
Citation: Leila, M.; Radwan, A.A.;

Abdel-Fattah, M.I. Lithofacies

Controls on Hydrocarbon Generation

Potentiality of the Syn-Rift Late

Cretaceous Rakopi Deltaic Facies in

the North-Eastern Offshore Part of

Taranaki Basin, New Zealand.

Minerals 2023, 13, 1169. https://

doi.org/10.3390/min13091169

Academic Editor: Thomas Gentzis

Received: 23 July 2023

Revised: 28 August 2023

Accepted: 31 August 2023

Published: 3 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Lithofacies Controls on Hydrocarbon Generation Potentiality of
the Syn-Rift Late Cretaceous Rakopi Deltaic Facies in the
North-Eastern Offshore Part of Taranaki Basin, New Zealand
Mahmoud Leila 1,* , Ahmed A. Radwan 2 and Mohamed I. Abdel-Fattah 3,4

1 Geology Department, Faculty of Science, Mansoura University, Mansoura 11432, Egypt
2 Department of Geology, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;

ahmedabdelhaleim.ast@azhar.edu.eg
3 Petroleum Geosciences and Remote Sensing Program, Department of Applied Physics and Astronomy,

University of Sharjah, Sharjah 27272, United Arab Emirates; mfarag@sharjah.ac.ae
4 Geology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
* Correspondence: mahmoud_lotfy@mans.edu.eg

Abstract: The Taranaki Basin in New Zealand presents the most promising territory for strategies
of hydrocarbon exploration and development. This basin contains multiple source rock levels in
its sedimentary successions formed during syn- and post-rift periods. The deepest source rocks,
found in the Rakopi Formation, were deposited in deltaic to deep marine environments and consist
of gas-prone coal and organic-rich mudstone lithofacies. However, questions remain about the
preservation of their organic carbon. This study integrates various organic geochemical analyses
(such as Rock Eval pyrolysis, kerogen petrography, and biomarkers) to assess the hydrocarbon
potential of the Rakopi coal and mudstone lithofacies. The organic carbon in Rakopi coals and
mudstones originated from oxygenated bottom water, but swift burial during the initial rifting phase
facilitated the preservation of organic materials. Rakopi coals are less mature than the mudstone
facies and contain a mixture of desmocollinite, suberinite, and resinite macerals. In contrast, the
mudstone lithofacies are enriched in liptodetrinite. The maceral mixture in the coal led to its elevated
hydrogen index and likely facilitated early expulsion of liquid hydrocarbon phases. Regular steranes,
diasteranes, and C29 sterane isomers distribution in the coal and mudstone extracts highlighted a
greater terrestrial input in the coals, whereas significant marine input is observed in the mudstone
extracts. Biomarkers in the coal and mudstone extracts are similar to some nearby oils discoveries in
the Taranaki Basin, thereby confirming oil generation from both coal and mudstone lithofacies in the
Rakopi Formation. These findings underscore the potential of liptinite-rich coals to generate liquid
hydrocarbon phases at marginal oil maturity levels.

Keywords: Taranaki Basin; source rocks; biomarkers; kerogen; coal; mudstone

1. Introduction

The content of total organic carbon “TOC” and the quality and maturity of the organic
matter are the main factors controlling the hydrocarbon generation capability of the source
rock [1–5]. In addition, the depositional environment and the provenance of the source
rock sediment influence both the primary productivity and preservation of the organic
matter [6–8]. Furthermore, the lithology of the source rock controls the maturation pathway
of the source rock and hence the expulsion timing and conditions [9–12]. For example,
mudstone source rocks enriched in vitrinite-rich kerogen exhibit an early release of liquid
hydrocarbons upon reaching the oil window maturity stage. However, hydrocarbon
retention in the tiny pore spaces of the mudstones hinders the full expulsion phase of the
liquid hydrocarbons. Moreover, liptinite-rich source rocks require prolonged exposure to
pressure and temperature prior to the expulsion of liquid hydrocarbon phases [12]. Thus,
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a detailed investigation of the primary source rock characteristics (e.g., organic matter
quantity and maturity) as well as identification of the kerogen composition are crucial for
understanding the generation and expulsion potentiality of the source rock.

The Taranaki Basin is the most petroliferous and the only hydrocarbon-producing
sedimentary basin in New Zealand, where the majority of petroleum reserves are contained
in a broadly NE-SW trending fairway of the Paleogene shallow marine as well as Pliocene
turbiditic sandstones (Figure 1) [13–21]. Based on previous geochemical studies, it has
been revealed that oils are primarily sourced from the terrigenous organo-facies in the
Late Cretaceous-Paleocene source rocks that rest unconformably above the basement
complex. Most of these studies have been focused on the Late Cretaceous Pakawau
Group of Rakopi and North Cape Formations [22–32]. Globally, the Late Cretaceous
sedimentary successions host potential source rock organo-facies deposited during the
oceanic anoxic events, which allowed optimum preservation for organic materials [33–35].
In the Taranaki Basin, the Upper Cretaceous sediments of the Rakopi Formation were
accumulated in a fluvio-marine depositional environment, thus hosting variable lithofacies
with different kerogen compositions (Figure 2). However, the link between lithofacies
type, kerogen composition, and source rock generation potential, as well as the type of
the generated hydrocarbon phases, requires further investigation. Therefore, in order to
decipher this link, we investigate the kerogen composition and geochemical characteristics
of different lithofacies (coal and mudstone) from Rakopi deltaic facies and correlate them
with bitumen extracts.
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Figure 1. A map illustrates the area of study in the northeastern offshore part of the Taranaki Basin, 
New Zealand. The map on the right, which illustrates the studied wells, presents an enlarged view 
of the red rectangle on the left map [19]. 

2. Geologic Setting 
The evolution of the Taranaki Basin coincides with late Cretaceous syn-rift exten-

sional faulting related to the break-up of eastern Gondwana coupled with the formation 

Figure 1. A map illustrates the area of study in the northeastern offshore part of the Taranaki Basin,
New Zealand. The map on the right, which illustrates the studied wells, presents an enlarged view of
the red rectangle on the left map [19].

2. Geologic Setting

The evolution of the Taranaki Basin coincides with late Cretaceous syn-rift extensional
faulting related to the break-up of eastern Gondwana coupled with the formation of fault-
bounded graben and half-graben structures (Figure 3) [15,16,36–43]. The Taranaki Basin
constitutes two main structural provinces: the Eastern Mobile Belt (Taranaki Graben) and
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the Western Stable Platform. The Eastern Mobile Belt, which includes the study region,
is dominated by several grabens and contains a variety of compressional features such
as overthrusts, reverse faults, and inversion structures (Figure 1); the Western Platform is
a comparatively undeformed and stable block. Extension and subsidence along the rift
faults caused the accumulation of shallow to deep marine facies in the structural lows.
Cyclic variation in fault offsets caused lateral and vertical facies variability across the basin.
The syn-rift facies contain a progression from non-marine conglomerates to sand, silt, and
coals of the Rakopi and North Cape Formations (Figure 2) [15,36]. By the Early Eocene, the
Taranaki Basin changed into a passive margin with a drift and regional subsidence leading
to marine transgression with widespread deposition of terrestrial to marginal marine
sediments of the “Kapuni Group”, which comprises Farewell, Kaimiro, Mangahewa, and
McKee Formations (Figure 2) [15,16,44].
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Compressional tectonics prevailed during the Late Eocene, thereby reactivating the
rift faults to coincide coupled with an increased uplift rates along the Alpine Fault on
the South Island of New Zealand, which has also been linked to the nearby subduction
zone that affected the Upper Eocene successions. Oligocene tectonic quiescence and
compression in response to a developing Hikurangi subduction zone coupled with a decline
in clastic supply resulted in extensive deposition of limestone (Tikorangi Formation) and
calcareous mudstone (Otaraoa Formation). This transgressive phase peaked in the Early
Miocene during the deposition of the Ngatoro Group: Taimana formation and Wai-iti
Group: Manganui formation. During the Miocene—recent times—the basin transformed
into an active marginal region attributed to a change in stress regime in response to
the development of the Australia-Pacific convergent plate boundary of the Hikurangi
Subduction System through New Zealand [15].
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The profile illustrates the accumulation of Upper Cretaceous syn-rift facies unconformably above the
basement complex.

3. Data and Methods
3.1. Total Organic Carbon “TOC” and Rock-Eval Pyrolysis Analysis

This analysis was conducted on 13 cutting and side wall core (SWC) samples retrieved
from three wells (Tane-1, Wainui-1, and Waka Nui-1; Figure 1) in the offshore north-western
part of the Taranaki Basin. TOC and Rock-Eval pyrolysis measurements were performed by
Applied Petroleum Technology (APT), Norway. For this, the samples were firstly crushed
and washed with distilled water and dichloromethane solvent for the removal of hydro-
carbon residues. A Leco CS-632 high-temperature combustion oven (Leco inc Company,
St. Joseph, MI, USA) was utilized for the measurement of total organic carbon (TOC).
High-temperature (~1300 ◦C) oxidation of the samples was performed, and the oxidized
organic carbon was measured using a solid-state infrared detector. Rock-Eval-6 apparatus
(built by Vinci technologies, Bedfordshire, UK) was utilized to measure the Rock-Eval py-
rolysis parameters (S1, S2, and S3) following the procedure of [48]. The TOC and Rock-Eval
pyrolysis parameters were then used to deduce several important source rock quality pa-
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rameters such as hydrogen and oxygen indices (HI = Rock Eval S2/TOC × 100; OI = Rock
Eval S3/TOC) × 100, respectively), and production index (S1/(S1 + S2). These parameters
reflect the capability of the studied samples to generate hydrocarbon phases [1–3].

3.2. Total Sulfur “TS” Analysis

The content of total sulfur “TS” in the studied 13 cutting and SWC samples was
measured using a Leco analyzer (Leco inc Company, St. Joseph, MI, USA). The analysis
was performed on the powdered samples at the Applied Petroleum Technology (APT)
institute, Norway. This analysis involves a high-temperature (~1800 ◦C) combustion of
approximately 20 mg of dry, powdered sample in the presence of oxygen. An infrared
detector is used to detect the released SO2 gas during the oxidation, directly inferring the
total sulfur content within the sample which mostly constitutes sulfate sulfur, iron sulfur,
as well as organic sulfur [49].

3.3. Vitrinite Reflectance and Kerogen Petrography

Analyses of organic petrography were carried out at the Applied Petroleum Technol-
ogy (APT) Institute, Norway, on 11 cutting and SWC samples. The reflectivity of vitrinite
particles (%Ro) was measured by a Zeiss MPM 03 Photometer (Zeiss group, Oberkochen,
Germany). Prior to petrographic analysis, the samples were crushed and sieved using a
63 µm sieve and then embedded in epoxy resin to prepare polished thin sections. The latter
were examined under incident white and UV light under oil immersion. The reflectivity
measurements were reported using a 546 nm wavelength monochromatic light [3,50]. The
polished thin sections were also examined using an Axioplan 2 imaging Zeiss microscope
(Zeiss group, Oberkochen, Germany) in order to assess the main components of the kerogen
as exinite, liptinite, and inertinite.

3.4. Biomarker Analysis

Biomarker analyses were conducted on thirteen rock extract samples from the studied
Tane-1, Wainui-1, and Waka Nui-1 wells. Bitumen was extracted from the powdered cutting
and SWC samples using a Dionex Accelerated Solvent Extraction unit (ASE 350) (Thermo
Fisher scientific, Waltham, MA, USA). Approximately 4 to 5 g of powdered sample were
mixed with 1–2 g of a dispersant (acid-washed sand). The samples were packed into 11 mL
stainless steel Dionex ASE cells on top of a 21 mm Whatman Glass microfiber filter inserted
into the base cap and a small 2–3 mm plug of acid-washed sand. The sample was tapped
firmly on the bench to ensure adequate compaction in order to extract as much material as
possible. A small layer of acid-washed sand was placed over the sample before the lid was
screwed on. The prepared cell was loaded into the ASE 350 upper carousel, and two 100 mL
collection bottles were loaded into the lower carousel for the collection of the extract. The
cell was extracted using a 95:5 vol/vol dichloromethane/methanol (DCM:MeOH) mix at
100 ◦C (heating time 5 min) at 1000 psi for 2 min static time using a 120% flush for 5 cycles.
A 300-second nitrogen purge was used to displace the solvent. The entire procedure was
repeated in the second collection bottle to ensure the sample was completely extracted.
After extraction, the DCM:MeOH mix was removed using a rotary evaporator.

Bitumens from ASE-extracted source rocks were separated into various fractions
before analysis (saturates, aromatics, and asphaltenes). Asphaltenes were precipitated by
adding at least 40 times the extract volume of n-hexane. The saturate fraction was separated
using a silica + activated alumina column [51]. Prior to elution, the Si + Al column was
conditioned with n-hexane. The sample was then introduced onto the column and eluted
with n-hexane.

Carbon isotope composition of the separated fractions was carried out using a Micro-
mass IsoPrime instrument (IsoPrime Ltd, Cheadle Hulme, UK) interfaced with a HP6890
gas chromatograph (GC) equipped with a HP7683 autosampler operated in split/splitless
mode and fitted with a 60 m × 0.25 mm i.d. DB-5 column (0.25 µm film thickness). The
oven of the apparatus was programmed from 40 ◦C to 300 ◦C at 8 ◦C/min. The carrier
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gas (helium) was adjusted at a flow rate of 1.5 mL/min using a constant flow injector. The
separated samples were dissolved in n-hexane. The carbon isotope ratios were measured
relative to CO2 pulses utilizing CO2 gases of known δ13C contents in the mass spectrometer.
The values of stable carbon isotopes were presented in the delta notation (δ) relative to the
known carbonate standard (Vienna Pee Dee Belemnite VPDB). δ13C values are generally
averaged from at least three sample runs and accepted results typically have a standard
deviation of <0.5‰.

The analysis of gas chromatography–mass spectrometry (GC-MS) was carried out
on the saturate fraction using A Hewlett-Packard (HP) 5975C MSD interfaced (Hewlett-
Packard, Palo Alto, CA, USA) to a HP7890A gas chromatogram fitted with a 25 m × 0.25 mm
a fused silica capillary column. The carrier helium gas was flowed at a linear velocity of
1 mL/min using the constant flow injector. The GC oven was ramped from 40 ◦C to 300 ◦C
at a heating rate of 5 ◦C/min with initial and final hold times of 3 and 20 min, respectively.
Using a Combi-Pal auto-sampler, 2 µL injections in n-pentane or n-hexane with a 10:1 split
were made on-column. The mass spectrometer was operated with an ionization energy
of 70 eV, a temperature of 230 ◦C, and equipped with an electron multiplier voltage of
1424 V and a range of scanning mass between 50 and 550 atomic mass unit (amu). The
different GC-MS ions aid in the identification of different biomarker components; ions
191 and 217 were used to identify the terpenes and steranes components which aid in the
interpretation of depositional environment and maturity of the studied extracts and hence
allow the oil–source rock correlation.

4. Results and Interpretation
4.1. Total Sulfur “TS” and Total Organic Carbon “TOC” Contents

The studied Rakopi coal facies display a wide range of total sulfur content in the
range of 0.67–3.1 wt% with an average content of 1.35 wt% (Table 1). The coal samples
also display a very high TOC content (43–72 wt%) with an average TOC of 62 wt%. On the
other hand, the Rakopi mudstones display comparatively lower TS and TOC contents with
average values of 0.70 wt% and 20 wt%, respectively. The TOC versus TS plot provides
insights on the depositional conditions of the source rocks. A relative enrichment of
sulfur indicates deposition in anoxic to euxinic conditions, whereas the depletion of sulfur
relative to TOC would infer oxygenated environment [52,53]. Accordingly, most of the
studied coal and mudstone facies were deposited in oxic to suboxic conditions (Figure 4).
Elevated TOC contents in the studied lithofacies despite their deposition in well-oxygenated
conditions suggest a rapid burial of the organic matter in their sediments which prompted
its preservation [54]. This rapid burial was likely accompanied by increased primary
productivity coupled with high influx of terrigenous and carbonaceous materials.

Table 1. Total sulfur “TS”, total organic carbon “TOC”, Rock-Eval pyrolysis, and vitrinite reflectance
results for the studied coal and mudstone facies.

Well Lithology TS
Wt (%)

TOC
Wt (%)

S2
Mg HC/g

Rock

HI
Mg HC/g

TOC

VR
(%Ro)

Tane-1 Coal 1.67 69.53 200.95 289 0.51

Tane-1 Coal 0.67 71.85 198.30 276 0.66

Tane-1 Coal 0.65 71.67 169.85 237 0.68

Tane-1 Coal 0.67 71.14 177.85 250 0.76

Wainui-1 Coal - 43.2 - - 0.49

Wainui-1 Coal - 44.0 - - 0.45

Wainui-1 Coal 3.07 60.26 227.18 377 0.48

Average 1.35 62 195 286 0.57
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Table 1. Cont.

Well Lithology TS
Wt (%)

TOC
Wt (%)

S2
Mg HC/g

Rock

HI
Mg HC/g

TOC

VR
(%Ro)

Tane-1 Mudstone 0.76 33.63 102.57 305 0.66

Tane-1 Mudstone 0.65 38.48 102.74 267 0.71

Tane-1 Mudstone 0.66 39.04 105.79 271 0.76

Wainui-1 Mudstone - 28.55 107.34 376 0.48

Wainui-1 Mudstone - 5.0 - - 0.54

Wainui-1 Mudstone - 0.78 2.51 322 0.97

Wainui-1 Mudstone - 9.31 15.6 168 1.03

Wainui-1 Mudstone - 5.50 7.18 131 1.06

Average 0.70 20 63.4 263 0.78
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4.2. Rock-Eval Pyrolysis

The Rock-Eval pyrolysis parameters differ greatly in the studied Rakopi coal and
mudstone facies. Rock-Eval S2 values are much higher in the coal than in the mudstone
facies. S2 values range in the coal facies from 170 to 227 mg HC/g rock with an average
of 195 mg HC/g rock, whereas the maximum S2 value in the mudstones is 107 mg HC/g
rock with an average of 63.4 mg HC/g rock (Table 1). The TOC versus Rock-Eval S2 plot
demonstrates that the mudstone samples are classified as fair to excellent source rocks,
whereas the coal samples have an excellent ability to generate hydrocarbon up to reaching
the hydrocarbon generation window maturity (Figure 5A). The Rock-Eval S2 and TOC
values in the studied facies reveal that the majority of the studied coal and mudstone
are enriched in type III kerogen; however, a few samples with significant type II kerogen
materials also exist (Figure 5B).
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Figure 5. Total organic carbon “TOC” versus Rock-Eval S2 plots demonstrate the excellent source
rock characteristics of the studied facies (A) which are mostly classified as type III kerogen (B).

The calculated hydrogen index (HI) values are high in all the studied samples, with
an average values of 286 mg HC/g TOC and 263 mg HC/g TOC in the coal and mudstone
facies, respectively (Table 1). The TOC versus HI plot typifies that most of the studied
samples are potential gas source rocks; however, the ability of some mudstone samples
to generate both oil and gas is ruled out (Figure 6A). Notably, the measured vitrinite
reflectance values are greater in the mudstone than in the coal facies. The majority of coal
samples are immature (Figure 6B), with vitrinite reflectance values ranging from 0.48 %Ro
and 0.76 %Ro (Table 1). Therefore, the coal samples can generate either biogenic gases or
mature liquid hydrocarbon phases. In contrast, the mudstone facies are principally in the
oil window maturity level (average = 0.78 %R0), except only two samples with reflectance
values < 0.6 %R0.
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4.3. Organic Petrography

Rakopi coal facies consist mainly of vitrinite which occurs in the form of desmocollinite,
while other vitrinite phases are completely absent (Figure 7A–C). Notably, all the coal
samples contain subordinate contents of liptinite maceral. The latter occurs in the form of
resinite (Figure 7A), cutinite, and liptodetrinite (Figure 7B,C). Sapropelic organic matter
occurs in some samples (Figure 7C), typifying a mixed input from marine organisms.
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Similar to coals, the mudstone facies are enriched in desmocollinite; however the liptinite
maceral is more abundant (Figure 7D–F). Liptinite occurs mostly in the form of banded
cutinite, desmocollinite, as well as cellular suberinite. Notable, inertinite occurs as traces of
fusinite (Figure 7D). Pyrite occurs in trace amounts in all the studied samples (Figure 7A).

The relative contents of vitrinite, liptinite, and inertinte demonstrate the kerogen
type as well as the type of hydrocarbon generated from the source rocks [53–56]. Most
of the studied coals have vitrinite contents exceeding 85%, thus classified as gas-prone
source rocks (Figure 8). On the other hand, all the mudstone samples contain subordinate
contents of liptinite, and are therefore capable of producing principally gas; however, their
potentiality to generate liquid phases cannot be excluded.
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4.4. Biomarker Analysis
4.4.1. Bulk Composition and n-Alkane Distribution

The bulk composition of the coal and mudstone extracts is dominated by asphaltene
and polar compounds relative to both saturate and aromatic hydrocarbons. The coal ex-
tracts display an average composition of 4.8 wt%, 25 wt%, and 70.2 wt% for saturates,
aromatics, and asphaltene + polar compounds, respectively. On the other hand, the mud-
stones are more enriched in saturates relative to aromatics, thereby displaying an average
composition of 18.7 wt%, 14 wt%, and 67.3 wt%, respectively (Table 2). Such depletion of
saturated hydrocarbons is most likely due to their preferential removal either by bacterial
biodegradation or water washing (e.g., [57,58]). The extract samples display a narrow range
of δ13Csaturates and δ13Caromatics with average values of −28.42‰, −26.81‰, and −28.17‰,
−26.90‰ in the coal and mudstone extracts, respectively (Table 2). The canonical variable
values are greater in the coal than that in the mudstone extract samples (Table 2).

Table 2. Bulk compositional characteristics and normal alkane distribution results of the studied coal
and mudstone extracts.

Well Lithology Saturates
Wt (%)

Aromatics
Wt (%)

Asphaltene
& Polar

Compounds
Wt (%)

δ13Csaturates
(‰)

δ13Caromatics
(‰)

Canonical
Variable CV Pr/Ph Pr/nC17 Ph/nC18 CPI

Tane-1 Coal 3.4 26.7 69.9 −29.0 −26.6 2.67 5.69 7.88 1.14 1.59

Tane-1 Coal 5.7 24.4 70.0 −28.5 −26.9 0.74 8.83 8.78 0.87 1.55

Tane-1 Coal 5.6 18.3 76.1 −28.5 −27.3 −0.15 8.12 7.38 0.86 1.57

Tane-1 Coal 5.2 13.9 81.0 −29.1 −26.5 3.14 5.03 3.76 0.96 1.55

Tane-1 Coal 5.4 28.6 65.9 −27.5 −26.5 −0.91 8.16 3.22 0.36 1.29

Tane-1 Coal 3.6 31.8 64.7 −28.1 −27.1 −0.72 7.16 2.86 0.37 1.25

Wainui-1 Coal 5.2 31.8 63.1 −28.3 −26.8 0.45 8.30 8.30 1.10 1.38

Average 4.8 25.0 70.2 −28.42 −26.81 0.74 7.32 6.02 0.80 1.45

Wainui-1 Mudstone 11.0 19.9 69.1 −28.3 −26.8 0.45 4.42 2.09 0.44 1.35

Wainui-1 Mudstone 15.3 9.0 75.6 −28.1 −26.9 −0.28 3.73 1.65 0.43 1.36

Wainui-1 Mudstone 29.9 13.3 56.7 −28.1 −27.0 −0.50 4.22 1.96 0.50 1.36

Wainui-1 Mudstone - - - − − − 3.50 2.30 0.58 1.17

Average 18.7 14.0 67.3 −28.17 −26.90 −0.11 3.97 2.00 0.49 1.31
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The coal and mudstone extracts display bimodal n-alkane distribution with a relative
abundance of heavy molecular weight alkanes (Figure 9). The studied extracts have
elevated pristane/phytane (pr/ph) ratios > 3.5 (Table 2), and they are enriched in pristane
relative to other isoprenoids and n-alkanes, thereby displaying pr/nC17 > 1.5. On the other
hand, most of the samples are depleted in phytane and display ph/nC18 values < 1. The
carbon preference index (CPI) is greater than 1 in all the studied extracts, with average CPI
values of 1.45 and 1.1 in the coal and mudstone extracts, respectively.
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4.4.2. Terpanes and Steranes

The studied extracts are enriched in C29 and C30 hopanes relative to tricyclic and
tetracyclic terpenes (Figure 10A). The extracts are depleted in diterpanes and gammacerane
relative to C30 hopane. The coal and mudstone extracts display a similar gammacerane
index with average values of 0.28 (Table 3). Oleanane occurs in elevated concentrations in
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most of the studied extracts suggesting a significant contribution from terrestrial higher
plants [59,60]. The mudstone extracts higher trisnorhopanes ratio (Ts/(Ts + Tm) than the
coal extracts, where values greater than 0.1 are only observed in the mudstone extracts.
The extracts are all depleted on diahopanes relative to hopanes with average values of
0.06 and 0.08 for the coal and mudstone extracts, respectively. Additionally, the mudstone
extracts are more enriched in C23 tricyclic terpane and display an average C23 tricyclic
terpane/(C23 tricyclic terpane + C30 hopane) value of 0.39, whereas the coal extracts are
relatively depleted in C23 tricyclic terpane with average C23 tricyclic terpane/(C23 tricyclic
terpane + C30 hopane) of 0.09. On the other hand, the coal extracts are enriched in C19
tricyclic terpanes relative to C23 tricyclic with average C19 tricyclic terpane/(C19 tricyclic
terpane + C23 tricyclic) value of 0.77. In contrast, the mudstone extracts are depleted in C19
tricyclic terpanes and display an average C19 tricyclic terpane/(C19 tricyclic terpane + C23
tricyclic) of 0.36. Such variation in some specific tricyclic terpanes components in the coal
and mudstone extracts typify a slight variation in the kerogen composition (e.g., [4,57]).
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Table 3. Distribution results of some selected terpanes and steranes in the studied coal and mud-
stone extracts.

Well Lithology A B C D E F G H I J K L M

Tane-1 Coal 0.03 3.45 0.36 0.06 0.12 0.74 4.76 10.18 19.09 70.74 0.44 0.46 0.39

Tane-1 Coal 0.02 3.74 0.20 0.04 0.05 0.85 4.82 5.30 11.67 83.03 0.34 0.49 0.35

Tane-1 Coal 0.03 9.60 0.23 0.06 0.09 0.74 7.08 6.77 12.33 80.90 0.38 0.48 0.31

Tane-1 Coal 0.08 18.89 0.30 0.09 0.17 0.67 10.41 13.41 13.42 73.17 0.50 0.47 0.40

Tane-1 Coal 0.02 - 0.19 0.03 0.03 0.90 3.39 5.07 13.80 81.13 0.19 0.52 0.40

Tane-1 Coal 0.12 5.57 0.43 0.05 0.06 0.82 5.31 9.14 29.44 61.42 0.26 0.46 0.39

Wainui-1 Coal 0.09 11.64 0.26 0.12 0.13 0.70 10.20 9.42 13.53 77.05 0.31 0.47 0.40

Average 0.06 7.55 0.28 0.06 0.09 0.77 6.57 8.47 16.18 75.35 0.34 0.48 0.38

Wainui-1 Mudstone 0.08 24.21 0.28 0.10 0.28 0.50 12.16 11.52 14.76 73.73 0.46 0.42 0.41

Wainui-1 Mudstone 0.09 28.00 0.27 0.08 0.46 0.29 13.24 15.28 15.83 68.89 0.48 0.47 0.43

Wainui-1 Mudstone 0.13 13.62 0.35 0.08 0.48 0.35 13.19 23.41 16.79 59.80 0.50 0.48 0.44

Wainui-1 Mudstone 0.10 10.00 0.24 0.08 0.35 0.32 10.10 18.40 17.40 64.20 0.47 0.41 0.41

Average 0.10 18.96 0.28 0.08 0.39 0.36 12.17 17.15 16.19 66.65 0.48 0.44 0.42

A: Ts/(Ts + Tm) trisnorhopanes; B: oleanane; C: gammacerane index; D: diahopane/hopane; E: C23 tricyclic
terpane/(C23 tricyclic terpane + C30 hopane); F: C19 tricyclic terpane/(C23 tricyclic terpane + C19 tricyclic
terpane); G: steranes/(steranes + hopanes); H: C27 steranes; I: C28 steranes; J: C29 steranes; K: C29 diasterane/(C29
diasteranes + C29 steranes); L: 20s/(20s + 20R) C29 Steranes; M: ββ/(αα +ββ) C29 steranes.

The coal and mudstone extracts are enriched in C29 steranes relative to other steranes
(Figure 10B). The extracts are depleted in C28 and C30 steranes, while diasteranes occur
in subordinate contents. Notably, all the extracts are enriched in steranes relative to
hopanes with steranes/(steranes + hopanes) average values greater than 5 in all the studied
extracts (Table 3). Furthermore, the extracts are enriched in C29 steranes relative to C27
and C28 steranes; however, the coal extracts are more enriched in C29 steranes than that
in the mudstone extracts (Table 3). In contrast, mudstone extracts are more enriched in
diasteranes, thereby displaying an average C29 diasteranes/(C29 diasteranes + C29 steranes)
value of 0.48. The coal and mudstone extracts display relatively similar 20s/(20s + 20R) C29
steranes and ββ/(αα + ββ) C29 steranes values with averages of less than 0.5.

5. Discussion
5.1. Kerogen Compositional Controls on Hydrocarbon Generation

The quantity (TOC content) and quality (kerogen type) of the organic matter in the
source rocks determine their ability to generate hydrocarbons [2,3,58]. These factors also
control the type and composition of the generated hydrocarbon phases. However, recent
studies demonstrated the capability of vitrinite-rich coals to generate liquid hydrocarbon
phases even at low levels of oil-window maturity [5,10–12,61]. Geochemical analysis
conducted on the studied Rakopi coal and mudstone facies revealed the accumulation of
their organofacies in oxic to sub-oxic environments (Figure 4). This is consistent with the
elevated pr/ph values in all the studied facies. Such environment did not host favorable
conditions for the preservation of organic matter, and thereby bacterial degradation of the
organic materials will be more likely. However, the enrichment of the studied facies with
organic matter (Figure 5A) is likely attributed to rapid deposition during the peak syn-rift
stage, which aided in the preservation of the organic matter (e.g., [8]).

The rapid deposition of the Rakopi facies allowed for the preservation of different
maceral facies (Figures 7 and 8). Rakopi coals are enriched in desmocollinite (Figure 7A,C)
relative to other vitrinite facies (Figure 7A,C). Several studies demonstrated a good corre-
lation between desmocollinite-rich coals and hydrogen index [62,63], thus typifying the
potentiality of these coals to generate liquid hydrocarbon phases. Additionally, several
levels within the Rakopi coal seams contain subordinate contents of liptinite and sapropelic
organic materials. Specific liptinite facies such as suberinite have excellent capability to gen-
erate liquid hydrocarbons (e.g., [64,65]). In addition, suberinite and resinite have greater
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potential to generate liquid hydrocarbons even at early stages of oil window maturity
(e.g., [66]). Therefore, the presence of desmocollinite, suberinite, and resinite in coal and
mudstone facies promote the generation of liquid hydrocarbons despite the overall gas
prone kerogen of the Rakopi coals (Figures 5 and 6). The studied coal and mudstone facies
are marginally mature (Figure 6B), however, the abundance of suberinite and desmocolli-
nite kerogen likely allowed the generation of liquid hydrocarbon phases even at the early
oil window maturity stage.

5.2. Oil–Source Correlation and Implications for Exploration Future in Taranaki Basin

Correlating hydrocarbon phases with their parent source rocks is an essential pro-
cedure for hydrocarbon expiration endeavors. A comprehensive oil–source correlation
enhances the predictability of hydrocarbon play elements, thereby reduce the exploration
risks. The correlation procedure depends on establishing the similarity in specific com-
positional parameters between the oil and their parent source rocks [3]. These specific
parameters include depositional, maturity, and age-relevant biomarkers [3,67–69]. The
carbon isotopic composition of saturate and aromatic fractions as well as the deduced canon-
ical variable (CV) values often infer the depositional environment of oils and bitumens.
These values effectively differentiate between terrigenous, marine, and mixed depositional
environments [70,71]. On the δ13Csaturates versus δ13Caromatics plot (Figure 11A), coal and
mudstone extracts are clustered in the mixed and terrigenous depositional environment,
which is consistent with their deposition in a continental to mixed marine environment
in agreement with the accumulation of their organic matter in fluvio-deltaic oxygenated
conditions (Figure 11B). Notably, oils from nearby discoveries [72] have similar δ13Csaturates,
δ13Caromatics values to those observed in the extracts, thus demonstrating a positive oil to
extract correlation (Figure 11A,B).
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The isoprenoid (pr, ph) relative to n-alkane (nC17, nC18) values provide insights into
the depositional environment and accumulation conditions of the organofacies [3,73]. Both
coal and mudstone extracts are dominated by terrigenous input accumulated in sub-oxic
conditions in a transitional environment (Figure 12). Most oils from nearby wells have
similar isoprenoid ratios to the coal and mudstone extracts, thereby pointing to their
positive correlation. Moreover, the relative abundance of C27, C28, and C29 steranes is
sensitive to the extent of organic input within the kerogen [3,61,74]. Abundance of C29
steranes relative to other steranes signifies elevated terrestrial input, whereas abundance of
C28 steranes is mainly contributes to marine algal input. The coal extracts displaying C29
steranes content greater than 70% have a pure terrestrial input, whereas the terrestrial input
is relatively lower in the mudstone extracts (Table 3). However, the relative abundance of
C29 diasteranes in the mudstone extracts confirm their clay-rich content (e.g., [13]). The
nearby oil wells display steranes abundance composition revealing their derivation from
both the mudstone and coal facies (Figure 13).
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Maturity-relevant biomarkers such as Ts/(Ts + Tm) trisnorhopanes, 20s/(20s + 20R)
C29 steranes and ββ/(αα + ββ) C29 steranes suggest the marginal to early oil window
maturity of the studied coal and mudstone facies (Table 3). Despite the greater vitrinite
reflectance values in the mudstone facies (Figure 6B), the relevant biomarkers suggest a
similar maturity level for coal and mudstone extracts (Figure 14). Such disturbance in ma-
turity parameters to the early expulsion of the liquid hydrocarbon facies from the mixture
desmocollinite-, suberinite-, and resinite-rich kerogen of the coal facies [75]. Therefore, we
hypothesize that the onset of hydrocarbon expulsion first started in the coal facies prior to
reaching the peak oil window maturity. This is further confirmed by the 20s/(20s + 20R)
C29 steranes and ββ/(αα + ββ) C29 steranes plot, which demonstrates a positive maturity
correlation between nearby oil discoveries and the studied extracts (Figure 14).
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The positive correlation in depositional-, age-, and maturity-relevant biomarkers
between coal, mudstone extracts, and the nearby oil discoveries showed the ability of the
Rakopi fluvio-deltaic facies to generate mature liquid hydrocarbon phases. The kerogen
composition of the coal facies revealed their ability to generate liquid hydrocarbon at
marginal oil window maturity level. At these early maturation levels, light oil is often
expelled from coalbeds, in particular those with elevated H/C content, leaving the bitumen
behind [76]. Indeed, the compositional attributes in the coal, mudstone extracts, and nearby
oils may suggest the contribution of both coal and mudstone facies in oil generation in
several parts of the Taranaki Basin. Given the high sorption capacity of the coalbeds [77,78],
a greater similarity between expelled oil and remained kerogen in the coal would be
expected. However, the sorptive capacity is mostly dependent on the maceral content of
coal where greater capacity has been reported in inertinite-rich coals [79]. On the other
hand, vitrinite macerals have less sorption capacity. The latter increases in vitrinite-rich
coals with increasing the maturity [80]. Considering the marginal oil-window maturity
of the studied coal facies along with their vitrinite-rich composition, the retention of the
produced oil in the studied coalbeds would be minimal.

6. Conclusions

• The upper Cretaceous coal and mudstone facies of the Rakopi Formation host potential
organofacies in the Taranaki Basin, New Zealand. These lithofacies have high TOC
(average > 20 wt%) despite their deposition in oxygenated bottom water conditions
(TOC/TS > 5).

• Rakopi coals are enriched in desmocollinite, suberinite, and resinite macerals, whereas
the mudstone facies are enriched in liptodetrinite and cutinite. Vitrinite reflectance is
greater in mudstone than that in coal lithofacies.

• Extracts from the coal and mudstone lithofacies have similar compositional attributes,
however, the coal extracts have greater input from terrestrial materials.

• Maturity-relevant biomarkers elucidate similar levels of maturity, suggesting an early
phase of expulsion from the coal lithofacies.

• Correlation between compositional markers in coal, mudstone extracts, and nearby oil
discoveries revealed a mixing signature between oil derived from coal and mudstone
organofacies, despite the variable levels of maturity.

• The present results demonstrate the ability of marginal mature coals to generate liquid
hydrocarbon phases, thereby opening new frontiers for exploration in several regions
of the Taranaki Basin.
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