
Citation: Duan, S.; Jiang, Z.; Luo, W.

Geochronology and Geochemistry of

Volcanic and Intrusive Rocks from

the Beizhan Iron Deposit, Western

Xinjiang, NW China: Petrogenesis

and Tectonic Implications. Minerals

2024, 14, 16. https://doi.org/

10.3390/min14010016

Academic Editor: Simon Paul

Johnson

Received: 4 November 2023

Revised: 25 November 2023

Accepted: 4 December 2023

Published: 22 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Geochronology and Geochemistry of Volcanic and Intrusive
Rocks from the Beizhan Iron Deposit, Western Xinjiang, NW
China: Petrogenesis and Tectonic Implications
Shigang Duan *, Zongsheng Jiang and Wenjuan Luo

MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,
Chinese Academy of Geological Sciences, Beijing 100037, China; jiangzongsheng@mail.cgs.gov.cn (Z.J.);
luowenjuan@mail.cgs.gov.cn (W.L.)
* Correspondence: duanshigang@mail.cgs.gov.cn

Abstract: The Awulale Iron Metallogenic Belt (AIMB) located in Central Tianshan is a significant
iron ore belt in China. The Beizhan area exhibits extensive volcanic and intrusive rocks that formed
during or close to the iron mineralization period. The iron ores in Beizhan are found in Early
Carboniferous rhyolite and dacite tuff. The rhyolite is enriched in LILEs and LREEs, depleted in
HFSEs, and shows high positive εNd(t) values (+3.0–+4.0). Late Carboniferous intrusive rocks include
a granite stock and diabase and diorite dykes. The zircon grains from the granite yield a weighted
mean 206Pb/238U age of 311.8 ± 2.6 Ma. The geochemical features of the granite are similar to
those of rhyolite, but with pronounced negative anomalies of Eu, Sr, P, and Ti and higher positive
εNd(t) values (+4.9–+5.1). The zircons in the diorite dyke yield a weighted mean 206Pb/238U age of
299.2 ± 1.4 Ma. Both the diabase and diorite dykes show an enrichment of LREEs and depletion of
HFSEs with high positive εNd(t) values (+3.3–+7.3 and +2.3–+2.6, respectively), although the Eu, Th,
and Sr anomalies are more negative in the diorite compared to the diabase. The rhyolite displays
high positive εNd(t) values and young Nd model ages (TDM2 = 760–838 Ma) and has Nb/Ta ratios
(11.3–12.8) close to that of the continental crust, indicating that it originated from the partial melting
of the juvenile lower crust. The granite has similar geochemical characteristics (TDM2 = 656–673 Ma
and Nb/Ta ratio = 8.7–10.9) and is also believed to have originated mainly from the partial melting
of the juvenile lower crust. The diabase and diorite dykes have low (Tb/Yb)N ratios (<2) and high
Ba/Th (31.8–353.2 and 185.3–251.3, respectively) and Sr/Th (113.8–312.9 and 144.7–163.1) ratios, and
exhibit a pronounced depletion of HREEs and Y and negative Th anomalies, suggesting that they
originated from a spinel-garnet lherzolite mantle source. The Early Carboniferous rhyolite erupted in
a continental arc setting, whereas the Late Carboniferous granites, diabase dykes, and diorite dykes
formed in an extensional setting associated with the upwelling of the asthenosphere. Therefore, the
magmatism and Fe mineralization in the AIMB are correlated with an extensional setting associated
with oceanic slab breakoff.

Keywords: metallogenic setting; tectonic transition; slab breakoff; Awulale Iron Metallogenic Belt;
Tianshan Orogen

1. Introduction

The Central Asian Orogenic Belt (CAOB) is globally acknowledged as one of the
world’s largest accretionary orogenic systems (Figure 1a) [1–5], recognized for its abundant
copper, gold, lead–zinc, molybdenum, nickel, and chromium ore deposits [6–9]. Addi-
tionally, the CAOB is known for its significant iron deposits concentrated in three distinct
areas: the Turgai belt in Uralides [10], the Southern Altay in China [11,12], and the Awulale
Belt in Tianshan [7,13]. Given the economic significance of these resources, the geological
evolution of the CAOB has garnered enduring attention from geologists and economic
experts worldwide [6,7,9,14–16].
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Figure 1. (a) Simplified Central Asian orogenic collage and adjacent structures (modified after Gao
et al. [15]). (b) Geological map of the Chinese West Tianshan and adjacent region (modified after Gao
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The Awulale Iron Metallogenic Belt (AIMB), as one significant iron metallogenic belt
within China, boasts numerous iron deposits and occurrences (Figure 1b) [13,17,18]. These
include Beizhan (468 Mt at 41% Fe), Dunde (185 Mt at 35% Fe), Zhibo (337 Mt at 26%–68%
Fe), Chagangnuo’er (210 Mt at 35% Fe), Nixintage-Akesayi (106 Mt), and Songhu (63 Mt)
(Figure 2) [13,19–29]. Although extensive geological, geochemical, and geochronological
research has been conducted on these iron deposits, the metallogenic origin and its link
to volcanic and intrusive rocks remains subject to controversy. Previously, scholars be-
lieved that iron ore mineralization took place during the whole Carboniferous period [7,13].
However, recent high-precision dating indicates that the mineralization was primarily
concentrated in the Late Carboniferous [21,27,29,30]. Consequently, there is considerable
interest in Late Carboniferous volcanic and intrusive rocks surrounding the iron deposits.
While a few recent studies have examined the ore-hosting volcanics [19,23,26,31–34], previ-
ous research has predominantly focused on igneous rocks outside the AIMB, which are
neither contemporaneous nor spatially associated with the iron mineralization [35–41].
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Figure 2. Geological map of the Eastern segment of the Awulale Metallogenetic Belt showing the
locality of iron deposits (modified after Tian et al. [29]). (Blue-square with number 3 refer to the
enlargement of Figure 3).

In this study, we conduct detailed petrological investigations, zircon U–Pb isotopic
dating, and whole-rock geochemical and Sr–Nd isotope analyses of volcanic and intrusive
rocks found in the Beizhan Fe deposit within the AIMB. Our objective is to assess the
petrogenesis of these magmatic rocks, as well as to determine the metallogenic setting
of the AIMB. To achieve this, we incorporate previously published geological data for a
comprehensive evaluation.

2. Geological Setting

The Chinese Tianshan is divided into two segments: the Eastern Tianshan and the
Western Tianshan, which are separated by the Tuokexun–Kumishi High Road [42,43]. The
Western Tianshan is located along the southwestern margin of the CAOB (Figure 1a). It lies
between the Junggar Plate (JP) to the north and the Tarim Plate (TP) to the south and is a
Paleozoic Orogenic belt. In the Western Tianshan, Gao et al. [44] identified seven tectonic
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units (Figure 1b): the North Tianshan Arc accretionary wedge (NTAW), the northern active
continental margin of the Yili Block (NACM), the Yili Block itself (YB), the southern active
continental margin of the Yili Block (SACM), the Central Tianshan composite arc terrane
(CTT), the Western Tianshan (high-pressure) accretionary wedge (HPAW), and the northern
margin of the Tarim Block (NMT).

The Terskey Ocean, an early Paleozoic ocean basin, once separated the Yili Block
and the Central Tianshan composite arc terrane. It is believed to have closed during the
Middle Ordovician [35]. The South Tianshan Ocean, on the other hand, separated the
northern margin of the Tarim Block from the Central Tianshan composite arc terrane. The
associated Western Tianshan (high-pressure) accretionary wedge is a metamorphic mélange
belt that experienced deep subduction and exhumation, and it might have closed during
the late Paleozoic [16]. The North Tianshan Ocean, which separated the Junggar Plate
from the northern active continental margin of the Yili Block, is thought to have closed
in the Late Carboniferous [45]. Following the closure of the South Tianshan Ocean and
the North Tianshan Ocean, the Junggar Plate, Yili Block, and Tarim Plate merged into
a unified block. Subsequently, the Western Tianshan entered a postcollisional extension
stage [16,38,44,46–48].

The AIMB is a linear belt located in the center of the Yili Block. It consists of a Precam-
brian basement and Paleozoic volcanic–sedimentary strata (Figure 1b). The basement rocks
primarily consist of Mesoproterozoic gneiss, schist, and quartzite. The Paleozoic volcanic-
sedimentary strata include various rock types from different time periods. Specifically,
these strata comprise Silurian carbonate-rich volcanic rocks, Middle Devonian marine vol-
caniclastic and sedimentary rocks, Upper Devonian littoral volcanic and terrigenous clastic–
carbonate rocks, Lower Carboniferous marine volcanic–sedimentary clastic–carbonate
rocks, Upper Carboniferous marine volcanic rocks with limestone interbeds, Lower Per-
mian terrigenous clastic rocks, Lower to Middle Triassic terrigenous clastic rocks, and
Jurassic terrigenous clastic rocks with coal seams (Figure 2) [49–52].

The Beizhan iron deposit, which is the focus of this study, is situated in the eastern
part of the AIMB. The lithological units in this area mainly consist of littoral facies, vol-
canic/volcaniclastic rocks, and sedimentary rocks that dip northward. These rocks include
rhyolite, dacite, shard tuff, crystal tuff, lithic tuff, conglomerate, sandstone, limestone, and
dolomite (Figure 3) [53]. Additionally, there are minor occurrences of marble and phyllite
to the north of the iron orebodies. Intrusions in these rocks include a granite stock and
numerous diorite and diabase dykes (Figures 3, 4 and 5a,b). Notably, diabase dykes also
intrude the granite (Figure 5c).

Three platy-shaped magnetite orebodies were identified within the rhyolite and tuff
formations (numbered as L1, L2, and L3). The hydrothermal alteration associated with
mineralization includes a narrow “skarn envelope” that closely wrapped the L2 and L3
orebodies (Figure 5m), a broader orebody-centered carbonate alteration in the dacite and
tuff, and irregularly distributed sparse veins of epidote, tourmaline, and/or chlorite close
to the orebodies (Figure 5n,o). The ore minerals are dominated by magnetite with minor
pyrite and pyrrhotite. The gangue minerals mainly include calcite, ankerite, chlorite,
serpentine, tourmaline, epidote, and muscovite with minor garnet, diopside, forsterite,
tremolite, and apatite. Based on mineral assemblage and texture, four successive stages are
identified: an early skarn mineral stage, magnetite stage, sulfide stage, and late carbonate
stage. The Beizhan iron deposit is classified as an iron skarn due to the mineral assemblage
mentioned above. Its mineralization age is constrained to 302–308 Ma [21]. The presence of
an abundance of tourmaline and scarcity of quartz in the ores suggests the involvement of
a silica-deficient but volatile-rich ore-forming fluid.

Nineteen representative samples from the Beizhan volcanic lava and intrusions were
carefully chosen for geochemical analyses. As the dating of rhyolite and diabase has been
completed previously [54,55], we opted to focus on granite and diorite for geochronology
purposes. The locations of the samples can be seen in Figure 3.
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carbonate rocks close to diabase (Dia) recrystallized into marble (Mb); look east. (b) Diorite (Dio)
dyke in rhyolite. (c) Diabase dykes in granite. (d) Massive porphyritic rhyolite. (e) Quartz (Qtz) and
plagioclase (Pl) phenocrysts of rhyolite, and early euhedral quartz phenocryst with internal sieve
structure and resorption borders; with cross-polarized light. (f) Massive granite hand specimen.
(g) Subhedral inequigranular granite composed mainly of K-feldspar (K-fel), plagioclase (oligoclase),
and quartz; with cross-polarized light. (h) Fine-grained diorite dyke specimen, about 20 cm × 20 cm.
(i) Hornblende (Hb) crystal of diorite is partially replaced by epidote or chlorite; with cross-polarized
light. (j) Fine-grained diabase dyke hand specimen. (k) Euhedral plagioclase and anhedral pyroxene
(Px) in diabase; the former experienced strong alteration; with cross-polarized light. (l) Magnetite
(Mt) and ilmenite (Ilm) in diabase; with reflective polarized light. (m) Garnet (Grt)–epidote (Ep) skarn
veins in rhyolite. (n) Tourmaline (Tm)–pyrite (Py) veins in actinolite skarn. (o) Epidote–magnetite
vein in granite.

3. Analytical Methods

Petrographic investigations were conducted using an optical microscope. The sep-
aration of zircon grains was accomplished through conventional density and magnetic
techniques at the Institute of Regional Geology and Resource Survey, Hebei Province,
China. Zircon cathodoluminescence (CL) imaging was carried out using a JSM6510 scan-
ning electron microscope equipped with a GATAN Chroma CL mini detector, which was
housed at Beijing GeoAnalysis Co., Ltd., Beijing, China.

U–Pb isotope analyses were conducted using a Finnigan Neptune inductively cou-
pled plasma mass spectrometer that connected to NewWave UP–213 laser ablation in the
LA–ICP–MS laboratory at the Institute of Mineral Resources, Chinese Academy of Geo-
logical Sciences. Details regarding the instrument settings and operation conditions are
as described by Hou et al. [56,57]. The laser beam had a diameter of 25 µm, frequency
of 10 Hz, and energy density of about 2.5 J/cm2. Helium gas was used as the carrier gas
to enhance transport efficiency of the ablated materials. The external standard GJ-1 was
used to monitor the age of zircon and was analyzed twice every 5–10 analyses. Preferred
U–Th–Pb isotopic ratios for the GJ-1 were derived from Jackson et al. [58]. The standard
M127 (U: 923 × 10−6, Th: 439 × 10−6, and Th/U: 0.475 [59]) was used to calibrate U and Th
concentrations and was analyzed once every 5–10 analyses. For detailed parameter settings
and analysis steps, please refer to Hou et al. [60]. Data were processed using ICPMSDataCal
according to the procedure of Liu et al. [61] and assessed using Isoplot 3 [62]. The analytical
data are presented with 1σ on the concordia plots. Uncertainties in the mean age are quoted
at the 95% confidence level. The reference zircon Plesovice was dated as an unknown
sample and yielded a weighted mean 206Pb/238U age of 337.8 ± 2.8 Ma (2σ, n = 4), in good
agreement with the recommended 206Pb/238U age of 337.13 ± 0.37 Ma (2σ) [63].

The samples for bulk-rock geochemical analysis were finely crushed and ground
to a 200-mesh powder at the Institute of Regional Geology and Resource Survey, Hebei
Province, China. The analysis of major, trace, and rare-earth elements was conducted at
the National Research Center for Geoanalysis, Chinese Academy of Geological Sciences,
located in Beijing, China. Major oxides such as SiO2, Al2O3, TFe2O3, Na2O, K2O, CaO,
MgO, TiO2, MnO, and P2O5 were tested based on the GB/T14506.28–2010 standard [64]
and using a PW4400 X-ray fluorescence spectrometer with a relative standard deviation
(RSD) <2%–8%. FeO was determined using the titration method (RSD < 10%) based
on the GB/T14506.14–2010 standard [65]. The loss on ignition (LOI) was determined by
calculating the weight difference after subjecting the samples to high temperature com-
bustion (1000 ◦C) with a relative standard deviation (RSD) of less than 5%, following
the LY/T1253–1999 standard [66]. Trace and rare-earth elements were analyzed using
an XSeries inductively coupled plasma mass spectrometer (ICP–MS) with a relative stan-
dard deviation (RSD) ranging from 2% to 10%, in accordance with the DZ/T0223–2001
standard [67].

Sr and Nd isotopic ratios were determined at the Isotope Laboratory of the Institute of
Geology, Chinese Academy of Geological Sciences, Beijing, China. The instrument used for
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Sr isotope analysis was the MAT262 solid isotope mass spectrometer, while a Nu Plasma HR
Multi-Collector magnetic sector inductively coupled plasma mass spectrometer (MC–ICP–
MS) was used for the Nd isotope. Sample preparation and chemical separation followed
the methods of He et al. [68] and Zhang et al. [69]. The mass fractionation corrections for Sr
and Nd isotopic ratios were based on 88Sr/86Sr = 8.37521 and 146Nd/144Nd = 0.7219. The
results calculated from the repeated analysis of international standards were as follows:
the Sr value (SRM 987 SrCO3) 87Sr/86Sr = 0.710238 ± 0.000012 (2σ) and the Nd value (JMC
Nd2O3) 143Nd/144Nd = 0.511124 ± 10 (2σ).

4. Results
4.1. Petrography

The rhyolites found within the Beizhan iron deposit exhibit a porphyritic texture,
characterized by the presence of phenocrysts comprising approximately 10%–15% volume
of quartz, 10%–15% volume of plagioclase, and 3%–5% volume of K-feldspar (Figure 5).
The quartz phenocrysts exhibit rounded shapes due to resorption, while the plagioclase
phenocrysts display euhedral forms with polysynthetic twinning. The K-feldspar phe-
nocrysts consist mainly of microcline, displaying tartan or Carlsbad twin structures and
appearing as short laths. The groundmass exhibits fine-grained, anhedral textures primar-
ily composed of an approximately 30%–35% volume of quartz and 35%–40% volume of
plagioclase. The distinction between rhyolite and dacite lies mainly in the relative content
of quartz and feldspar phenocrysts (with occasional scattered hornblende) at different
horizons. Additionally, some localized occurrences of chlorite are observed in the rhyolite,
likely resulting from the alteration of hornblende.

The granite stock primarily exhibits a medium-coarse-grained texture (Figure 5f,g),
with a more pronounced porphyritic feature towards the margins. The composition of
the rock is primarily consists of an approximately 30% volume of K-feldspar, 32% volume
of plagioclase, 30% volume of quartz, around 6% volume of mafic minerals (altered to
chlorite while maintaining the morphology of hornblende), and minor accessory minerals
including zircon, apatite, and magnetite. The margins of the stock exhibit phenocrysts of
K-feldspar (20%–25% volume) and quartz (10%–15% volume), accompanied by a subhedral
fine-grained groundmass consisting of quartz, plagioclase, and perthite.

The diabase dykes, ranging from 0.2 m to 2 m in width and several hundred meters
in length, primarily trend in a W–NW or NE direction as they intrude the granite and
surrounding strata. These dykes exhibit a porphyritic texture with phenocrysts comprising
approximately 5% volume of clinopyroxene and 5% volume of plagioclase (Figure 5j,k).
The groundmass of the dykes displays a fine-grained ophitic texture, primarily composed
of an approximately 40% volume of clinopyroxene, 40% volume of plagioclase, 5% vol-
ume of hornblende, and contains chlorite, ilmenite, and magnetite in higher proportions
exceeding 5% in volume. The diabase is distinctive due to its high content of ilmenite and
magnetite (Figure 5l).

The diorite dykes share similarities with the diabase dykes in terms of occurrence.
These rocks exhibit a medium-grained texture (Figure 5h,i) and are composed of an approx-
imately 50% volume of plagioclase, 15% volume of K-feldspar, 15% volume of quartz, 14%
volume of hornblende, less than 2% volume of chlorite, and also contain some accessory
minerals such as zircon, apatite, and magnetite.

4.2. Zircon Geochronology

The analytical results are provided in Supplementary Table S1 and depicted in both
Figures 6 and 7. The zircon grains found in both the granite and diorite samples exhibit a
similar crystal morphology, mostly appearing euhedral and measuring between 50 and
160 µm in length, with an average length-to-width ratio of approximately 2:1 (Figure 6).
These zircon grains are predominantly transparent with a light yellow color, displaying
characteristic oscillatory zoning. In the granite sample (12BZ72), some zircon grains exhibit
a core-rim structure. The cores of these grains are unzoned and show signs of resorption,
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with a slightly weaker cathodoluminescent (CL) brightness compared to the rims (e.g.,
zircon 18 in Figure 6a). It is suggested that these core regions may have been inherited from
the magma source or country rocks at greater depths, while the rims represent a subsequent
magmatic overgrowth.
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5 and 16 in Figure 6a) exhibit relatively higher 206Pb/238U model ages (335 Ma and 510 Ma,
respectively), suggesting that they are inherited grains. The remaining 15 analyses form a
tight cluster on the concordia plot (Figure 7a), with 14 of them yielding a well-weighted
mean 206Pb/238U age of 311.8 ± 2.6 Ma (MSWD = 0.41) and a concordia 206Pb/238U age of
312.1 ± 1.2 Ma (MSWD = 14). Analysis 14 (zircon 14 in Figure 6a) was excluded due to a
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higher discordance. The weighted mean age of 311.8 ± 2.6 Ma is interpreted as the most
reliable estimate for the crystallization age of the granite.

Twenty spots on zircon grains from the diorite show 49–376 ppm of U, 47–357 ppm of
Th, and Th/U values in the range of 0.61–1.42, suggesting a magmatic origin. Five analyses
(zircon 8, 11, 12, 16, and 19 in Figure 6b) fall out of the concordia plot (Figure 7b) and are
excluded. One analysis (zircon 4 in Figure 6b) was discarded due to a high discordance.
The remaining 14 analyses form a single and tight cluster on the concordia plot (Figure 7b)
and yield a weighted mean 206Pb/238U age of 299.2 ± 1.4 Ma (MSWD = 0.81). This age is
interpreted as the best estimation of the crystallization age of the diorite.

4.3. Whole-Rock Geochemistry

The analytical results are listed in Supplementary Table S2. The rhyolite samples have
SiO2 = 66.92%–73.35% and Na2O + K2O = 5.00%–8.05% and are subalkaline (Figure 8a). One
sample has relatively high K2O = 4.25%, while the other four have a very low K2O content
(0.29%–1.28%) but a relatively high CO2 and CaO content (0.77%–1.11% and 3.14%–6.61%,
respectively) which are interpreted to be due to mild carbonate alteration. These samples
show calc-alkaline and metaluminous characteristics (Figure 8b,d). On the chondrite-
normalized REE patterns (Figure 9), they show a variable enrichment of light rare earth
elements (LREEs), approximately parallel flat heavy rare earth elements (HREEs) and
slightly negative Eu anomalies with δEu between 0.45 and 0.70. On the primitive mantle-
normalized spidergram (Figure 9), they show high concentrations of the large ion lithophile
elements (LILEs) Th and U, an obvious depletion in P and Ti, and negative anomalies of
Nb and Ta due to the variable content of La and Ce.
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Figure 9. Chondrite-normalized REE patterns (Left) and primitive mantle-normalized trace element
patterns (Right) of the representative samples from the Beizhan area. Chondrite and primitive mantle
normalized values are from Sun and McDonough [75]. (a,b) show two patterns of rhyolite; (c,d) show
two patterns of granite; (e,f) show two patterns of diabase; (g,h) show two patterns of diorite.

The granite samples have high SiO2 (73.97%–77.61%) and Na2O + K2O (8.34%–8.82%)
contents, slightly low Na2O/K2O ratios (0.74–0.91) and are subalkaline (Figure 8a). They
display calc-alkaline and metaluminous affinities, and plot in the field of high-K calc-
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alkaline igneous rocks (Figure 8b–d). Their chondrite-normalized rare earth element
pattern is characterized by a pronounced LREE-enrichment (steep negative slope), rela-
tively flat HREEs (slightly concave downward) and an obvious negative Eu anomaly with
δEu between 0.25 and 0.36. The primitive mantle-normalized spidergrams show high
concentrations of the LILEs Rb, U, Th, and K, but strong negative anomalies in Ba, Nb, Ta,
Sr, P, and Ti elements.

The diabase samples show high Na2O/K2O ratios (2.28–10.29) and show subalkaline
(Figure 8a) and metaluminous features, plotting in the field of calc-alkaline igneous rocks
(Figure 8c,d). They are characterized by the relatively strong enrichment of LREEs but
depletion of HREEs and show approximately parallel steep negative slope on the chondrite-
normalized REE patterns and have very mild negative Eu anomalies (δEu = 0.77–0.97).
They also have apparent negative Nb and Ta anomalies, and are depleted in HFSEs (Ti, Y,
Yb, and Lu).

The diorite samples have SiO2 = 54.48%–55.83% and Na2O + K2O = 6.94%–7.19%
and are slightly alkaline and metaluminous (Figure 8a). These samples are similar to
the diabase samples on the chondrite-normalized REE patterns and primitive mantle-
normalized spidergram. They are relatively strongly enriched in LREEs but depleted in
HREEs and show slightly negative Eu anomalies (δEu = 0.75–0.80). They also display
strong negative anomalies of Th, Nb, Ta, and Sr, and are depleted in HFSEs such as Ti, Y,
Yb, and Lu.

4.4. Sr–Nd Isotopic Geochemistry

Measured and age-corrected initial isotopic ratios of Sr and Nd are presented in
Table 1 and illustrated in Figure 10. The Sm, Nd, Rb, and Sr contents of these rocks are
given in Supplementary Table S2. Because the f Sm/Nd (fractionation factor of Sm and Nd)
for these samples mainly range from −0.47 to −0.29 (except for two rhyolite samples of
−0.09 and −0.10, respectively), the two stage model ages (TDM2) were calculated. The
rhyolite samples have initial 87Sr/86Sr ratios (ISr) ranging from 0.7055 to 0.7060, εNd(t)
values ranging from +3.0 to +4.0, and TDM2 values of 760–838 Ma. The granite samples have
ISr values of 0.6986–0.7029, εNd(t) values of +4.9 to +5.1, and TDM2 values of 656–673 Ma.
However, owing to the extremely high Rb/Sr ratios of the Beizhan granite, their calculated
initial 87Sr/86Sr ratios are not meaningful (e.g., Tang et al. [76]). For the diabase samples,
the ISr, εNd(t) and TDM2 values are 0.7043 to 0.7049, +3.3 to +7.3, and 466 to 797 Ma,
respectively. For the diorite samples, these values are 0.7050 to 0.7053, +2.3 to +2.6, and
852 to 872 Ma, respectively.

Table 1. Sr and Nd isotopic data for volcanic and intrusive rocks from the Beizhan iron deposit.

Sample Rock Rb
(ppm)

Sr
(ppm)

87Rb/86Sr 87Sr/86Sr 2σ ISr
Sm

(ppm)
Nd

(ppm)
147Sm/144Nd 143Nd/144Nd 2σ INd εNd(t) fSm/Nd

TDM2
(Ma)

12BZ07 R 97.2 405 0.69 0.708772 15 0.7055 3.57 18.8 0.12 0.512668 7 0.512419 4.0 −0.41 760
12BZ11 R 10.4 227 0.13 0.706282 14 0.7057 2.44 14 0.11 0.51264 6 0.512412 3.9 −0.46 772
12BZ14 R 10 319 0.09 0.706426 11 0.7060 1.98 6.73 0.18 0.512761 10 0.512376 3.1 −0.09 829
12BZ16 R 11.9 286 0.12 0.706362 15 0.7058 2.55 8.72 0.18 0.512784 5 0.512401 3.6 −0.10 789
12BZ35 R 33.1 428 0.22 0.707012 15 0.7060 3.11 13.5 0.14 0.512672 9 0.512370 3.0 −0.29 838
12BZ62 G 109 91.7 3.44 0.716508 15 0.7012 4.52 23.5 0.12 0.512728 6 0.512489 4.9 −0.41 670
12BZ68 G 102 113 2.61 0.714482 15 0.7029 5.13 27.1 0.12 0.512733 6 0.512498 5.1 −0.41 656
12BZ69 G 137 85.3 4.65 0.719238 14 0.6986 4.38 24.1 0.11 0.512717 6 0.512491 5.0 −0.44 666
12BZ70 G 123 71.6 4.97 0.723082 14 0.7010 5.01 28.3 0.11 0.512707 10 0.512487 4.9 −0.45 673
12BZ71 G 126 80.3 4.54 0.721549 13 0.7014 5.71 33.2 0.10 0.512707 5 0.512493 5.0 −0.47 663
12BZ39 Dia 43.7 535 0.24 0.70596 12 0.7049 4.79 22.6 0.13 0.512734 11 0.512478 4.5 −0.34 698
12BZ46 Dia 37.8 652 0.17 0.705606 14 0.7049 4.94 23 0.13 0.512675 5 0.512416 3.3 −0.34 797
12BZ58 Dia 39.5 717 0.16 0.705074 14 0.7044 6.26 30.1 0.13 0.512867 7 0.512616 7.2 −0.36 478
12BZ59 Dia 40.4 659 0.18 0.705037 15 0.7043 7.91 44.1 0.11 0.51284 8 0.512624 7.3 −0.45 466
12BZ61 Dia 41.9 699 0.17 0.705337 14 0.7046 6.81 33.6 0.12 0.512863 5 0.512618 7.2 −0.37 475
12BZ361 Dio 60.3 323 0.54 0.707616 14 0.7053 6.36 32.9 0.12 0.512602 6 0.512372 2.3 −0.40 872
12BZ362 Dio 61.4 285 0.62 0.707666 13 0.7050 5.75 27.9 0.13 0.512627 10 0.512382 2.5 −0.36 856
12BZ363 Dio 43.6 294 0.43 0.707152 13 0.7053 5.62 27.9 0.12 0.512624 6 0.512384 2.6 −0.38 852

Note: Dia—diabase dyke; Dio—diorite dyke; G—granite; and R—rhyodacite. Chondrite uniform reservoir
(CHUR) values [(143Sm/144Nd)CHUR(0) = 0.512638 and (143Nd/144Nd)CHUR(0) = 0.1967] and depleted man-
tle (DM) values [(143Nd/144Nd)DM = 0.513151 and (147Sm/144Nd)DM = 0.2137] are used for the calculation.
f Sm/Nd = (147Sm/144Nd)m/(147Sm/144Nd)CHUR(0) − 1. λRb = 1.42× 10−11/year [77] and λSm = 6.54× 10−12/year
[78]. The initial Sr and Nd isotopic ratios were corrected to 329 Ma, 312 Ma, 303 Ma, and 299 Ma for rhyolite,
dacite granite, diabase dyke, and diorite dyke, respectively.
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5. Discussion
5.1. Magmatic Episodes and Speculative Causative Pluton for the Beizhan Iron Deposit

The rhyolite and dacite found in the Beizhan iron deposit have been classified as part of
the Early Carboniferous Dahalajunshan Formation, based on regional lithologic correlation
(No. 11 Geological Party of the Xinjiang Bureau of Geology and Mineral Exploration
and Development [53]). LA–ICP–MS zircon U–Pb analyses of dacite from the Beizhan
deposit yielded a weighted mean 206Pb/238U age of 329.1 ± 1.0 Ma [54], consistent with the
results of lithologic correlation. However, Zhang et al. [84] reported a zircon U–Pb age of
301.3 ± 0.8 Ma for the dacite in the Beizhan deposit. Since the dacite is intruded by granite
and the zircons from granite yielded a weighted mean 206Pb/238U age of 311.8 ± 2.6 Ma in
this study, we consider that the 301.3 ± 0.8 Ma age reported by Zhang et al. [84] cannot
represent the age of wall-rock dacite from the Beizhan iron ores. Recently, Luo et al. [85]
reported a LA–IC–PMS zircon U–Pb age of 302.5 ± 1.3 Ma for diabase dyke in the Beizhan
deposit. Our zircon U–Pb age of 299.2 ± 1.4 Ma for the diorite dyke is consistent with
that of the diabase dyke within the error range. Considering their proximity, it is inferred
that the diabase and diorite formations originated from the same magma chamber in the
shallow crust, suggesting a sequential process. At this point, we can deduce the following:
Following the eruption of rhyolite and dacite during the Early Carboniferous period,
subsequent intrusions occurred in the Late Carboniferous. These included granite stocks,
diabase, and diorite dykes in the existing volcanic rock formations.

Duan et al. [21] reported an isochron age of 302.5 ± 8.2 Ma using pyrite Re–Os
isotopic dating, along with four muscovite 40Ar/39Ar plateau ages for the Beizhan iron
ores: 304.7 ± 1.8 Ma, 304.5 ± 1.9 Ma, 308.1 ± 1.9 Ma, and 307.2 ± 1.8. Based on these
ages, it can be inferred that the iron mineralization is associated with Late Carboniferous
intrusive rocks. However, the age of the iron mineralization overlaps with the estimated
ages of granite, diabase, and diorite veins, making it challenging to definitively identify the
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metallogenic intrusions based solely on isotopic age. Several geological pieces of evidence
support a genetic relationship between iron mineralization and diabase:

(1) Spatial association: The iron mineralization is spatially associated with diabase and
diorite dykes, indicating a potential connection between the two.

(2) Mineral composition: The assemblage of gangue minerals suggests that the fluid
responsible for forming the iron ores had a low SiO2 content but high volatile content.
This observation contrasts with the expected characteristics of high SiO2 granite but
aligns with the properties of mafic diabase and diorite dykes.

(3) Alteration occurrence: The alteration of chlorite and carbonate is common in diabase
dyke, but very few are found in its wall-rock rhyolite, suggesting that diabase is rich
in water.

(4) Cutting relationship: Several long and straight epidote-magnetite veins were observed
along the edge of the granite (Figure 5o), indicating that the iron mineralization is
associated with a later structure-hydrothermal event, rather than being part of the
granite itself.

(5) Similar mineralization nearby: The Yikaiharenguo iron deposit is located adjacent to
the Beizhan iron deposit, occurring specifically at the contact zone between a diabase
stock and limestone (Figure 2).

Therefore, there appears to be a connection between mineralization and the diabase.
The diabase dyke mapped at present may be from the shallower portion of a deeper diabase
stock. This is supported by ground magnetic surveys which show a larger strong positive
magnetic anomaly except the peak-style anomaly induced by magnetite ores in the Beizhan
deposit, interpreted as the effect of a concealed gabbroic pluton (No. 11 Geological Party of
the Xinjiang Bureau of Geology and Mineral Exploration and Development [53]). The skarn
iron deposits associated with mafic intrusions are commonly referred to as “Cornwall-type”
deposits, named after the well-known example found in Cornwall, Pennsylvania [86–88].
A comparable iron deposit has also been documented in the Eastern Tianshan region,
specifically the Cihai iron skarn deposit [88].

5.2. Petrogenesis and Source Characteristics
5.2.1. Rhyolite and Granite

The absence of primary peraluminous minerals such as muscovite, cordierite, garnet,
and tourmaline (Figure 5), along with over 8% CIPW normative diopside but less than 1%
normative corundum and relatively low A/CNK ratios (≤1.0; Figure 8d) differentiate the
Beizhan rhyolite and granite from S-type granites [89]. Additionally, moderate concentra-
tions of Rb, Nb, Ce, and Zr, as well as moderate FeO*/MgO ratios and 10,000 × Ga/Al
ratios below 2.6 exclude the possibility of an A-type granite affinity [90]. Therefore, based
on their mineralogical and geochemical characteristics, the Beizhan rhyolite and granite
can be reasonably classified as calc-alkaline I-type granites. Furthermore, their depleted
Nd isotopic composition and their decrease in P concentration with the increase of SO2
(Figure 11) further confirm their I-type nature.

I-type granites are generally believed to form through the partial melting of older
igneous rocks [89,91]. The Beizhan granite stands out from typical adakite series, which are
produced by the partial melting of subducting slabs, due to its low Sr content (<113 ppm)
but high Y (>24.8 ppm) and Yb (>3.13 ppm) contents [92]. Moreover, its high 87Sr/86Sr
initial ratio (≥0.7055), along with its low concentrations of Cr (<15 ppm), Co (<10 ppm),
Ni (<6 ppm), and Sr/Y ratios (<25) excludes the Beizhan rhyolite from being classified as
typical adakitic rocks [92].

The Nb/Ta ratios of both the Beizhan rhyolite and granite, ranging from 11.3 to
12.8 and 8.7 to 10.9, respectively, closely resemble those of the continental crust (approxi-
mately 11 [93,94]) but differ significantly from the ratios observed in the mantle or mantle-
derived melts (17.5 ± 2.0 [95]). However, the high positive εNd(t) values (+3.0–+4.0 and
+4.9–+5.1, respectively) and young Nd model ages (TDM2, 760–838 Ma and 656–673 Ma,
respectively) align closely with the depleted mantle values (Figure 10), suggesting that
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the Beizhan rhyolite and granite resulted from the partial melting of a newly underplated
lower crust. This interpretation is supported by the absence of contemporaneous basaltic
and intermediate magmatic rocks in the Beizhan area, thus ruling out the possibility of
derivation through fractional crystallization of the mantle-derived melts. Similar conclu-
sions have been drawn in previous studies on I-type granitoids with high positive εNd(t)
values in the AIMB [76,96,97]. Therefore, it is plausible to consider a source consisting of
a newly underplated lower crust, with contributions from a mantle that was previously
modified by subduction-related fluids and sediments.
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diagram; (g) SiO2 vs. Na2O diagram; (h) SiO2 vs. K2O diagram; (i) SiO2 vs. FeO* diagram.

In the Harker diagram (Figure 11), most major elements in the rhyolite and granite
exhibit a weak correlation with SiO2, except for Al2O3 and TiO2. This suggests that the
chemical compositions of these rocks were primarily controlled by the partial melting
rather than by fractional crystallization. This observation is consistent with the findings of
Zhang et al. [98], who also suggested that fractional crystallization is unlikely in granitic
magmas due to their high viscosity and the similarity in density between primary minerals
and granitic magmas.

The rhyolite displays negative anomalies in P and Ti, which likely indicates the
presence of apatite and Fe-Ti oxides in the residual material. Additionally, its flat pattern of
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MREEs (Middle Rare Earth Elements) to HREEs (Heavy Rare Earth Elements) (Figure 9a)
suggests the involvement of amphibole as cumulates in the residual material.

On the other hand, the granite exhibits highly fractionated LREEs to HREEs, char-
acterized by flat to listric-shaped patterns. It also displays more pronounced negative
anomalies in Eu, Ba, Sr, P, and Ti in the REE patterns and spider diagrams compared to the
rhyolite. These anomalies likely indicate the presence of apatite, Fe-Ti oxides, plagioclase,
and amphibole in the residual material from the deep source.

Saturation temperatures of zircon, calculated based on bulk-rock compositions, exhibit
a range of 748 ◦C to 774 ◦C for rhyolites, suggesting a relatively low initial magma temper-
ature at the source. The presence of water appears to be crucial in generating such “cold”
felsic magma in the source area [99]. Additionally, the breakdown of amphibole could have
played a significant role in the process of dehydration partial melting, contributing to the
initial water content necessary for melt production [100].

On the other hand, granite exhibits zircon saturation temperatures ranging from 787 ◦C
to 816 ◦C, indicating a comparatively high initial magma temperature at the source. The
generation of this “hot” felsic magma might require advective heat input into the crust [99]
and is likely connected to the underplating of mafic magmas [97].

5.2.2. Diabase and Diorite Dykes

The diabase and diorite dykes found in the Beizhan deposit underwent a mild al-
teration, as indicated by their relatively high loss on ignition values ranging from 1.69%
to 2.69% for diabase and 1.57% to 1.84% for diorite. A petrographic examination further
revealed that chlorite and carbonate partially replaced clinopyroxene and plagioclase min-
erals. Given the limited occurrence of alteration minerals, it can be inferred that certain
major elements and LILEs (such as Na, K, Ba, Rb, and U) were mobile during the low-
temperature alteration process, while other major elements, HFSEs, and REEs remained
relatively unaffected (e.g., Yan et al. [33] and references therein). Consequently, the major
elements (excluding Na and K), REEs, and HFSE contents of the diabase and diorite dykes
serve as valuable indicators for understanding their petrogenesis and tectonic setting.

When mantle-derived magmas ascend or accumulate within a magma chamber in the
Earth’s crust, they can undergo varying degrees of contamination from the surrounding
crustal materials [101]. The Beizhan diabase samples exhibit a relatively wide range of εNd(t)
values (Figure 12), indicating the involvement of crustal components. However, several
lines of evidence suggest that the impact of crustal contamination on the diabase and diorite
magma is limited. Firstly, although the diabase samples display varying εNd(t) values, the
presence of high positive εNd(t) values (+3.3–+7.3 and +2.3–+2.6 for diabase and diorite,
respectively) contradicts the significant assimilation of crustal material. This is because
such a process would inevitably alter the Sr–Nd isotopic composition of the magmas [97].
Secondly, the lack of a strong correlation between εNd(t) and SiO2 indicates that any crustal
contamination is minor. Thirdly, the Nb/Ta ratios of the diabase (14.1–17.0) and diorite
(17.9–18.7) are close to those of the mantle or mantle-derived melts (17.5 ± 2.0 [95]) but
differ from the ratios found in the continental crust (around 11 [93,94]). Fourthly, both the
diabase and diorite display high Ti/Yb ratios: 2165 to 4831 for diabase and 2654 to 2840 for
diorite. These ratios suggest a minimal contribution from the crustal material [102]. Lastly,
the negative Zr–Hf anomalies observed in the spider diagrams for the diabase and diorite
samples (Figure 9) imply that little to no crustal contamination occurred. Consequently, it
can be inferred that crustal contamination played an insignificant role in the formation of
the diabase and diorite rocks.

The diabase and diorite samples exhibit Mg# values (58–69 and 62–63, respectively)
as well as lower concentrations of compatible elements such as Cr (86–364 ppm and
83–108 ppm, respectively) and Ni (30–62 ppm and 58–76 ppm, respectively) compared to
the mantle-derived primary melts (Mg# = 73–81, Ni > 400 ppm, Cr > 1000 ppm [103,104]).
This suggests that the diabase and diorite were not primary magmas and underwent some
degree of crystal fractionation. The presence of weak negative anomalies for Ba, Eu, and Sr
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indicates fractional crystallization of plagioclase. Additionally, the positive correlations
between Cr, Ni, CaO, and Mg# suggest fractionation of olivine and clinopyroxene.
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Figure 12. (a) Sm/Yb versus Sm and (b) Sm/Yb versus La/Yb for the diabase and diorite samples
from the Beizhan deposit. Mantle array is defined by depleted MORB mantle (DM, [105]) and
primitive mantle (PM, [75]). Melting curves for spinel lherzolite (Ol0.53 + Opx0.27 + Cpx0.17 + Sp0.03)
and garnet lherzolite (Ol0.60 + Opx0.20 + Cpx0.10 + Gt0.10) with both DM and PM compositions
are modeled after Aldanmaz et al. [106] and Zhao and Zhou [107,108]. Dashed and solid curves
are the melting trends for DM and PM, respectively. Numbers along lines represent the degree of
partial melting.

The diabase and diorite dykes show indications of possibly originating from the
same magma chamber, as evidenced by their close spatial relationship, similar zircon ages,
and comparable initial Sr isotope composition (ISr) and εNd(t) values (Figure 10). There
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is also a notable correlation between TiO2, Al2O3, TFeO, MnO, MgO, CaO, Na2O, K2O,
and P2O5 vs. SiO2 (Figure 11). These similarities are further supported by their compa-
rable chondrite-normalized REE patterns and primitive mantle-normalized spidergrams
(Figure 9). Therefore, it is highly likely that the diorite in Beizhan originated from diabase
through crystal fractionation.

Both the diabase and diorite samples exhibit low initial 87Sr/86Sr ratios (ranging from
0.7043 to 0.7050 and 0.7050 to 0.7053, respectively) and high positive εNd(t) values (ranging
from +3.3 to +7.3 and +2.3 to +2.6, respectively), indicating their derivation from a depleted
mantle source. The significant negative anomalies of Ta and Nb (Figure 9) distinguish them
from magmas derived from the asthenosphere and are more reminiscent of trace-element
patterns observed in oceanic island basalts [109]. Moreover, the (Th/Nb)PM ratios (ranging
from 2.1 to 9.8 and 1.6 to 1.7, respectively) and Zr/Nb ratios (ranging from 19.3 to 30.3 and
18.9 to 19.2, respectively) of both the diabase and diorite are notably higher than those of
asthenosphere-derived basalts, with (Th/Nb)PM < 1 and Zr/Nb ≈ 5.8 [110,111], effectively
excluding the possibility of an asthenospheric origin.

The low (Tb/Yb)N ratios (<2) in the diabase and diorite samples indicate their deriva-
tion from spinel-bearing peridotite sources [112]. The pronounced depletion of HREEs
and Y (Figure 9) suggests the presence of garnet as an important residual mineral in their
source [96]. In the Sm/Yb versus Sm and La/Yb diagrams (Figure 12), both the diabase
and diorite plot near the melting curve of garnet and spinel Iherzolite, further suggesting a
lithospheric mantle source comprising spinel and garnet lherzolite. The evident negative
Th, Ta, and Nb anomalies and high Ba/Th and Sr/Th ratios also indicate prior metaso-
matism of the lithospheric mantle source by subduction-related fluids (Figure 13) (e.g.,
Sun et al. [97]).
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5.3. Implications for Metallogenic Setting

The AIMB’s iron deposits were formed in the Late Carboniferous according to the latest
isotopic dating and geological inferences [21]. Nevertheless, there is a current debate about the
tectonic setting of the AIMB during the Late Carboniferous. Previous studies have proposed
varied tectonic models, including Carboniferous rifting [36,37,113], extension induced by
orogenic root detachment [97], extension induced by slab rollback [18,33,40,76], a tectonic
transition from slab breakoff (320–310 Ma) to postcollisional setting (309–290 Ma) [114,115],
and island arcs [16,38–40,44].

The volcanic rocks in the YP during the Early Carboniferous belong to a calc-alkaline
basalt–andesite–dacite–rhyolite association, indicating a volcanic arc setting. This is sup-
ported by various studies [4,5,16,44,76,116]. The Beizhan rhyolite, as well as similar rhyolite
found in other locations such as the Zhibo, Songhu, and Tiemulike iron deposits show
specific geochemical characteristics like a Ta–Nb depletion and the enrichment of LREEs
and LILEs, which further support the volcanic arc setting [20,26,117]. Additionally, the
presence of adakite, high-Mg andesite, Nb-enriched arc basalt, porphyry copper, and
epithermal gold deposits in the Early Carboniferous on the northern margin of the YP
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aligns well with the presence of Early Carboniferous Bayingou ophiolites (located north of
the YP), suggesting the subduction of the North Tianshan Ocean from the north during
that time [116,118]. In the Permian period, the YP witnessed the presence of bimodal
volcanic rocks as well as peralkaline and alkaline granites, indicating a postcollisional
setting. This tectonic transition from a continental arc to a postcollisional setting took place
in the Late Carboniferous. The Carboniferous rift model is not considered applicable based
on previous studies.

The Late Carboniferous igneous rock assemblages in the AIMB primarily indicate
an extensional setting; for instance, the presence of extensional-type granites such as
the 319 Ma A-type granite in Muhanbasitao, the 306 Ma A-type granite in Qunjisayi,
and the 304 Ma A-type granite in Zhibo [18,31,119]. Additionally, bimodal igneous rock
associations have been observed, such as the association of Fe-rich basalt (318 Ma) and
rhyolite (319 Ma) in the Chagangnuoer district [120], and the association of mafic dykes
(317 Ma) and granitoids (319 Ma) in the Muhanbasitao district of the AIMB [119]. Potassic
and ultrapotassic volcanic and intrusive rocks (syenites, trachyandesites, and trachybasalts)
dating back to 312 Ma have also been identified in Gongnaisi [97]. The 308 Ma Haladala
mafic-ultramafic intrusion in the Yishijilike district (within the Yili Plate) to the west of
the AIMB is another example of an extension-related formation [81,121,122]. The Beizhan
granite deposits are found around the triple junction of volcanic arc granite, collisional
granite, and within-plate granite (Figure 14a–c) or between the syn-collision field and
the post-orogenic field (Figure 14d). Similar granites can also be observed in the Zhibo
iron deposit (29). These observations suggest a non-subduction environment. The Late
Carboniferous diabase samples plot in the within-plate tholeiites and volcanic arc basalts
fields, while the contemporaneous diorite samples plot in the within-plate alkali and
tholeiitic basalts fields (Figure 14), possibly indicating a within-plate setting. Therefore,
the transition from an arc to a postcollisional setting in the AIMB likely occurred in the
early Late Carboniferous. Iron mineralization in the AIMB took place in an extensional
environment, excluding the possibility of an island arc model.
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Figure 14. Tectonic discriminating diagrams for the Beizhan magmatic rocks. (a) Ta vs. Yb, (b) Rb vs.
Y + Nb and (c) Rb vs. Yb + Ta diagrams [123]. (d) Factor R1–R2 diagram of igneous rock (modeled
after Batchelor and Bowden [124]). (e) Zr–Nb–Y discrimination diagram of Meschede [125]. Data for
the Zhibo and the Dunde granite are from Zhang et al. [31] and Duan et al. [19].
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The Late Carboniferous volcanism in the Western Tianshan region is characterized
by a narrow linear zone of magmatism along the AIMB, which poses challenges to under-
standing the tectonic transition mechanism. The orogenic root detachment model suggests
the presence of large diffuse and non-linear magmatic zones, with intense asthenosphere-
derived magmas within the affected area [111,126–128]. However, this model does not
align with the observed narrow linear distribution of Late Carboniferous volcanic activity
in the Western Tianshan. Additionally, the subducted oceanic slab rollback model proposes
the existence of a Late Carboniferous arc, but this is contradicted by the igneous rock suites
found in the Late Carboniferous formations mentioned above. Furthermore, the zircon age
data from the granitoids intruding into the CTT (Central Tianshan Tectonic Belt) indicate
that the peak of granitic magmatism occurred between 460 and 320 million years ago, with
Late Carboniferous ages being very rare [16]. This suggests that a Late Carboniferous arc on
the southern margin of the amalgamated YP–CTT is unlikely. The age data on high-pressure
metamorphism to the south of the YP–CTT support the idea of a Late Carboniferous colli-
sion between the Tibetan Plateau (TP) and the YP–CTT [16,44,129]. This collision is further
confirmed by the widespread occurrence of postcollisional igneous rocks such as syenites,
nepheline syenites, aegirine syenites, two-mica peraluminous leucogranites, and A-type
rapakivi granites, which have been dated to the Permian period (296 to 269 million years
ago) in the South Tianshan region [16]. On the northern side of the YP–CTT, the Late
Carboniferous volcanic activity is limited in distribution. The Sikeshu granitic pluton,
which crosscuts the North Tianshan suture zone (including the Bayingou and Motuogou
ophiolites), provides important chronological information. The pluton has been dated to
316 ± 3 million years ago using the SHRIMP zircon U–Pb dating method [129], setting an
upper age limit for the collision between the YP and JP (Junggar Plate) during the Late
Carboniferous period. Therefore, the Late Carboniferous arc model may not be applicable
to both sides of the YP–CTT.

After the collision of continents, the subducted oceanic lithosphere may detach
from the lighter continental lithosphere due to buoyancy, ultimately resulting in slab
breakoff [130,131]. Many researchers have invoked the slab breakoff mechanism to explain
postcollisional magmatism and metamorphism, as seen in the Alps, Dabie, Himalayas, and
Eastern Junggar [111,130–132]. In addition, slab breakoff has been used to explain Early
Permian magmatism in the Western Tianshan [133], Late Carboniferous granite in the Nalati
Mountain [134], and iron mineralization in the AIMB [115]. Wang et al. [115] proposed
two periods for the tectonic setting of the AIMB in the Late Carboniferous: a slab breakoff
period (320–310 Ma) and a subsequent postcollisional period (309–290 Ma), identifying
the former as the setting for iron mineralization. However, the latest isotopic dating has
constrained the age of iron deposits in AIMB to 316–302 Ma (e.g., Duan et al. [21] and
references therein). While we agree with Wang et al. [115] regarding the role of slab breakoff
in the tectonic setting of iron mineralization (Figure 15), we disagree with their claim that
the geological evidence from the Late Carboniferous can be clearly divided into two periods.
The feasibility of slab breakoff during the Late Carboniferous is based on several geological
events and geochemical data, including the closure of the South and North Tianshan Oceans
and the corresponding arc magmatism in the Late Carboniferous [16,44,129], as well as the
presence of volcanic and intrusive rocks showing syn-collision or intraplate characteristics,
simultaneous mafic and felsic magmatism, and A-type granites, potassic and ultrapotassic
volcanic and intrusive rocks, and mafic-ultramafic intrusions [18,81,97,119,120,135].

Slab breakoff leads to the intrusion of a hot asthenosphere into a narrow gap in the
lithosphere above the sinking slab. This intrusion causes the formation of a relatively
narrow and linear zone of magmatism in the upper crust, which is consistent with the
case of the AIMB. The heat input from the ascending asthenosphere results in the partial
melting of the overlying lithospheric mantle and lower continental crust [133]. This partial
melting produces “hot” felsic magmas, such as the Beizhan granite, in contrast to the “cold”
rhyolite of the Early Carboniferous period. The shallow extension induced by slab breakoff
provides a pathway for rapid magma ascent. The ore-forming magma, which is rich in
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water and volatiles (likely inherited from the previous subduction process [136]), and its
shallow to ultra-shallow emplacement are considered the two key factors contributing to
the occurrence of iron ore deposits. In summary, the Late Carboniferous magmatism and
associated iron mineralization in the AIMB are believed to be the result of an extensional
setting caused by the breakoff of the oceanic slab.
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6. Conclusions

The Beizhan iron deposit provides evidence of Late Carboniferous granite intrusion
(311.8 ± 2.6 Ma) as well as diabase and diorite intrusions (299.2 ± 1.4 Ma) into Early
Carboniferous rhyolite. The rhyolite and granite exhibit enriched LILEs (large ion lithophile
elements) and LREEs (light rare earth elements), depleted HFSEs (high field strength
elements), high positive εNd(t) values, and young Nd model ages. These characteristics
suggest that they originated from the partial melting of a juvenile lower crust.

The diabase and diorite samples are believed to have originated from a spinel-garnet
lherzolite mantle source. It is suggested that these magmatic suites formed in two distinct
tectonic settings: an Early Carboniferous continental arc setting and a Late Carboniferous
within-plate extensional setting induced by slab breakoff. The iron mineralization in the
area is likely associated with the latter tectonic setting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min14010016/s1, Table S1: LA–ICP–MS U–Pb data for intrusive
rocks in the Beizhan iron ore deposit, Western Tianshan; Table S2: Major (wt.%) and trace element
(ppm) compositions of volcanic and intrusive rocks in the Beizhan iron ore deposit, Western Tianshan.
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