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Abstract: The properties of ancient magmatic arcs are crucial for understanding the tectonic evolution
of the Central Asian Orogenic Belt. The Middle Devonian Kulumudi Formation in the Laofengkou
area of West Junggar lacks accurate chronological data constraints, which hampers the knowledge
of the nature of the Late Paleozoic magmatic arcs in the West Junggar and circum-Balkhash areas.
In this contribution, samples of pyroclastic rocks and sedimentary rocks were collected from the
volcano–sedimentary strata of the Kulumudi Formation. Petrography, zircon U-Pb-Hf isotopic
analysis and whole-rock geochemistry were carried out to constrain the age and the tectonic setting of
the Kulumudi Formation. The zircon U-Pb age of the lithic crystal tuff from the Kulumudi Formation
on the northeast side of the Alemale Mountains was 386 ± 2 Ma, accurately indicating that this rock
unit formed during the Middle Devonian. However, the fine sandstone near the Huojierte Mongolian
Township, originally assigned as the “Kulumudi Formation”, yielded a maximum depositional age
of 341 ± 3 Ma. Combined with the stratigraphic contact, this rock unit was redefined to belong to the
Lower Carboniferous Jiangbasitao Formation. According to the whole-rock geochemistry study, the
lithic crystal tuff of the Kulumudi Formation was characterized as medium potassium–calc–alkaline
series rock, which is relatively enriched in light rare earth elements and large ion lithophile elements
(i.e., Rb, Ba, K) and depleted in high-field-strength elements (i.e., Nb, Ta, Ti), showing similar
geochemical characteristics to the volcanic arc rocks. By contrast, the fine sandstone from the
Jiangbasitao Formation had Al2O3/SiO2 (0.25–0.29) and K2O/Na2O (1.29–1.72) ratios close to those
derived from the continental arc and active continental margin and was characterized as part of the
continental arc field in the La-Th-Sc and Th-Sc-Zr/10 tectonic discrimination diagrams. Zircon Hf
isotope analysis showed that the εHf(t) values of the Kulumudi Formation were +5.6–+12.8, and
those of the Jiangbasitao Formation were +11.43–+15.48, both of which show highly positive juvenile
characteristics. The above data indicate that the Kulumudi Formation and Jiangbasitao Formation
both formed in a juvenile arc setting with ocean–continent subduction. Combined with the previous
work, it was concluded that the southward subduction of the ocean basin represented by the Darbut–
Karamay ophiolitic mélanges beneath the newly accreted arc crustal segments produced a juvenile
arc with positive Hf isotope characteristics.

Keywords: Kulumudi Formation; West Junggar; Junggar–Balkhash Ocean; Central Asian Orogenic
Belt; Hf isotope
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1. Introduction

The Central Asian Orogenic Belt (CAOB), or the Altaids [1], is located between the
Siberian Craton, the European Craton and the Tarim–North China Craton (Figure 1a). It
is characterized by the significant accretion of arcs (both intra-oceanic and continental),
accretionary complexes, seamounts and oceanic plateaus since the Neoproterozoic, which
formed during the long-term evolution of the Paleo-Asian Ocean [2,3]. The CAOB is
a complex collage that consists of three major oroclines, including the Kazakhstan Oro-
cline [4], the Mongolian Orocline [5] and the NE China Orocline [6]. Among these, the
formation of the Kazakhstan Orocline has been attributed to the large-angle bending of
the Devonian–Carboniferous magmatic arcs during the Late Paleozoic consumption of the
Junggar–Balkhash Ocean (the southwestern branch of the Paleo-Asian Ocean) [2,4,7–10].
These two Devonian–Carboniferous magmatic arcs are difficult to reconstruct using a tradi-
tional study of igneous rocks because of the long-term subduction erosion [11]. However,
the arc-derived sedimentary rocks retained on the surface might have recorded information
about the provenances [11,12]. By using whole-rock geochemical compositions and detrital
zircon U-Pb-Hf isotope characteristics of these arc-related sedimentary rocks, we can trace
the properties of ancient magmatic arcs. Moreover, compared with the well-accepted
Early-to-Middle-Devonian outer arc belt (OAB) with a Precambrian continental basement,
the basement nature of the Late-Devonian-to-Carboniferous inner arc belt (IAB) remains
debated [9,10,13].
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(b) Geological map of the West Junggar terrane (modified after [15]).

The West Junggar Terrane (WJT) in the southwestern CAOB is located on the north-
ern limb of the Kazakhstan Orocline (Figure 1a) [9,10]. The WJT is characterized by
widespread Paleozoic accretionary complexes and Carboniferous–Permian intrusive rocks
(Figure 1b), and its formation was closely associated with the subduction and closure of the
Junggar–Balkhash Ocean [2,7,16–18]. Current research on the tectonic evolution of the WJT
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focuses on the Ediacaran–Early Paleozoic [15,17,19,20] and Carboniferous–Permian peri-
ods [14,18,21]. It is generally accepted that the Ediacaran–Early Paleozoic evolution of the
WJT was dominated by a single or multiple intra-oceanic arc(s) [15,17,19,20,22,23]. Previous
work showed that the WJT was a place of active convergence during the Early Carbonifer-
ous [24,25], while the Late Carboniferous–Permian tectonic setting was suggested to be a
post-collisional [25–27] or continuous normal/ridge-related subduction system [7,28,29].
However, relatively little research has been focused on the Devonian tectonic evolution
of the WJT [9,30]. Therefore, a timely study of the Devonian tectonic setting is the key to
understanding the whole Paleozoic tectonic evolution of the Junggar–Balkhash Ocean.

The Laofengkou area is located in the central part of the WJT, where the Late Paleozoic
volcano–sedimentary strata and the Carboniferous–Permian intrusive rocks are extensively
outcropping (Figure 2), but the accurate sedimentary age of the Middle Devonian Kulumudi
Formation is still unclear. In this contribution, samples of pyroclastic rocks and sedimentary
rocks were collected from the Middle Devonian Kulumudi Formation (Figure 2). Petrog-
raphy, zircon U-Pb-Hf isotopic and whole-rock geochemistry analyses were carried out
to accurately constrain the age and tectonic setting of the Middle Devonian Kulumudi
Formation, which could provide new insights into the Late Paleozoic evolution of West
Junggar. Combined with published data from the West Junggar and circum-Balkhash areas,
the nature of the Late Paleozoic magmatic arcs in the tectonic frame of the Kazakhstan
Orocline is discussed.
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2. Geological Setting and Sampling
2.1. Tectonic Units of the WJT

The WJT is located at the junction of the Siberian and Kazakhstan–Yili plates (Figure 1a),
sandwiched between the North Tianshan and the Irtysh–Zaisan suture zones. According to
juvenile Sr-Nd-Hf isotopic data, the WJT has been interpreted to lack of ancient Precambrian
continental basement [16,33,34]. Taking the Chagantaolegai ophiolite mélange [35,36] and
the Barleik–Mayile–Tangbale ophiolite mélanges as the tectonic boundary (Figure 1b; [21,37]),
the WJT can be divided into the northern, central and southern parts.
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The northern WJT is composed of the Zharma–Saur arc and Boshchekul–Chingiz
arc from north to south, which are separated by the EW-trending Kujibai–Hebukesaier-
Hongguleleng ophiolitic mélanges [36,38]. The Zharma–Saur arc (346–321 Ma [24]) formed
during the southward subduction of the Irtysh–Zaisan Ocean [2,24,39,40], while the Boshcheku-
l–Chingiz arc is supposed to be related to the northward subduction of the Junggar–Balkhash
Ocean [2,41] or the southward subduction of the Irtysh–Zaisan Ocean [42,43] during the
Late Silurian–Early Devonian period.

The central WJT is dominated by the Late Paleozoic accretionary complexes (Figure 1b)
and Late Carboniferous–Early Permian granitoids [26,27]. Based on the recent identifi-
cation of Late Devonian diorite (~368 Ma) with typical juvenile Nd isotopes, the central
WJT was suggested to be the eastern extension of the northern limb of the IAB [9]. The
Devonian–Early Carboniferous Karamay and Darbut ophiolitic mélanges [44–47] occur
in the accretionary complexes and represent the youngest ophiolite mélanges in the WJT.
The Paleozoic volcano–sedimentary sequences of the central WJT can be divided into the
Mayile Mountains area and Karamay area. In the Mayile Mountains area, the Devonian
strata are dominated by the Kulumudi and Tielieketi formations, comprising a set of clastic
and volcanic rocks under neritic to marine environments [21,31,37,48–50]. The zircon U-Pb
ages of the tuffs from the Tielieketi Formation range from ~369 to 363 Ma [21,50], and
the maximum depositional age of this formation is ~356 Ma [21]. The Lower Carbonif-
erous strata include the Heishantou and Jiangbasitao formations, and the zircon U-Pb
ages of tuffs from the latter are ~336 to 339 Ma [51]. The Paleozoic strata exposed in the
Karamay area include the Carboniferous and Permian volcano–sedimentary rocks. The
Lower Carboniferous strata consist of the Tailegula, Baogutu and Xibeikulasi formations,
and there are different understandings of the stratigraphic sequences among them [52–55].
A limited outcrop of the Upper Carboniferous Molaoba Formation shows typical fluvial
sedimentary characteristics [21]. Upwards, Permian volcano–sedimentary sequences are a
set of intermediate-acid terrestrial volcanic rocks containing fossils of Angara flora [56,57].

The southern WJT contains the Ediacaran–Silurian arc and accretionary complexes.
The records of intra-oceanic arc magmatism are mainly distributed in the Barleik
(540–502 Ma [22,37,58]), Mayile (530–515 Ma [20,23]) and Tangbale (572–549 Ma [22,23]) ar-
eas. The accretionary complexes are mainly composed of the Barleik, Mayile and Tangbale
SSZ-type ophiolite mélanges from north to south and the subduction-related metamorphic
rocks (504–492 Ma [17]). Previous studies have found that the oldest ophiolitic mélanges
of the southern WJT formed at 572 to 512 Ma [20,59–61], suggesting that the initial intra-
oceanic subduction of the Junggar–Balkhash Ocean occurred in the Ediacaran [15]. Recently,
the occurrences of quartz diorites with adakitic geochemical features (394–390 Ma [10])
were interpreted as supporting evidence of an eastern extension of the Kazakhstan OAB in
the southern WJT.

2.2. Geology of the Study Area

The Laofengkou area is located in the northeast of the Mayile Mountains in the central
WJT and is dominated by the Devonian–Early Carboniferous strata and granitoid intrusions
(Figure 2). The Middle Devonian Kulumudi Formation is composed of littoral–shallow
marine terrigenous sedimentary rocks, pyroclastic rocks with a small amount of limestone
and acid volcanic rocks [31]. The zircon U-Pb age of the tuff for the Kulumudi Formation
near the Laofengkou area (Tiechanggou area, Figure 1b) is 379 ± 5 Ma [48]. In terms of
the Laofengkou area, the Middle Devonian Kulumudi Formation exposed northeast of
the Alemale Mountains consists of tuffaceous siltstone and lithic crystal tuff (Figure 3a).
Meanwhile, the Kulumudi Formation is composed of fine sandstone interbedded with
sandstone southwest of the Huojierte Mongolian Township (Figure 3d).
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2.3. Sample Description

Samples were collected from the above locations (Figure 2), including the lithic crystal
tuff and fine sandstone. The dark green lithic crystal tuff (19TL-82, 46◦7′48′′ N, 83◦35′57′′ E)
had a tuffaceous texture and massive structure (Figure 3a), which was mainly composed of
crystal debris (65%), lithic debris (25%) and volcanic ashes (10%) (Figure 3b,c). The crystal
debris consisted of plagioclase (0.2–0.7 mm) and clinopyroxene (~0.2 mm). Locally, this
sample had undergone clayization. The gray-green fine sandstone (19TL-90, 46◦17′20′′ N,
83◦42′22′′ E) showed a fine-grained texture and massive structure (Figure 3d). It developed
plenty of xenomorphic carbonate minerals and a few plagioclases with altered edges and
polysynthetic twins (Figure 3e,f).

3. Analytical Methods
3.1. Zircon U-Pb and Lu-Hf Isotope Analysis

Representative zircon grains were selected from the samples according to their color,
shape and integrity; mounted in epoxy resin; and polished. The zircon grains with obvious
oscillating zoning under cathodoluminescence (CL) images were considered. Zircon U-
Pb dating and trace element analyses were undertaken using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) at Beijing Createch Testing Technology
Co., Ltd., Beijing, China, using a RESOlution 193 nm laser ablation system attached to an
Agilent 7500 ICP-MS instrument. The laser spot was 24 µm in diameter, and the frequency
was 10 Hz. The energy density was about 10 J/cm2. GJ-1 standard zircons were used
during the experiments. Offline data calculations and concordia diagrams were processed
using the ICPMSDataCal program [62] and Isoplot 4.0, respectively. The zircon U–Pb data
and rare earth element compositions are summarized in Table S1 and Table S2, respectively.

In situ zircon Hf isotope analysis was carried out using a RESOlution SE 193 laser-
ablation system attached to a Nu Plasma II multiple collector ICP-MS instrument at State
Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. Zircon
GJ-1 was used as the standard sample. The laser spot was 43 µm in diameter and the
energy density was 6 J/cm2. The detailed experimental process and related parameters are
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described by [63,64]. A two-stage model was selected for the depleted-mantle-based Hf
model ages (TDM) calculation. The zircon Hf data are summarized in Table S3.

3.2. Whole-Rock Major and Trace Element Analysis

The whole-rock major and trace element compositions were determined at Beijing
Createch Testing Technology Co., Ltd., Beijing, China. Major elements were analyzed using
a Shimadzu X-ray fluorescence spectrometer with an accuracy better than 5%. The trace
elements were determined using an Analyticjena PQMS elite ICP-MS with an accuracy
better than 5%. The analytical data are presented in Table S4.

4. Analytical Results
4.1. Zircon U-Pb and Lu-Hf Isotope Analysis
4.1.1. Zircon U-Pb Ages

Zircons from the lithic crystal tuff (19TL-82) were mainly euhedral and prismatic with
lengths of 50–150 µm and showed obvious oscillatory zoning (Figure 4a), which is typical
of tuff origin [65]. Based on REE patterns (Table S2), zircons shown by the solid lines
exhibited positive Ce and slightly negative Eu anomalies, which is typical of igneous origin
(Figure 5a). This is consistent with their Th/U ratios (0.31–0.97, Table S1). Zircons shown
by the dotted line were relatively rich in La (Figure 5a), which might have been subjected
to hydrothermal metasomatism or metamorphism at a later stage [66], and were excluded
from consideration. This sample yielded 30 valid zircon ages ranging from 380 ± 4 Ma
to 421 ± 7 Ma (206Pb/238U age, Table S1), of which the older age of 421 ± 7 Ma might
have been derived from an inherited zircon. The weighted mean 206Pb/238U age of the
remaining 29 zircons was 386 ± 2 Ma (MSWD = 1.20, Figure 6a,b), representing that the
lithic crystal tuff formed during the Middle Devonian.
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Detrital zircons from the fine sandstone (19TL-90) were mainly euhedral and short
prismatic, with clear oscillating zoning and 50–200 µm in length (Figure 4b). Zircons shown
by the dotted lines were also not considered (Figure 5b, Table S2). The sample yielded
48 usable zircon ages with a variation from 340 ± 4 Ma to 382 ± 5 Ma, with Th/U ratios
ranging from 0.40 to 1.11 (Table S1). The Early Carboniferous ages comprised the largest
population (41 of the 48 results, Table S1) and exhibited a single peak at 350 Ma (Figure 6c,d).
The maximum depositional age of this sandstone was 341 ± 3 Ma (206Pb/238U age, n = 5)
using the weighted mean age of the youngest cluster of two or more grain ages (n ≥ 2)
overlapping in age at 1σ (YC1σ (2+)).
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4.1.2. Hf Isotopes

Nineteen zircon grains from the lithic crystal tuff that were selected for U–Pb dating
were analyzed for in situ Lu–Hf isotopic compositions. They had initial 176Hf/177Hf
ratios from 0.282685 to 0.282895 (Table S3) and exhibited εHf(t) values from +5.6 to +12.8
(Figure 7a). All zircon grains were characterized by young Hf model ages of 564–1032 Ma
(Table S3).

Twenty-eight detrital zircon grains from the fine sandstone had initial 176Hf/177Hf
ratios from 0.282931 to 0.282991 (Table S3) and their εHf(t) values ranged from +11.4 to +15.5,
consistent with the Early Carboniferous sedimentary rocks in the adjacent area (Figure 7b).
These detrital zircons had comparable young Hf model ages of 366–626 Ma (Table S3).

4.2. Whole-Rock Major and Trace Element Analysis

The whole-rock geochemical analysis was carried out for the lithic crystal tuff (19TL-
80/81) and fine sandstone (19TL-88/89). To avoid the influence of loss on ignition (LOI),
all contents for major oxides were recalculated after deducting the LOI. Whole-rock geo-
chemical data are shown in Table S4.



Minerals 2024, 14, 14 8 of 16
Minerals 2024, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 7. The εHf(t) vs. T/(Ma) diagrams of the lithic crystal tuff (a) and fine sandstone (b). Data for 
the Early Carboniferous sedimentary rocks are from [68]. 

4.2. Whole-Rock Major and Trace Element Analysis 
The whole-rock geochemical analysis was carried out for the lithic crystal tuff (19TL-

80/81) and fine sandstone (19TL-88/89). To avoid the influence of loss on ignition (LOI), 
all contents for major oxides were recalculated after deducting the LOI. Whole-rock geo-
chemical data are shown in Table S4. 

4.2.1. Major Elements 
The lithic crystal tuff samples (19TL-80/81) had high SiO2 contents (62.32–63.29 wt.%) 

and medium Na2O (3.93–4.23 wt.%) and K2O (1.18–1.36 wt.%) contents. Their MgO con-
tents ranged from 2.38 wt.% to 2.73 wt.%, with a relatively high Mg# value of 56. They 
were plotted in the andesite and dacite fields (Figure 8a) and medium-K calc-alkaline se-
ries field (Figure 8b). The SiO2/Al2O3 ratios (3.50–3.97) of the fine sandstone samples (19TL-
88/89) were comparatively low. These fine sandstone samples had medium Na2O/K2O and 
relatively high Fe2O3/K2O ratios, and thus, were plotted in the litharenite fields (Figure 8c). 

 
Figure 8. TAS classification diagram ((a), from [69]), SiO2 vs. K2O diagram of the lithic crystal tuff 
((b), from [70]); lg[w(Na2O)/(K2O)] vs. lg[w(SiO2)/w(Al2O3)] diagram ((c), from [71]) of the fine sand-
stone. Data for the Late Devonian volcanic rocks and the Early Carboniferous clastic rocks are from 
[50] and [68,72], respectively. 

4.2.2. Trace Elements 
The lithic crystal tuff samples showed enrichment of light rare earth elements 

(LREEs) and depletion of heavy rare earth elements (HREEs) with δEu values of 0.94–0.97 
(Figure 9a), implying the absence of obvious Eu anomalies. They were rich in large-ion 
lithophile elements (LILEs, i.e., Rb, Ba, K) and depleted in high-field-strength elements 
(HFSEs, i.e., Nb, Ta, Ti), showing similar geochemical characteristics to those of volcanic 
arc rocks (Figure 9b). The fine sandstone samples had enriched LREEs and relatively flat 
HREEs (Figure 9c). The δEu values ranged from 0.66 to 0.74, indicating an obvious Eu 
negative anomaly, similar to that of open PAAS (δEu = 0.65 [73]). The samples were also 

Figure 7. The εHf(t) vs. T/(Ma) diagrams of the lithic crystal tuff (a) and fine sandstone (b). Data for
the Early Carboniferous sedimentary rocks are from [68].

4.2.1. Major Elements

The lithic crystal tuff samples (19TL-80/81) had high SiO2 contents (62.32–63.29 wt.%)
and medium Na2O (3.93–4.23 wt.%) and K2O (1.18–1.36 wt.%) contents. Their MgO contents
ranged from 2.38 wt.% to 2.73 wt.%, with a relatively high Mg# value of 56. They were
plotted in the andesite and dacite fields (Figure 8a) and medium-K calc-alkaline series field
(Figure 8b). The SiO2/Al2O3 ratios (3.50–3.97) of the fine sandstone samples (19TL-88/89)
were comparatively low. These fine sandstone samples had medium Na2O/K2O and
relatively high Fe2O3/K2O ratios, and thus, were plotted in the litharenite fields (Figure 8c).
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((b), from [70]); lg[w(Na2O)/(K2O)] vs. lg[w(SiO2)/w(Al2O3)] diagram ((c), from [71]) of the fine
sandstone. Data for the Late Devonian volcanic rocks and the Early Carboniferous clastic rocks are
from [50] and [68,72], respectively.

4.2.2. Trace Elements

The lithic crystal tuff samples showed enrichment of light rare earth elements (LREEs)
and depletion of heavy rare earth elements (HREEs) with δEu values of 0.94–0.97 (Figure 9a),
implying the absence of obvious Eu anomalies. They were rich in large-ion lithophile
elements (LILEs, i.e., Rb, Ba, K) and depleted in high-field-strength elements (HFSEs,
i.e., Nb, Ta, Ti), showing similar geochemical characteristics to those of volcanic arc rocks
(Figure 9b). The fine sandstone samples had enriched LREEs and relatively flat HREEs
(Figure 9c). The δEu values ranged from 0.66 to 0.74, indicating an obvious Eu negative
anomaly, similar to that of open PAAS (δEu = 0.65 [73]). The samples were also deficient
in HFSEs (i.e., Nb, Ta, Ti) (Figure 9d) and exhibited low ferromagnesian trace element
concentrations (Sc, 8.0–8.9; Co, 9.8–11.9; Ni, 4.5–6.5).
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5. Discussion
5.1. Sedimentary Age of the Kulumudi Formation

Previous work on the stratigraphy of the Middle Devonian Kulumudi Formation
was mainly based on the lithostratigraphic correlation and paleontological fossils [31,74].
Among these fossils, occurrences of Barradeophylum sp., Pachyyfavosites sp., Paraspirifer sp.,
Psilophyton bella (Tchirkoua) Aneurophyton aff. Germanicak Etw., etc., indicate typical Middle
Devonian characteristics [31,74]. In this study, the zircon U-Pb dating result for the lithic
crystal tuff from the Middle Devonian Kulumudi Formation was 386 ± 2 Ma (Figure 6b),
indicating that the stratum northeast of the Alemale Mountains belongs to the Middle
Devonian, which is consistent with previous results [31,74].

Differently, based on the detrital zircon ages, the maximum depositional age of detrital
zircons from the fine sandstone was 341 ± 3 Ma (Figure 6c). This result shows that the
stratum originally assigned as the “Kulumudi Formation” southwest of the Huojierte
Mongolian Township was formed during the Early Carboniferous. Indeed, the result is
similar to the age of the adjacent Lower Carboniferous Jiangbasitao Formation (336 ± 3 Ma,
339 ± 2 Ma [51]). Importantly, the originally assigned “Kulumudi Formation” and the
Lower Carboniferous Jiangbasitao Formation were invaded by the Late Carboniferous
intrusive rocks (318 ± 3 Ma [22]) together (Figure 2). The Jiangbasitao Formation is
a set of terrigenous sedimentary rocks mainly composed of the conglomerate, sandy
conglomerate, carbonaceous shale, argillaceous siltstone and fine sandstone [31], which
is consistent with the rocks observed southwest of the Huojierte Mongolian Township.
Thus, our new chronological data, together with the above lithologic correlation, indicate
that parts of the “Kulumudi Formation” should be redefined as the Lower Carboniferous
Jiangbasitao Formation.
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5.2. Tectonic Setting
5.2.1. The Middle Devonian Kulumudi Formation

The lithic crystal tuff samples (~386 Ma) of the Middle Devonian Kulumudi Formation
were plotted in the andesite and dacite fields in the TAS classification diagram (Figure 8a),
and thus, they belonged to the medium potassium calc-alkaline series (Figure 8b). These
samples were rich in LREEs and LILEs and depleted in HREEs and HFSEs (Figure 9a,b),
indicating geochemical characteristics similar to the volcanic arc rocks [75]. Furthermore,
the samples had relatively low Nb/La ratios (0.32–0.34) and high La/Ta (35.53–53.82)
and Th/Nb ratios (0.38–0.39), confirming that they were formed in a subduction-related
setting [76]. Their high Ba/La values (16.47–29.58) also imply a strong effect on the magma
source area from a subduction zone or related fluids [77]. Furthermore, the εHf(t) values of
the zircons from the lithic crystal tuff show highly positive characteristics, ranging from
+5.6 to +12.8 (Figure 7a), indicating the feature of a juvenile arc. Considering the whole-rock
geochemistry and Hf isotope analysis, the lithic crystal tuff from the Middle Devonian
Kulumudi Formation is suggested to be formed in a juvenile arc setting.

5.2.2. The Early Carboniferous Jiangbasitao Formation

The chemical index of alteration (CIA) and index of compositional variability (ICV) can
be used to assess the weathering intensity and source composition of the sedimentary rocks.
The relatively low CIA values (63.06–63.97) for the fine sandstone from the Jiangbasitao
Formation suggest a low degree of chemical weathering. The high ICV values ranging
from 1.40–1.45 indicate an immature source. Their δEu values ranged from 0.66 to 0.74 and
clear Nb-Ta negative anomalies (Figure 9d), similar to many subduction-related compo-
sitionally intermediate lavas [75]. The contents and ratios of major and trace elements in
clastic rocks can distinguish different tectonic settings, such as oceanic arc, continental arc,
active continental margin and passive continental margin [78,79]. The contents of TiO2
(0.38–0.50 wt.%) in fine sandstone samples from the Jiangbasitao Formation were similar
to those in active continental margin and continental arc [80]. The Al2O3/SiO2 (0.25–0.29)
and K2O/Na2O (1.29–1.72) ratios were close to those derived from the continental arc and
active continental margin, respectively [80]. Moreover, all samples were plotted in the
continental arc field in the La-Th-Sc and Th-Sc-Zr/10 tectonic discrimination diagrams
(Figure 10a,b). The highly positive εHf(t) values (+11.4 to +15.5) of the detrital zircons
from the fine sandstone suggest a juvenile arc (Figure 7b), which is consistent with the
interpretation that the Early Carboniferous sedimentary rocks from the Darbut area were
derived from a juvenile arc setting (Figure 7b). Thus, combined with published data from
adjacent areas [68,72]), the new whole-rock geochemistry and Hf isotope analysis suggest
an Early Carboniferous juvenile arc in the central WJT rather than a continental arc with
Precambrian basement [13].
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5.3. Tectonic Evolution of West Junggar during the Middle Devonian–Early Carboniferous

During the Ediacaran–Cambrian period, the southern WJT was suggested to be a
southward intra-oceanic subduction setting in the Tangbale area, forming the Tangbale
ophiolitic mélange (572–531 Ma [15,20,59–61]). With the northward migration of the sub-
duction zone, the Mayile ophiolite mélange (516–517 Ma [20,81]) and Barleik ophiolite
mélange (512 ± 7 Ma [81]) gradually formed. These Ediacaran–Early Paleozoic SSZ-
type ophiolitic mélanges, combined with the intra-oceanic arc igneous rocks [23] and
subduction-related metamorphic rocks [17], clearly indicate an intra-oceanic arc setting for
the southern WJT [15]. Meanwhile, the northward subduction of the oceanic crust of the
Junggar–Balkhash Ocean formed the Middle Silurian to Early Devonian Boshchekul–Chingiz
arc [41].

There are different interpretations of the ocean basin represented by the Darbut–Karamay
ophiolite mélanges during the Devonian and Early Carboniferous. Some researchers in-
terpret the basin as a residual ocean basin trapped by the Junggar–Balkhash Ocean under
the constraint of the Kazakhstan Orocline [46], based on the fact that the Lower Carbonif-
erous continuous volcano–sedimentary strata are developed on both sides of the Darbut
ophiolite mélange [45,82]. Alternatively, the opening of the Devonian Karamay back-arc
ocean basin [41] was suggested to result from the continuous lithosphere extension during
the Early–Middle Devonian. Regardless of the residual ocean basin or back-arc ocean
basin model, a consensus has been reached about the existence of an Early Devonian–Early
Carboniferous oceanic basin in the central WJT. Importantly, previous studies found that
the Middle Devonian Kulumudi Formation unconformably overlies the Ediacaran–Early
Paleozoic accretionary complexes in the southern and central WJT [20,49,83], indicating that
the Ediacaran–Early Paleozoic intra-oceanic subduction had ended before the Middle De-
vonian [15]. Such a pre-Middle Devonian lateral accretion of juvenile oceanic arc crust was
further evidenced by recent dating results of detrital zircons from the southern WJT [12]. A
major sedimentary transition from Middle–Late Silurian bathyal facies to Devonian overall
littoral–terrestrial facies [49] and the absence of Late Silurian arc-related volcanism also
support a pre-Late Silurian termination of the intra-oceanic subduction–accretion processes.

Since the Early Devonian, the oceanic crust represented by the Darbut–Karamay ophi-
olitic mélanges has subducted southward, forming the active continental margin in the
southern and central WJT. Early–Middle Devonian adakitic magmatism (394–390 Ma) with
high positive εHf(t) values of +5.6 to +10.3 was newly recognized in the southern WJT and
their formation was contributed to the partial melting of a juvenile and slightly thickened
lower crust as the eastern extension of the Kazakhstan Early–Middle Devonian OAB [10].
Similarly, Liu and Han [9] suggested that the tectonic setting of the central WJT (northern
IAB) evolved to a juvenile Late Devonian IAB built on Ediacaran–Early Paleozoic accreted
terranes (intra-oceanic arcs and accretionary complexes), contrasting with the Yili (southern
IAB) and Balkhash (central IAB) arcs built on a Precambrian continental basement. Com-
bined with the above-published results, the positive εHf(t) values of the studied Middle
Devonian tuff (+5.6–+12.8) and Early Carboniferous sandstone (+11.4–+15.5) show typical
juvenile arc characteristics, indicating that the active continental margin of central WJT
lacked ancient continental basement during the Middle Devonian–Early Carboniferous sub-
duction [9,10]. The occurrences of only two ancient zircons for pyroxene diorite (408 Ma [13])
from the central WJT may not indicate a Precambrian basement. Thus, it was concluded that
the southward subduction of the ocean basin represented by the Darbut–Karamay ophiolitic
mélanges beneath the newly accreted arc crustal segments resulted in a juvenile arc with
positive Hf isotope characteristics.

6. Conclusions

(1) The lithic crystal tuff from the Kulumudi Formation northeast of the Alemale Moun-
tains in the Laofengkou area yielded a zircon U-Pb age of 386 ± 2 Ma and was
formed during the Middle Devonian. The maximum depositional age for the fine
sandstone originally assigned into the “Kulumudi Formation” southwest of the Huo-
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jierte Mongolian Township was 341 ± 3 Ma, belonging to the Lower Carboniferous
Jiangbasitao Formation.

(2) According to the whole-rock geochemistry and Hf isotope analysis, the Middle Devo-
nian Kulumudi Formation and Lower Carboniferous Jiangbasitao Formation formed
in a juvenile arc setting related to the ocean–continent subduction.

(3) During the Middle Devonian to Early Carboniferous, the ocean basin represented
by the Darbut–Karamay ophiolitic mélanges subducted southward beneath the
newly accreted arc crustal segments, forming a juvenile arc with positive Hf iso-
topic characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min14010014/s1, Table S1: Zircon U-Pb data of pyroclastic rocks
and sedimentary rocks from the Laofengkou area, West Junggar; Table S2: Rare earth element
compositions (×10−6) of zircons for pyroclastic rocks and sedimentary rocks from the Laofengkou
area, West Junggar; Table S3: Zircon in situ Lu-Hf isotope compositions for pyroclastic rocks and
sedimentary rocks from the Laofengkou area, West Junggar; Table S4: Whole-rock major (wt.%) and
trace element (×10−6) compositions for pyroclastic rocks and sedimentary rocks from the Laofengkou
area, West Junggar.
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