientation, and the objective and its focus. As Fueten [21] noted concerning computer-
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controlled stages and rotating polarizing filters, these improvements will significantly
expand the potential uses of the petrographic microscope in geological image-processing
applications.

8.3. Computer Settings

An issue related to the black-box software is the pixel size of the images at the end
of the process. It is possible to use the scale bar given by the software and microscope
manufacturer; however, it is nearly impossible to know the detailed computation and steps
behind this process. Thus, this information related to pixel size is not reliable when devel-
oping a new method. In our study, the link between the camera pixel size and image pixel
size was not detailed, preventing the straightforward definition of the photomicrograph
pixel size. Therefore, the only reliable method to determine photomicrograph pixel size
is to measure different parts of the color gauge in pixels at each acquisition. From this, a
ratio (and its standard deviation) can be computed for the length in pixels and the metric
length. It would be possible to study the evolution of pixel size among acquisitions, as this
parameter may vary. However, studies should investigate the data flow and transformation
from camera to software, as it might be possible to shortcut the data treatment for real-time
data acquisition.

8.4. Exposure and White Balance Calibration

For this study, we performed white balance calibration using an 18% gray card, as
recommended by professional photographers. However, it would be relevant to study the
effect of the color chosen for white balance calibration on image quality. Moreover, all
photomicrographs were acquired with maximum light intensity and minimum exposure time
to minimize the dark current error. However, the warm-up computation and classification
results showed that this error had a negligible effect on annular light photomicrographs.
Therefore, studying the difference between photomicrographs of minerals acquired with the
shortest exposition time and maximum light intensity and those captured using a longer
exposition time and a medium light intensity would be relevant. The longest exposition time
possible would not be relevant, as the dark current error would be too high in such a scenario.

8.5. Color Gauge Analysis

The color gauge role in this study determined whether the camera and its color
representation depended on pixel intensity and whether the acquisition was constant
for each pixel intensity. However, the color gauge can also be used for color correction
and, if a reference color gauge is chosen, it would be possible to have the same computer
representation of color independent of the microscope and camera type. This step would be
critical for implementing this protocol. However, the color gauge used in this study is not
suitable for transmitted light images as it is opaque. Another drawback is the texture on
the surface of the color square that generates reflection and shadows, which might partly
explain the standard deviation of each color channel. Thus, the best solution would be a
translucid flat color gauge.

8.6. Classification Results

Our classification showed great reproducibility between acquisitions and highlighted
the importance of an image acquisition protocol. By altering the ambient light, we noted
that the algorithm’s classification changed markedly, but the channel intensity did not, with
a variation of less than 5%, confirming the sensitivity of the method and the importance of
controlling each acquisition parameter. The only means of achieving this control is to follow
a strict and complete image acquisition protocol. The dark current error, however, was not
sufficiently large for this type of photomicrograph (approximately 0.7 on a scale of 0 to 255
for the red and green channel and 0.3 for the blue channel) to affect the classification results.
However, photomicrographs requiring a more extended exposition time may produce more
significant classification errors.
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9. Conclusions

The protocol presented in this paper can be summarized as follows:

1. Mount the grains or rock without alteration in the useful optical properties for the
study.

2. Choose between a petrographic microscope for thin section and an on-axis zoom
microscope for grains, ideally.

3. Compute the ideal image size and your storage capacity and act accordingly.
4. Microscope noise sources:

a. Create an enclosure for the microscope, as it prevents external light and dust
pollution.

b. Compute two or three times the warm-up period at different times of the day,
if your laboratory is air-conditioned and the exposure time is small it should
not have any impact on the image quality. If the error is high or not stabilizing,
measure the camera temperature or cool down the camera.

5. Use a color gauge to calibrate and study your acquisition parameters.
6. Choose the objective based on the spatial resolution required for your study, the

camera resolution should be superior to that of the microscope. And use the same
equipment for the whole study.

7. Adequate documentation on photomicrograph acquisition should be included with
images.

This image acquisition protocol addressed the mounting of the grains, the settings and
parameters of the computer and microscope, the use of a color gauge, and the sources of
noise and errors in the image acquisition using an optical microscope while also specifying
its physical observation limits. The links between each parameter are described and the
beginnings of solutions are given. Our protocol also ensured the reproducibility of images
and provided a critical assessment of acquisition through analysis of the color represen-
tation of the camera and its warm-up period. The standardization of the acquisition data
permitted us to detail the sensitivity of automated learning to changes in the training data.
Our research underscores the importance of implementing a rigorous image acquisition
protocol to achieve consistent and replicable classification results. The meticulous steps
outlined in our study are designed to guarantee the method’s precision across diverse
materials and objects of study.
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