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Abstract: We present an integrated method for mapping the basement structures of sedimentary
basins by combining surface gravity data, seismic imaging, and borehole logging information. The
core of the method is a nonlinear inversion algorithm for constructing the shape and depth of the
basement from surface gravity data. By using the primal-logarithmic barrier method, we impose
depth constraints from the borehole information. The basement depth was imaged by seismic
interpretation and incorporated into the inversion as a reference model. As a result, the gravity
inversion constructs basement structures that are closest to the seismic input while simultaneously
satisfying the surface gravity data and borehole information. We used this new methodology to
unveil the basement morphology of the Recôncavo Basin, Brazil. Recôncavo is a syn-rift onshore
mature basin that exhibits a strong correlation between oil field distribution and tectonic framework.
The seismic imaging in the area is ambiguous, and our approach improved the basement definition
and highlighted exploration targets in the studied area.

Keywords: gravity inversion; basement mapping; geophysical integration

1. Introduction

In oil exploration, the seismic method plays the role of the primary geophysical tool
because it provides, in general, higher resolving power than other geophysical methods
when investigating on the same scale. For instance, the finer details of structural definition
and targets can be determined from seismic images. Other methods, such as gravity
surveys, however, are often used to provide complementary information to assist seismic
interpretation. For example, qualitative gravity analysis is used in regional studies to
identify major structural trends, whereas quantitative techniques, such as gravity inversion,
can be used to assist seismic depth migration in salt imaging (e.g., [1–3]). Because of
its valuable contribution, the use of the quantitative analysis of gravity data, especially
detailed 2D and 3D modeling of complex structures, has significantly increased in recent
years. The combination of gravity data and seismic imaging is now common in salt imaging.
However, similar efforts seem to be lagging in terms of basement mapping. We hope to
contribute to this by integrating gravity inversion with seismic and geologic constraints.

One case in point is the following scenario. Seismic processing and interpretation
often produce an image of the subsurface, but the structural image is rarely evaluated
against the basic criterion that all available geophysical data should be reproduced through
forward modeling. The main reason for the lack of such an evaluation is the prohibitive
cost required to perform this for seismic data. However, such evaluation can be carried
out for other information, such as gravity data. The benefit of utilizing gravity data is
two-fold. First, gravity processing is inexpensive compared to seismic processing, and it
can be performed much faster. Second, gravity data provide complementary information
about the density distribution in a subsurface, which might potentially improve upon a
seismic image in a similar manner, as it helps improve base-salt imaging. We submit that

Minerals 2023, 13, 1173. https://doi.org/10.3390/min13091173 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13091173
https://doi.org/10.3390/min13091173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min13091173
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13091173?type=check_update&version=2


Minerals 2023, 13, 1173 2 of 20

gravity modeling and inversion may be used as valuable tools to crosscheck and improve
seismic interpretation for basement mapping.

The basic premise is that the basement model interpreted from seismic data should be
consistent with the known geology and, therefore, should reproduce the gravity anomaly
over the same area. If the gravity data produced by the seismic model agree (within the
error tolerance) with the measured gravity data, this would have independently verified
the validity of the seismic interpretation. On the other hand, a large difference between the
predicted and measured gravity data would suggest that the seismic basement image is
not entirely valid and needs to be modified. The modification can be guided by structural
gravity inversion constrained by available well log information. The changes suggested by
the inversion must then come back to the seismic interpretation to refine the previously
obtained seismic image. This effectively creates a loop that is completed only when a
geological basement model respecting all the available information is generated.

In this paper, we follow the above philosophy and propose an approach that combines
the resolving power of the seismic image with the ease of gravity modeling and inversion
in mapping basement structures. We assume that a seismic model of the basement relief
exists, but it does not agree with surface gravity data. We, therefore, invert the gravity
data to construct a modified basement model that is consistent with the seismic result.
The central problem is one of estimating the shape and depth of the interface separating
two contrasting media by using gravity data. Theoretically, this problem has a unique
solution if the density contract is known. In practice, however, this is an ill-posed nonlinear
inverse problem, and the solution can be non-unique. The non-uniqueness arises from
two distinct sources. The first is the fact that we only know the gravity field at the surface,
so many different source distributions in the subsurface can reproduce that field. There
will be trade-offs between the density contrast and basin depth. The second reason is
the all-present difficulty in applied geophysics that we acquire only a finite number of
inaccurate measurements, and there are many models that will reproduce the data within
the error tolerance. More information is needed to transform this problem into a well-posed
one. Since we are attempting to improve upon a seismically derived basement model, it
is logical to use that model as the needed prior information. In addition, we can also use
borehole logs as another source of prior information.

There are several approaches to introduce prior information in gravity inversion in
order to stabilize the process. For example, Ref. [4] used successive linear approximations
to derive a stable solution that is implicitly constrained in shape; Ref. [5] applied low-
pass filters to dampen the solution so that a well-behaved basement topography was
obtained. Others used a more explicit approach by minimizing an objective function of the
model. The advantage of using an explicit model objective function is that it allows for the
incorporation of several different types of a priori information by changing the form of
the function to be minimized. The authors of [6], for example, minimized the total volume
of the causative body. Ref. [7] choose to minimize the moment of inertia with respect to
the center of the body or to an axis passing through it. Ref. [8] minimized a function that
includes relative and absolute equality constraints in order to introduce smoothness and
prior depth-to-interface information. Ref. [9] imposed a smoothness requirement on the
vertices of a polyhedron body in salt imaging. Ref. [10] minimized an objective function
of density that required the model to be close to a given reference model, and this was
smoothed in three spatial directions.

Our method has its principles in the method proposed by [10] but involves absolute
constraints and has a model parameterization similar to the method proposed by [8]. The
method minimizes an objective function of the model that requires not only the model to
be smooth and close to the seismic-derived model, which is used as a reference model, but
also to honor well-log constraints. The latter are introduced through the use of logarithmic
barrier terms in the objective function (e.g., [11–13]).
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We first present our inversion method and illustrate it using synthetic gravity data,
simulating a portion of a sedimentary basin. We then apply the method to a set of field
gravity data acquired from the Recôncavo Basin, Brazil.

2. Methodology

The goal of our inversion is to find a reliable model that approximates the interface
separating the sediments and the basement. The interface is assumed to represent the
geometry of the basement in a portion of a sedimentary basin. The importance of defining
this interface lies in the fact that in some sedimentary basins, especially rift-related ones,
the basement geometry controls the distribution of potential oil fields. We restrict ourselves
to working with only a portion of a basin since the assumptions involving the physical
characteristics of the media, such as constant density, for instance, are more likely to be
valid in smaller areas. In addition, this approach seeks to broaden the contribution of the
gravity method in oil exploration because it focuses the work at an oil-field scale rather
than at a basin scale for study.

To solve the problem numerically, we discretize the basement depth into a set of
rectangular patches of a constant size and, therefore, represent the 3D sedimentary basin
with a set of contiguous rectangular prisms of a constant density contrast (Figure 1). The
tops of the prisms are at the surface, and their thicknesses (or heights) are to be determined
from observed gravity data. To allow for flexibility in the model in terms of representing
varied basement structures, we required the number of prisms in the model, M, to be always
greater than the number of gravity observations, N. This approach allows for a higher
resolution in the recovered models because, in contrast to other inversion methodologies
that require the number of observations and prisms to be the same, here, we can have a
large number of prisms even when only a small number of field observations are available.

Figure 1. Sketch representing the discretization of a sedimentary basin as a set of rectangular prisms
having fixed horizontal dimensions dx and dy . The heights of the different prisms, hi, are the
parameters to be inverted.

The general relationship between gravity anomaly and its sources is given by (e.g., [14]):

g(r) =
∫

V
ρ
(
r′
)
ψ
(
r, r′
)
dv, (1)

where g(r) is the gravity field at the observation position r outside of the volume V that is
occupied by the source; ρ(r′) is the source density at location r′, and ψ(r, r′) is a function
that depends on the geometric relations between positions r and r′. Gravity inversion
makes use of field measurements to find the main characteristics of either density ρ (linear
problem) or some aspects of ψ, such as the region of the source. The former is a linear
problem, whereas the latter is nonlinear since it intends to recover a geometric aspect of
the problem. The problem of recovering the basement depth falls into the latter category.
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The relationship between the gravity field at the origin and a single prism with a constant
density, ρ, and corner positions at xi, yj, and zk, as derived by [15] is,

g = γρ
2

∑
i=1

2

∑
j=1

2

∑
k=1

(−1)i(−1)j(−1)k

[
zk arctan

(
xiyj

zkRijk

)
− xi log(Rijk + yj)− yj log(Rijk + xi)

]
, (2)

where γ is the gravitational constant, and Rijk =
√

x2
i + y2

j + z2
k . We note that the vertical

co-ordinate of the bottom of the prism, z2, is the unknown quantity to be recovered
through our inversion.

As discussed in the preceding section, this inversion is ill-posed because we have only a
finite number of inaccurate data on the surface, and we attempt to recover a basement relief
that is more complex in structure than the smoothly varying gravity data. Consequently,
there are a multitude of models that can fit the data to the same degree. In order to find a
unique solution for interpretational purposes, we select one that is consistent with known
information and is structurally simple. We choose to follow the Tikhonov regularization.
This approach allows for the construction of different models by changing the form of the
objective function according to prior information. We minimize a total objective function Φ,
defined as a weighted sum of a model objective function Φm and a data misfit function Φd,

Φ = Φd + µΦm, (3)

where µ is the regularization parameter, and it determines the trade-off between the two
terms. The data misfit function Φd is defined to be:

Φd = ‖Wd(g− go)‖2, (4)

where Wd = diag{1/σ1, . . . , 1/σN}, in which σi is the error standard deviation related to
the ith observation, go represents the observed data, and g is the data predicted from the
model. If the noise contaminating the data is uncorrelated and has a zero mean, the misfit
Φd is a chi-squared variable with N degrees of freedom. The number of observations, N,
therefore, becomes the target misfit (Φ∗d) for the inversion since the expected value for a
chi-squared distribution is N. In the case where the noise statistics are unknown, we must
resort to different approaches to determine the optimal data misfit.

The model objective function Φm allows us to incorporate prior information about the
model. The choice of prior information is problem-dependent, but in a general sense, the
inverted model should be close to a reference model and be as smooth as the data allows in
all directions. We, therefore, choose a model objective function having the following form:

Φm = αs

∫
S
(h− h0)

2ds +
∫

S

[
∂(h− h0)

∂x

]2

ds +
∫

S

[
∂(h− h0)

∂y

]2

ds, (5)

where h is the recovered model, h0 is the reference model, and αs is a coefficient that controls
the relative importance of the first term to the others. In Equation (5), the first term provides
a measure of the deviation from the reference model, whereas the remaining terms control
the structural complexity of the model. Given the discretization used for the forward
modeling, the recovered basement depth h(x, y) becomes a piece-wise constant function,
and it can be represented by a vector h = (h1, . . . , hM)T . When evaluating the integrals in
Equation (5) according to the above-described discretization, we obtain a discrete form of
the objective function:

Φm = ‖Wm(h− h0)‖2, (6)

where Wm is the model weighting matrix.
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The choice of the reference model is often left open in many publications since it is
highly problem-dependent. In our inversion, however, the goal is to improve upon seismic
interpretation by finding modifications using gravity data. We would like to find a model
that deviates as little as possible from the seismic model while still fitting the gravity data.
It is, therefore, optimal to use the seismic model as the reference model.

Since the unknown model to be recovered is the height of each prism, the relationship
between the data and the model is nonlinear, as discussed earlier. Consequently, the misfit
of the data in Equation (4) is not a quadratic function. As a result, we have a nonlinear
inverse problem, and we choose to solve it iteratively through linearization. We assume
that the thickness is h(n) at the n′th iteration, and a small perturbation δh can be added
to improve the data misfit. By expanding the predicted gravity data using a Taylor series
expansion in δh and ignoring higher order terms yield a linear relationship,

gi

(
hn+1

)
≈ gi

(
h(n)

)
+

M

∑
j=1

∂gi

(
h(n)

)
∂hj

∆hj, i = 1, 2, . . . , N, (7)

where ∆hj = h(n+1)
j − h(n)j . Equation (7) can be compactly represented in a matrix form as:

g(n+1) = g(n) + J∆h, (8)

where g(n+1) is the N—length vector of the predicted data, ∆h is the M—length vector of
model perturbations, and J is the N ×M sensitivity matrix relating the predicted data to the
changes in the model at each iteration according to Equation (2). Substituting Equation (8)
into the discretized objective function yields the linearized form:

Φ(∆h) = ‖Wd

(
g(n) + J∆h− go

)
‖2 + µ‖Wm

(
h(n) + ∆h− h0

)
‖2. (9)

Minimizing Equation (9) with respect to the model perturbation yields the desired ∆h,
which allows us to update the model and proceed to the next iteration.

In addition to the smoothness and similarity to the seismic model, depth-to-basement
information (from boreholes) is also available to constrain the solutions. The use of localized
prior information as constraints is not new, and examples can be found in [8,16,17], among
others. There are different means to introduce localized information, and the majority
of methods rely on slightly different ways of minimizing the differences between the
estimates and the known depths at well locations. In this paper, we have chosen to apply
the logarithm barrier method (e.g., [11]), which has been used by [12,13] in the inversion
of different geophysical datasets. One advantage is that this approach allows one to set
different limits to every element of the model instead of only at those locations where
depth-to-basement information is present. The log barrier method presents the additional
advantage of allowing for the introduction of specific degrees of confidence (by narrowing
or enlarging the barrier limits) to different information. In other words, it is possible to set
very narrow limits at positions where reliable depth information is present and to relax the
constraints in regions where the information is less accurate. A fundamental application
of these advantages is the introduction of the well log information coming from those
boreholes that have not reached the basement but that contain information about depths
where the basement certainly is not present. In a very similar way, seismic information can
be used in areas where no wells are available. In the log barrier method, such information
can be easily incorporated into the inversion by setting the constraints to the minimum
depth only. To the best of our knowledge, the use of such information as constraints in the
inversion of potential field data is new. The logarithmic barrier method was implemented
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in our problem by adding a logarithmic term to the objective function of Equation (9) to
form a new objective function:

Φ = ‖Wd

(
g(n) + J∆h− go

)
‖2 + µ‖Wm

(
h(n) + ∆h− h0

)
‖2

−2λ

[
M

∑
j=1

ln

(
hj − aj

bj − aj

)
+

M

∑
j=1

ln

(
bj − hj

bj − aj

)]
, (10)

where the last term is the barrier function, λ is the barrier parameter, aj and bj are, re-
spectively, the minimum and maximum depth, and M is the total number of prisms in
the model. The barrier term forms a barrier at the boundary of the feasible interval of
the unknowns and prevents the minimization from producing unknowns outside their
respective bounds. The value of λ is decreased during the minimization so that at the
end, as λ approaches zero, the solution to Equation (10) approaches that of the original
problem. Carrying out the complete minimization of Equation (10) for each value of λ
is an expensive process, and it is also unnecessary. Instead, for each value of the barrier
parameter λ, we take one Newton step towards minimizing Equation (10) to yield the
model perturbation equation:(

JTWT
d Wd J + µWT

mWm + λX−2 + λY−2
)

∆h =

JTWT
d Wd(go − g) + µWT

mWm(h0 − h) + λ
(

X−1 −Y−1
)

e, (11)

where X = diag{h1− a1, . . . , hm− aM}, Y = diag{bj− h1, . . . , bm− hM}, and e = (1, . . . , 1)T .
The matrix system in Equation (11) is solved for ∆h by using the conjugate gradient (CG)
method. The model is then updated by a limited step-length:

h(n) = h(n−1) + ηβ∆h, (12)

where β is the maximum permissible step length, and η is a parameter that limits the step
length actually taken. The parameter β is given by:

β = min

min
∆hj>0

b− h(n−1)
j

∆hj
, min

∆hj<0

h(n−1)
j − a

|∆hj|

. (13)

The maximum step length is the value that will take the updated model to the bounds.
Limiting it by the η prescribed within the interval (0, 1) ensures that the updated model
remains within the bounds. After each iteration, the value of λ is reduced by:

λn+1 = [1−min(β, η)]λn, (14)

so that the barrier term becomes negligible as we move towards the final solution. The
iterative process is terminated once the barrier term has become negligibly small and the
original objective function has reached a plateau. This yields one solution for a given
regularization parameter µ. The solutions for several values of µ are required to find the
solution that produces the target misfit Φ∗d .

3. Synthetic Example

We now apply our method to the synthetic dataset shown in Figure 2. The data
simulates the gravity response of the model (Figure 2a) at 100 random locations (crosses).
Gaussian noise with a zero mean and a standard deviation of 0.04 mGal was added
to the entire set of synthetic measurements, resulting in the gravity response shown in
Figure 2b. The synthetic gravity data were gridded using 500 m intervals for the purpose
of display only.
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(a)

(b)

Figure 2. Synthetic model representing a restricted portion of a sedimentary basin and its gravity
response. (a) The model is composed of rectangular features, marked A, B, C, and D, that intend to
simulate four structural highs, for which the tops are positioned, respectively, at 500, 1000, 1500, and
2000 m. (b) The gravity response of the synthetic model is shown in (a), calculated for 100 randomly
distributed stations (crosses) by using a density contrast of −0.30 g/cm3. The black circles show the
position of the five synthetic wells listed in Table 1. The data were gridded with 500 m intervals for
the purpose of display only.

The synthetic model shown in Figure 2a simulates a small portion of a sedimentary
basin covering an area of 15,000 m × 15,000 m. The basement structures are represented
by four rectangular blocks (A, B, C, and D), for which the tops are at, respectively, 500,
1000, 1500, and 2000 m. The maximum depth in the model is 3000 m. The density con-
trast between the sediments and the basement is considered to be constant and equal to
−0.30 g/cm3. The model is discretized into 441 rectangular prisms, having a width of
750 m in x- and y-directions. Since the prisms represent the sedimentary section, the top of
each prism is fixed at the surface, and its bottom will determine the depth to the basement
at each location, as represented in Figure 1.

The well log constraints were imposed on the problem by assuming the depth-to-
basement information at five locations (the black dots in Figure 2b), as listed in Table 1. The
wells were incorporated into the model by setting the model’s cells at the well locations
to provide depth information and keep them fixed during the inversion. Except for the
five positions where the depth to the basement is known, a model with a constant depth of
1500 m was chosen as the reference model.

Table 1. Location of the five synthetic wells used to constrain the inversion.

Wells East Coord. (m) North Coord. (m) Depth (m)

1 5522 3849 500

2 1872 9943 1000

3 8987 10,232 1500

4 12,371 1345 2000

5 12,236 7562 2500
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The final result of the inversion is shown in Figure 3a. It is clear that the inversion was
not able to completely recover the model, but the results represent a satisfactory solution
in terms of the location and average depth for all four structures. The histogram of the
absolute data misfit in Figure 3c shows that 83% of misfits are smaller than 0.12 mGal,
with 23% below 0.04 mGal, which is the standard deviation of the added noise. Such a
result was expected mainly due to the noise and the limited number of observation points.
As a comparison, Figure 3b shows the results of a new inversion that used 250 randomly
spaced data points. In Figure 3d, the histogram of the absolute data misfit of the new
inversion shows that all the misfits are below 0.12 mGal, with 83% of them below the
standard deviation of the noise. The increase in the amount of observed data allows for
a better definition of the gravity field by reducing ambiguity and helping to improve the
final model.

(a) (b)

(c) (d)

Figure 3. Inversion resulting models and respective data misfit histograms. (a) Inversion results for
100 noisy contaminated randomly distributed points showing reasonable estimates for locations and
average depths for all structures. (b) Inversion results for 250 randomly distributed points, which
allows better block definition. The histogram of the absolute data misfit for the inversion using
100 points is shown in (c), whereas (d) exhibits the histogram of the absolute data misfit for the
250 points inversion.

In inversion methods, the correct choice of parameters is usually problem-dependent,
and there is no simple rule of thumb available. Therefore, in addition to showing the
effectiveness of the proposed method, we also provide the reader with a short discussion
on the effects of some of the parameters involved in this inversion process: the parameter
η, the logarithm-barrier parameter (λ), and the regularization parameter (µ). Based on our
experience, we hope that such a discussion can help the readers to develop a feeling for
how to choose these parameters for their own problems.
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The tests that used different values of the η-parameter showed that the influence of
this parameter on the improvement of the solution is minor, and it is mainly restricted to
the speed of convergence. Within the theoretically valid range, the number of iterations
increases as η approaches zero since the actual step taken at each iteration is too small.
As β approaches unity, the solution of Equation (11) becomes much more difficult. This
is because of the disparity in the elements of matrices X and Y, which causes the matrix
system to be poorly conditioned. Our tests indicate that values of η ranging from 0.9 to
nearly 1.0 lead to similar convergence rates and computational costs. For the final solutions
shown in Figure 3a,b, the η-parameter was chosen to be 0.99.

For the logarithm-barrier parameter, we usually start with a large value that must be
reduced after each iteration (e.g., [11]). The tests that used different values for λ showed
that, as expected, the initial choice of λ does not produce significant changes in the final
solution, and this does not change the effectiveness of the depth constraints. We have
chosen the approach in [12] to calculate the starting value of λ as:

λ =
Φd + µΦm

−2
M

∑
j=1

[
ln

(
hj − aj

bj − aj

)
+ ln

(
bj − hj

bj − aj

)] . (15)

The choice of the regularization parameter µ is the most important step towards a
good inversion result. It should be noted that λ is an auxiliary parameter that does not
directly change the final results, whereas µ is the parameter that determines the trade-off
between model complexity and data misfit. Therefore, the parameter µ directly affects the
final result, and its choice is crucial. The µ parameter is often chosen so that the misfit term
reaches the target misfit at the final iteration. Such a criterion works well for cases where
the noise is uncorrelated and zero-mean, and a good estimate of the standard deviation
of this noise is available, as in the synthetic example presented here. Unfortunately, such
cases are rare in practical applications.

When no information about data errors is available, other methods for estimating the
regularization parameter must be used. [18] suggested the use of either GCV or L-curve
criteria as an effective automatic estimator of the trade-off parameter in nonlinear inverse
problems. We have found that the L-curve criterion produces good µ estimates for the
synthetic examples in our problem. Therefore, we have incorporated this criterion in our
inversion methodology by using the maximum curvature approach proposed by [19] to
automatically locate the L-curve corner.

4. Recôncavo Basin Example
4.1. Geologic Regional Settings

As an example of application to a real problem, we have applied the proposed method
to estimate the relief of the basement in a small portion of the Recôncavo Basin (RB),
Brazil (Figure 4). Located in the country’s northeast region, the mature RB is the oldest
oil province in Brazil [20]. The RB is an aborted branch of a larger rift complex called the
Recôncavo-Tucano-Jatobá rift, formed by a series of elongated half-grabens separated by
oblique transfer faults extending over 620 km across the continent [20].

The origin and evolution of the rift are related to stresses that occurred in Gondwana-
land during Mesozoic times, before continental drift [21]. The RB is characterized by a
strong correlation between the distribution of oil fields and basement structures, which
makes the correct understanding of the basement framework fundamental.

The stratigraphy of this basin can be simplified into two main sequences: the pre-rift
and rift sequences [20]. The pre-rift sequence lays directly above the basement and is
characterized by thick packages of sandstones, which are the principal reservoirs in the
basin. Overlaying the pre-rift sequence is the rift sequence. This sequence is characterized
mainly by shales, including the area’s source rock. The thickness of the pre-rift sequence
is almost constant along the entire work area, whereas the rift sequence is thicker in the
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structural lows of the basin. Two major fault systems, trending NE-SW and NW-SE, are
responsible for the structural complexity of the area. Most faults directly connect reservoirs
and source rocks, forming most oil fields over the internal structural highs. Figure 4 shows
a simplified stratigraphic section in the work area.

Figure 4. The geographic location of the Recôncavo Basin in Brazil. The detail shows the area chosen
for the field example and the position of the schematic cross-section AB. The section shows the
structural relationship between the three main stratigraphic features present in the work area.

4.2. Multiphysics Dataset

The studied area has been intensively explored, with several geophysical surveys
acquired over several decades. The Brazilian National Petroleum Agency (ANP) provides
free access to the public gravity and 2D seismic datasets used for the present interpretation.

The gravity data herein are interpreted as a subset of the onshore Debardenest regional
gravity dataset made available by ANP. All land gravity stations were tied to the 1971
International Gravity Standardization Network (IGSN-1971) and were processed through a
standard workflow to recover the Bouguer anomaly [22]. Our subset comprises 771 stations
that are nearly uniformly distributed in a grid over the studied area, as shown by the
crosses in the Bouguer map of Figure 5a. The data were interpolated to a regular grid using
250 m intervals.

The map in Figure 5b is the residual gravity anomaly that was used as the observed
data for the inversion. These data were computed by removing a linear trend from the
Bouguer anomaly map of Figure 5a. Although regional-residual procedures can change
the amplitudes of anomalies in ways that can affect the depth estimates, this additional
processing was required before the inversion for basement relief to remove the gravity
effect of crustal thinning observed along the sedimentary basins of the northeast Brazilian
continental margin (e.g., [17,23,24]).
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(a) (b)

Figure 5. (a) Bouguer anomaly map of the work area showing the position of the 771 gravity stations
(crosses) where the measurements were made. (b) Residual anomaly map computed by removing a
linear trend from the Bouguer anomaly. This residual is the observed data for the inversion. The data
were gridded using 250 m intervals in both figures.

Despite the dense seismic coverage in this part of the basin, as shown in Figure 6a, no
seismic basement map is available due to the poor quality of the seismic data. In a paper on
the seismic characterization in Recôncavo Basin, [25] states that the large thickness of the
recent sedimentary coverage associated with intense cultural activity in many areas makes
it difficult to define the position of deep targets (Figure 6b). Besides, energy transmission
difficulties and interfingering stratigraphy degrade the seismic signal in the studied area,
affecting the signal-to-noise ratio and making the reconnaissance of basement reflections
ambiguous. Because of that, reasonable basement estimates have been made from the
top of the pre-rift sequence. The pre-rift sequence has two important characteristics in
the study area: it is a well-defined seismic reflection that can be easily mapped and has
a nearly constant thickness, averaging around 400 m. Due to these characteristics, it has
been a typical and thriving practice in this portion of the basin to estimate the basement
depths by adding 400 m to the top of the pre-rift sequence mapped from seismic data. We
used this practice to get the basement estimate, as shown in Figure 7, which we used as a
reference model.
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(a) (b)

Figure 6. (a) Position of seismic lines and wells used as constraints. The line segments are the
2D seismic lines used in the mapping of the top of the pre-rift sequence. The gray dots represent
the location of the wells that provide reliable depth-to-basement information, and the black dots
show the wells that provide constraints on the minimum basement depth only. (b) Example of the
difficulties in defining the position of deep targets (reflections near the yellow question mark) caused
by energy transmission problems, cultural interference, and complex stratigraphy, which degrade
the seismic signal. The top left panel shows the location of this example in the Recôncavo Basin,
whereas the top right panel shows the direction of the seismic section AB shown in the bottom
panel (modified from [25]).

The depth constraints for this inversion come from 61 wells that are distributed
throughout the area (Figure 6a). From this total, 23 wells provided direct depth-to-basement
information (gray circles). The remaining 38 wells stopped inside the sedimentary section
(black circles), providing only lower bounds to the basement depths at those locations.
Although density logs were available for some of these wells, only the depth information
was used to constrain the inversion.
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Figure 7. Structural map of the basement, as derived from the seismic mapping of the top of the
pre-rift sequence (see text for details). These data represent the reference model for the inversion. The
data were gridded using 250 m intervals.

4.3. Basement Relief Estimation

We assume an average contrast between the basement and sediments. The assumption
of constant density contrast is a drawback of the technique since it is an approximation.
However, we choose to adopt it because it is the most straightforward approach to be ap-
plied when the knowledge about the density distribution in the area needs to be improved,
for example, in regions where the exploration is just beginning. In addition, in areas with
reduced dimensions, like the study area, both the basement and sediments are not expected
to change densities, and an average density contrast is a reasonable approach.

Despite the advanced geological knowledge in the study area, we decided to include
only the minimum amount of information required by the inversion methodology. Such
an approach allows us to better evaluate the technique’s performance against the known
geology. We emphasize that, in general, all available information should be used. For
example, in cases where the density distribution is known to a certain depth, we suggest
using techniques like gravity stripping [26] to remove the effect of known layers and
then do the inversion for lower levels using a constant density contrast. Such a simple
approach will reduce the complexity of the models, saving computer power and time
during the inversion.

The average density contrast used during the inversion was estimated by considering
the gravity response of the seismically derived model for different density contrasts at the
exact position of those wells whose depth-to-basement is known. Since the seismically
derived model honors the basement depths at the well locations, it is reasonable to assume
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that the most suitable average density contrast should be the one whose gravity response
gives the smallest RMS error compared to the observed gravity at the well locations.
According to this approach, the most appropriate density contrast is −0.39 g/cm3. This
average value is reasonable since it is within the range of density contrasts measured in
several density logs distributed over the area.

The gravity response calculated for the seismically derived model using the estimated
density contrast is shown in Figure 8a. The predicted data of Figure 8a should be similar to
the observed data of Figure 5b if the seismically derived model were correct. There is a good
resemblance between the two maps regarding shape, but the predicted data is a smooth
version of the observed data. The discrepancies between predicted and observed data are
better analyzed in the map of differences in Figure 8b. A quick statistical analysis shows
that the amplitudes of the differences, ranging from−12 to 6 mGal, are very high. The same
can be said about the standard deviation of 3.2 mGal. Analysis of the spatial distribution of
the differences points to coherent features in the map, particularly an elongated positive
feature, trending SW-NE at the lower center, which suggests an excessively deep basement.
If the basement model was correct, the difference map should be dominated by incoherent
features mainly related to noise. Therefore, although this model has been considered for a
long time as a satisfactory estimate for the basement, it only partially justifies the gravity
data and should be re-evaluated. We then applied gravity inversion to modify the basement
depths and to reduce the discrepancies between predicted and observed gravity fields.

(a) (b)

Figure 8. (a) The residual gravity anomaly map, as calculated from the seismic-derived model of
Figure 7 by using a density contrast of −0.39 g/cm3. These are the predicted data for the seismic-
derived model. (b) The differences calculated between the observed and predicted data. Notice that
the presence of positive differences (greater than 1 mGal) in the SE corner (thick contour) indicates
deficiencies in the seismic model that may be reduced by gravity inversion. The data were gridded
using 250 m intervals in both figures.
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Following the approaches developed in this paper, we select the inversion parameters
as follows: γ-parameter is set to 0.99, initial λ-parameter is equal to 10−4, and µ is equal to
10−10. The result of inverting the observed data is shown in Figure 9a. The gravity-inverted
basement is very similar in shape to the reference model of Figure 9a. This was already
expected since the method requires the maximum possible similarity with the reference
model. Figure 9b shows the differences between the reference and the model predicted by
gravity inversion. Although the amplitudes of the differences range from−600 to 700 m, the
average value is around −70 m. In the majority of the area, however, the amplitudes stay
between −200 and 200 m, which indicates a reasonable agreement between the two models.
The presence of large values at NE and SW corners can be related to some kind of border
problems. Such effects may suggest that the first-order trend used for the regional-residual
separation was not a reasonable approximation to the regional field at these locations. The
most remarkable feature is the large positive difference situated at the central-south of the
map. This feature is the most important contribution to the study area since the inversion
has suggested the basement is over 300 m shallower than what was initially estimated from
the seismically derived model.

(a) (b)

Figure 9. (a) The new structural map of the basement after gravity inversion. Note the overall
similarity to the reference model of Figure 7. (b) The differences between the seismic-derived and
the gravity-inverted basement estimates. A larger difference at the SE corner (over 100 m) correlates
with the feature found in the difference map of Figure 8b. The correlation between the two features
seems to indicate that the inversion has considered the seismic basement as being too deep to fit the
anomaly of Figure 8b and had to raise it in order to fit the anomaly. The data were gridded using
250 m intervals in both figures.

The predicted gravity field resulting from the inverted basement is shown in Figure 10a.
In terms of shape, there is a great resemblance between this map and that of Figure 8a,
the predicted field from seismic. Such behavior was already expected since only finer
modifications were introduced in the seismic-derived model by inversion. The difference,
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however, is more significant in magnitude. As an example, the small gravity low toward
the north is now deeper, whereas the large low at the south is shallower. The map of
differences between observed and predicted gravity, in Figure 10b, also demonstrates the
improvement in the fit. The amplitude of the differences now ranges from −10 to 6 mGal,
with a standard deviation of 1.5 mGal, which is approximately half of that achieved with
the seismically derived model.

(a) (b)

Figure 10. (a) The predicted gravity field calculated by using inversion. Since only small changes
were introduced into the model, the similarity to the field predicted by the seismic model (Figure 8a)
is evident. (b) The differences between the observed and predicted data. Note the changes in the
amplitude of the differences, especially in the two main lows, when compared to Figure 8b. The
SW-NE structure (highlighted with a heavy line) in this map is justified by the presence of a trend
of oil-bearing high-density sandstones (dotted lines) that are coincident with the structure. The
discovery of such anomalous features gives important exploratory significance to this map. The data
were gridded using 250 m intervals in both figures.

The improvement is more evident in the histograms of the absolute differences shown
in Figure 11. Despite the general reduction in the misfit, the presence of the SW-NE structure
in Figure 10b (heavy line), showing differences greater than 1 mGal, indicates that the
raising of the basement imposed by inversion was not enough to completely fit the data.
It is possible that the presence of constraints has prevented the inversion from raising the
basement to justify the anomaly. If the basement is restricted to deeper parts and cannot
be responsible for the gravity anomaly, then it is likely that density variations within the
sedimentary section are the contributing factor. In fact, such a structure shows a strong
correlation with a trend of oil-bearing sandstones (dotted lines in Figure 10b).
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Figure 11. Comparison of the differences between the observed and predicted data before and after
gravity inversion. The increase in the relative frequency for the absolute differences below 2 mGal
after inversion, comparatively to before, proves the fitting improvement.

Detailed investigations about the characteristics of these reservoirs show they are
formed by anomalous high-density sandstones located inside the rift section, as proved
by the density log of Figure 12a. The region of the log that corresponds to the reservoirs
shows densities similar to the basement. In contrast, in the case of a well located out of
the trend (Figure 12b), the densities are lower, and there is significant contrast only with
the basement at the bottom of the log. Since these intra-sedimentary density variations
were not accounted for in the model, it was expected that the inversion would try to
fit this anomaly, making the basement shallower in this area. However, the presence of
the constraints, especially those limiting the minimum basement depth, avoided such
compensation. In this case, therefore, the presence of residuals in the final result points to
potential high-density regions correlated to oil-bearing stratigraphic features, which would
have important exploratory significance.
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(a) (b)

Figure 12. Density logs from the two wells at different positions: (a) inside the anomaly area (W-1),
and (b) outside the anomaly area (W-2). Notice that the sandstones in (a) show a density similar to
that of the basement. The position of the wells is given in Figure 6a. No density data were collected
in the shallower portions of both wells.

5. Conclusions

We have proposed a new approach for estimating the relief of a surface separating
two media of different densities. The method is based on inversion of gravity data that
incorporate seismic interpretation and borehole logs. Similar to other inversion methods,
the proposed method minimizes the objective function of the model that controls the data
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misfit and penalizes deviation from a reference model and the structural complexity of the
model. The use of the logarithmic barrier method allows for the incorporation of well log
information, even from wells that do not reach the basement. Since such wells are often
more common than those penetrating the basement, the number of constraints increases.
Furthermore, the logarithm barrier method enables the use of general bounds that vary with
location within the basement model. The possibility of including such specific information
in the inversion increases our confidence in the final model.

The proposed methodology was successfully tested on a synthetic dataset. The in-
version has satisfactorily recovered both the position and the average depth-to-the-top
of the structures present in the model. The errors in the recovered model seem to be
caused by the fact that the inversion was applied to a limited number of noisy observations.
Significantly better results can be achieved either by increasing the number of observations
or by reducing the noise level.

The proposed approach was applied to a field gravity dataset acquired in the Recôn-
cavo Basin, Brazil. This basin was chosen because it hosts a number of oil fields located at
structural highs that correlate well with gravity anomalies. The dense gravity coverage in
the area also makes it ideal for testing the new algorithm. Incorporating the seismic-derived
model into the inversion and imposing well constraints on the depth to the basement pro-
duced a different basement model that significantly reduced the gravity data misfit. The
method has been shown to be effective in the sense that it provides the necessary adjustment
to the seismic model in order to produce a satisfactory fit to the observed gravity field.

In addition, the use of a constant density contrast (although for a very simplistic
model for sedimentary basins) has proven to be appropriate in the case studied because
it was constrained by a large amount of independent information, like seismic data and
wells. By preventing the inversion to improve the fit, the presence of constraints led to
inversion residuals that were related to density anomalies inside the sedimentary section.
The mapping of these density anomalies is of significant importance for exploration in
Recôncavo Basin because they are closely related to a specific kind of stratigraphic prospect.
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