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Abstract: Remote sensing (RS) technology has significantly contributed to geological exploration
and mineral resource assessment. However, its effective application in vegetated areas encounters
various challenges. This paper aims to provide a comprehensive overview of the challenges and
opportunities associated with RS-based lithological identification in vegetated regions which includes
the extensively reviewed prior research concerning the identification of lithology in vegetated regions,
encompassing the utilized remote sensing data sources, and classification methodologies. Moreover,
it offers a comprehensive overview of the application of remote sensing techniques in the domain of
lithological mapping. Notably, hyperspectral RS and Synthetic Aperture Radar (SAR) have emerged
as prominent tools in lithological identification. In addition, this paper addresses the limitations
inherent in RS technology, including issues related to vegetation cover and terrain effects, which
significantly impact the accuracy of lithological mapping. To propel further advancements in the
field, the paper proposes promising avenues for future research and development. These include the
integration of multi-source data to improve classification accuracy and the exploration of novel RS
techniques and algorithms. In summary, this paper presents valuable insights and recommendations
for advancing the study of RS-based lithological identification in vegetated areas.

Keywords: lithology mapping; machine learning; deep learning; feature extraction; remote sensing;
vegetated area

1. Introduction

Accurate lithological mapping is essential in geological surveys and mineral resource
exploration [1–4]. Rocks are classified into sedimentary, magmatic, and metamorphic types
based on their formation process, with detailed subtypes referenced in [5–8]. Leveraging
the distinctive spectral responses and texture information of rocks, remote sensing (RS)
data/technology facilitates rapid geological mapping [9]. However, the detection of rock
information in vegetated areas poses challenges due to weak signals and interference from
vegetation cover. Even with vegetation cover of just over 10%, subsurface information
can be greatly obscured or entirely hidden [10,11]. Consequently, the extraction of litho-
logic information in vegetated areas represents a significant obstacle in current geological
applications [12].

Various approaches have been identified to address vegetation obstruction in litholog-
ical RS. In the field of vegetation-based lithological mapping, classification methods can
be categorized into three primary approaches. The first approach focuses on re-emerging
lithological information through the Vegetation Suppression Method (VSM) [13,14]. The
second approach utilizes Spectral Mixing Analysis (SMA) to decompose and extract target
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information, specifically lithological categories [15,16]. The third approach involves indirect
classification utilizing a range of algorithms, such as maximum likelihood classification
(MLC) [17], Support Vector Machines (SVM) [18], random forest (RF) [19], artificial neu-
ral networks (ANN) [20–22], and deep learning algorithms (DLAs) [23,24], significantly
facilitating the process of indirect lithological identification with development of machine
learning (ML).

In recent years, the field of lithological identification has benefited from advance-
ments in artificial intelligence and the availability of diverse RS datasets. Among these
datasets, the Landsat series satellites have emerged as the primary choice for researchers
in vegetation-based lithological mapping studies [25–28]. Their high cost-effectiveness,
wide coverage, and high spatial resolution effectively identify vegetation and lithology-soil
information, providing a solid foundation for lithological identification. However, it is
important to note that the accuracy of information extraction is constrained by the mixed
pixel phenomenon and the loss of information resulting from the low spatial resolution [29].
Furthermore, the emergence of high-resolution imagery has attracted geologists’ attention.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with multi-
spectral (15 m) and thermal infrared (TIR) (30 m) data [30,31] allow for the extraction of
spectral and thermal features for surface lithology analysis. Sentinel-2 [32] provides high
spatial resolution multispectral data (up to 10 m), which is suitable for large-scale lithologi-
cal identification. Additionally, WorldView-3 [33] and WorldView-4 offer high-resolution
multispectral and TIR imagery, enabling the capture of surface details and spectral charac-
teristics. Advanced hyperspectral sensors like Earth Observing-1 (EO-1) [34], PRecursore
IperSpettrale della Missione Applicativa (PRISMA) [35], Environmental Mapping and Anal-
ysis Program (EnMAP) [36], and Hyperspectral InfraRed Imager (HyspIRI) [37] provide
a wider spectral range and finer resolution, facilitating precise lithological identification
and mineral analysis. Moreover, China’s high-resolution satellites, including Zhongzi
Resources Satellite-1 (ZY-1) [38], ZY-3 [39], and the Gaofen series (GF) [40,41], cover visible
(VIR), near-infrared (NIR), and mid-infrared spectra, thereby establishing a robust data
foundation for detailed localized lithological survey research.

Despite the notable advancements of optical sensors in lithological identification,
they still face certain challenges. Multispectral images are susceptible to various factors
such as lighting and weather conditions, spectral resolution limitations, and the complex
nature of geological units [23,29]. Similarly, high-resolution hyperspectral images are
prone to spectral confusion, complexities in data processing and analysis, and atmospheric
interference [35]. In contrast, Synthetic Aperture Radar (SAR) technology can address
some of these challenges and offers advantages, including weather independence, detailed
capture of texture features, and high sensitivity to surface physical properties [42]. The
C-band (4~8 GHz) provides high spatial resolution, capturing microscopic rock structure
details and reflecting subtle lithological variations and reflectivity differences [43,44]. On
the other hand, the L-band (1~2 GHz) has the capability to penetrate vegetation and shallow
surface coverings, directly acquiring information about subsurface rocks [45]. While the
X-band (8~12 GHz) might not be commonly used for direct lithology identification in
remote sensing applications, it can still contribute to lithology identification efforts by
providing valuable information through high-precision topographic data. Sentinel-1 [46],
polarimetric SAR (Pol-SAR) [47], and Phased Array type L-band SAR (PALSAR) [45,48]
are highly favored for lithological mapping. However, studies have shown that radar data
generally has lower spatial resolution compared to optical images, and the acquisition and
processing of radar data can be complex [45]. Therefore, relying solely on SAR data for
lithological discrimination may lead to poorer performance [44].

The challenge in lithological mapping in vegetated areas lies in the inability of a single
type of data resource to accurately characterize rock units [23]. Considering the correlation
between lithology and factors such as vegetation [20,49], topography [22,50], tempera-
ture [51], humidity [52], etc., indirect lithological identification can be achieved through
multi-source RS techniques or integrating RS with ancillary data [53,54]. This strategy has
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been widely employed in practical geological research and resource exploration, leading to
remarkable achievements [13,15,20,42,55]. It is worth noting that the fusion of multi-source
data generates high-dimensional features with numerous variables. However, using all
these variables can pose computational challenges for machine learning algorithms (MLAs)
and may not always yield satisfactory results [56,57] due to some variables being highly
correlated, noisy, redundant, or irrelevant [58–60]. Therefore, selecting optimal feature
variables is crucial for achieving satisfactory classification outcomes.

The aim of this paper is to provide theoretical, technical, and methodological support
for further lithology mapping work in vegetation-covered areas by summarizing existing
research conducted by previous scholars. In Section 2, we discuss data preparation, in-
cluding RS data such as optical, hyperspectral, and radar imagery. Section 3 covers feature
extraction and classification methods. Section 4 provides an in-depth analysis of the related
studies on rock classification in vegetation-covered areas. In Section 5, we presented the
opportunities and future development in the research field of vegetation-based lithological
mapping. Moving on to Section 6, we provide a comprehensive summary of the research
and shed light on the challenges encountered in the field of lithological mapping.

2. RS Imagery
2.1. Optical Imagery

The Landsat series of satellites, operated jointly by the National Aeronautics and Space
Administration (NASA) and the United States Geological Survey (USGS) [61,62], comprises
Earth observation satellites equipped with multiple multispectral sensors, including a Mul-
tispectral Scanner (MSS) aboard Landsat 1–5 [63], Thematic Mapper (TM) aboard Landsat 4
and 5 [27,64], Enhanced Thematic Mapper Plus (ETM+) aboard Landsat 7 [65], Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) aboard Landsat 8 [66], and Op-
erational Land Imager 2 (OLI-2) and TIRS-2 aboard Landsat 9 [67], as shown in Table 1.
These satellites, spanning from 1972 to the present (excluding a failed launch), capture
visible, near-infrared, mid-infrared, and thermal-infrared spectra, providing valuable and
abundant data for lithological mapping. Landsat 8 and Landsat 9 are the latest satellites
in the series. Launched on 11 February 2013, Landsat 8 carries OLI and TIRS sensors,
enabling the capture of visible, short-wave infrared, and TIR radiation [68]. Compared to
previous satellites, Landsat 8 provides more accurate and detailed data, as observed by
Mwaniki [69], who found that OLI performs better than ETM+ in distinguishing different
lithological units.

Table 1. Band (B), wavelength (L), and resolution (S) information of Landsat (L) 4–5/7/8/9, modified
from [27,67,70].

L4–5 L (µm) S (m) L7 L (µm) S (m) L8 L (µm) S (m) L9 L (µm) S (m)

B 1 0.43–0.45 30 B 1 0.43–0.45 30
B 1 0.45–0.52 30 B 1 0.45–0.52 30 B 2 0.45–0.51 30 B 2 0.45–0.51 30

B 8 0.52–0.90 15 B 3 0.53–0.59 30 B 3 0.53–0.59 30
B 2 0.52–0.60 30 B 2 0.52–0.60 30 B 4 0.64–0.67 30 B 4 0.64–0.67 30
B 3 0.63–0.69 30 B 3 0.63–0.69 30 B 5 0.85–0.88 30 B 5 0.85–0.88 30
B 4 0.76–0.90 30 B 4 0.77–0.90 30 B 6 1.57–1.65 30 B 6 1.57–1.65 30

B 7 2.11–2.29 30 B 7 2.11–2.29 30
B 5 1.55–1.75 30 B 5 1.55–1.75 30 B 8 0.50–0.68 15 B 8 0.50–0.68 15
B 7 2.08–2.35 30 B 7 2.08–2.35 30 B 9 1.36–1.38 30 B 9 1.36–1.38 30
B 6 10.40–12.50 120 * (30) B 6 10.40–12.50 60 * (30) B 10 10.60–11.19 100 B 10 10.60–11.19 100

Band 11 11.50–12.51 100 B 11 11.50–12.51 100

* The product is resampled to 30-m pixels.

Freely available Landsat data, including the latest Landsat 9, is a crucial tool for Earth
sciences, resource exploration, and environmental monitoring, thanks to its global coverage,
long-term time series, and multispectral information. Launched on 27 September 2021,
and operational since 2023, Landsat 9 utilizes the OLI-2 and TIRS-2 sensors to capture
data in the visible, infrared, and TIR spectra, providing high-resolution and multispectral
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capabilities for Earth observation [67]. Research by You [70] shows that Landsat 9 outper-
forms Landsat 8 in water body and tree species classification, attributed to its increased
radiometric resolution from 12 bits (Landsat 8) to 14 bits, improved sensitivity to brightness
and color, and enabling the detection of subtle differences, particularly in darker areas
like water bodies. However, as a new satellite, Landsat 9 may present uncertainties and
challenges related to data quality, sensor performance, and data processing algorithms [70].

In the aftermath of the data gaps in Landsat imagery caused by ETM+ scan line
corrector failures in June 2003 [71], ASTER (Advanced Spaceborne Thermal Emission
Reflection Radiometer) has emerged as a reliable substitute for TIR imagery. ASTER
comprises a visible and near-infrared subsystem, a shortwave infrared radiometer, and a
TIR radiometer [72]. Please refer to Table 2 for specific band information. The availability
of this data has provided robust support for lithological mapping research [30,31,65,73,74].
Moreover, the global digital elevation model data derived from ASTER stereo image
pairs, known as the ASTER GDEM (Shuttle Radar Topography Mission Global Digital
Elevation Model), can be effectively utilized for band georeferencing, calibration, and
shading calculations [75].

Table 2. Spectral and wavelength information of ASTER, modified from [75,76].

ASTER Radiometer Resolution
(m)

Wavelength
(µm)

Wave-Width
(nm) S/N

Band 1 VNIR 15 0.52–0.60 90 ≥140%
Band 2 0.63–0.69 60 ≥140%
Band 3 0.76–0.86 100 ≥140%
Band 4 SWIR 30 1.60–1.70 92 ≥140%
Band 5 2.145–2.185 35 ≥54%
Band 6 2.185–2.225 40 ≥54%
Band 7 2.235–2.285 47 ≥54%
Band 8 2.295–2.365 70 ≥70%
Band 9 2.360–2.430 68 ≥54%
Band 10 TIR 90 8.125–8.475 344 ≤0.3 K
Band 11 8.475–8.825 347 ≤0.3 K
Band 12 8.925–9.275 361 ≤0.3 K
Band 13 10.25–10.95 667 ≤0.3 K
Band 14 10.95–11.65 593 ≤0.3 K

Although the aforementioned data has been widely used and has achieved significant
progress, it lacks the capability to meet the requirements of fine-scale lithological classifi-
cation studies at a local level. The Sentinel series of satellites offers reliable data sets for
the Copernicus program, facilitating real-time dynamic monitoring of the global environ-
ment and security [77]. The Sentinel-2 satellite constellation [78], consisting of Sentinel-2A
and Sentinel-2B launched by the European Space Agency (ESA) on 23 June 2015, and
7 March 2017, respectively, offers a valuable alternative to address this limitation. Sentinel-2
provides coverage between latitudes 56◦S and 84◦N, with a revisit period of 5 days at the
equator and a swath width of 290 km [32]. For specific band information, please refer
to Table 3. Sentinel-2′s advantages, such as higher spatial and spectral resolution, short
revisit period, more bands, and open data access, make it essential for land cover classi-
fication and lithological mapping [23,29,55]. However, its large data volume necessitates
extensive processing and storage, placing significant demands on computing and storage
resources [55]. Therefore, a comprehensive consideration of these factors is crucial when
utilizing this data.



Minerals 2023, 13, 1153 5 of 26

Table 3. Spectrum and wavelength information of Sentinel-2, modified from [78,79].

Sentinel-2 Band Wavelength (nm) Resolution (m)

Band 1 Aerosols 443.9 nm (S2A)/442.3 nm (S2B) 60
Band 2 Blue 496.6 nm (S2A)/492.1 nm (S2B) 10
Band 3 Green 560 nm (S2A)/559 nm (S2B) 10
Band 4 Red 664.5 nm (S2A)/665 nm (S2B) 10
Band 5 Red edge 1 703.9 nm (S2A)/703.8 nm (S2B) 20
Band 6 Red edge 2 740.2 nm (S2A)/739.1 nm (S2B) 20
Band 7 Red edge 3 782.5 nm (S2A)/779.7 nm (S2B) 20
Band 8 NIR 835.1 nm (S2A)/833 nm (S2B) 10

Band 8A Red edge 4 864.8 nm (S2A)/864 nm (S2B) 20
Band 9 Water vapor 945 nm (S2A)/943.2 nm (S2B) 60

Band 10 Cirrus 1373.5 nm (S2A)/1376.9 nm (S2B) 60
Band 11 SWIR 1 1613.7 nm (S2A)/1610.4 nm (S2B) 20
Band 12 SWIR 2 2202.4 nm (S2A)/2185.7 nm (S2B) 20

WorldView-3 (WV-3) [33] is a commercial high-resolution satellite operated by Digital
Globe. Launched on 13 August 2014, it provides exceptional image data with outstanding
spatial resolution. With a spatial resolution of 0.31 m (31 cm) in the PAN band, 1.24 m in
MS (including blue, green, red, and NIR), and 3.7 m in SWIR [80], WV-3 stands out for its
remarkable spatial capabilities. The combination of high spectral and spatial resolution
empowers WV-3 to excel in lithological mapping, delivering precise and comprehensive
information about rock types [40,80].

2.2. Hyperspectral Imagery

Hyperspectral imagery offers advantages such as high spectral resolution, multi-band
coverage, spectral continuity, spectral unmixing capability, and feature discrimination
ability. It is widely used for lithological classification in vegetated areas with satellites like
EO-1 [34], PRISMA [35], EnMAP [36], Hyperion [16], and HyspIRI [37]. A comprehensive
review paper on the applications of hyperspectral images in lithological mapping, mineral
exploration, and environmental geology was found during the literature reviews [81].
The paper provides an extensive overview of hyperspectral missions, spectral properties
of diagnostic minerals, and techniques for geologic information extraction from space-
borne/airborne hyperspectral images. Hence, we will not delve further into data details.
However, it is important to acknowledge some limitations of hyperspectral imagery, includ-
ing limited data availability [16] and coverage, as well as lower spatial resolution compared
to multispectral imagery [81].

2.3. Synthetic Aperture Radar

Sentinel-1 is a SAR satellite developed by the European Space Agency (ESA) and forms
part of a two-satellite Earth observation system [46]. It consists of two satellites named S1A
and S1B launched on 3 April 2014 and 25 April 2016, respectively [44]. S1 utilizes radar
systems operating in the C-band, enabling the capture of surface information regardless of
weather conditions, including topography, geomorphology, land cover, and surface changes.
Notably, they offer high resolution (up to 5 m), multi-polarization (VV, VH, HH, and HV),
multiple modes, wide swath coverage, and frequent revisit periods. However, practical
applications necessitate consideration of data storage and processing concerns [44,82].
Moreover, SAR’s data sensitivity to surface roughness [78] often requires integration with
other data sources, such as optical imagery and terrain data, for interpretation [42].

ALOS-PALSAR [83] (Phased Array L-type band SAR), mounted on an Advanced
Land Observing Satellite (ALOS) by the Japan Aerospace Exploration Agency (JAXA), is a
SAR sensor with comparable lithological mapping performance to Sentinel-1 (C-band) [45].
ALOS-PALSAR provides high-resolution radar imagery and digital elevation model (DEM)
data, which are used for applications such as land cover classification, terrain measurement,
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and underground target detection. Operating in the L-band, ALOS-PALSAR features
dual polarization (HH and HV), high resolution (1 m), DEM, and multiple modes [83].
Combining it with optical RS and radar data enhances the accuracy and reliability of
lithological classification [45].

The C-band Spaceborne Imaging Radar and the X-band SAR instrument onboard
the space shuttle are utilized for the Shuttle Radar Topography Mission (SRTM), a map-
ping project conducted jointly by NASA and NGA (National Geospatial-Intelligence
Agency) [42]. SRTM is renowned as one of the highest-resolution global digital elevation
models accessible to the public, offering comprehensive global coverage, high resolution
(ranging from 30 to 90 m), and superior data quality. SRTM data is used in lithological
identification studies as factors like slope reflect rock erosion resistance [42]. However,
the accuracy of SRTM is lower in polar and forest-covered regions due to SAR sensor
characteristics, requiring caution in its use across different research areas.

2.4. Light Detection and Ranging

Light Detection and Ranging (LiDAR) is an active RS technology that can acquire
accurate and high-resolution terrain data. This technology offers a potential solution to
overcome ambiguous identification of the surface by dense vegetation schemes [84]. Laser
reflections from the ground can be distinguished from vegetation reflections, allowing
for precise DTM (Digital Terrain Model) generation. The ability to identify subtle topo-
graphical features in high-resolution DTMs makes LiDAR an important tool for lithology
identification [28].

2.5. High-Resolution Satellite Sources from China

Here, it is particularly important to mention that China’s Gaofen, Huanjing, and
Ziyuan series satellites are notable sources of surface imagery data, offering spatial resolu-
tions ranging from sub-meters to hundreds of meters. GF-1 [40,85], GF-2 [86], GF-3 [86],
GF-5 [41,87], HJ-1A CCD [53], ZY-1 02D [38], and ZY-3 [88] are widely utilized for litho-
logical mapping, and their detailed specifications can be found in Table 4. Among them,
GF-1, GF-2, HJ-1A CCD, and ZY-3 loaded multispectral scanner, GF-5 and ZY-1 02D loaded
hyperspectral scanner, and GF-3 loaded SAR camera. Their high spatial resolution en-
ables accurate fine-scale lithological classification. However, it is crucial to consider that
acquiring this data involves financial costs and each satellite has its own strengths and
limitations. For example, GF-2 excels in areas such as high spatial resolution, multiple
spectral bands, and frequent revisit periods, but it has limitations in terms of coverage and
relatively lower radiometric resolution, which may constrain certain fine-scale analysis
applications [86]. Conversely, GF-3 offers benefits like multiple polarization modes and
frequent revisit periods, but it has lower spatial resolution and a restricted number of
spectral bands [86].

Table 4. Satellite information of GF-1, GF-2, GF-3, GF-5, and ZY-3 independently launched by China.
In the table, the following abbreviations are used: SR for Spatial Resolution, R for Revisit, OA for
orbit altitude, and LT for launch time.

Satellite Band Range SR (m) R (Day) Swath (km) OA LT Reference

GF-1 blue, green, red, MIR 2/8 5 90/800 645 km 2013/4/26 [40]
GF-2 blue, green, red, NIR 0.8/2 3–5 45/16 645 km 2014/8/19 [86]
GF-3 X, S, C, L 1/3/8/25 1–4 30–40 755 km 2016/8/10 [86]
GF-5 VNIR, SWIR, MWIR 30 16 60 705 km 2018/5/9 [87]

HJ-1A CCD VNIR 30 700 2008/9/6 [53]
ZY-1 02D VNIR, SWIR 30 55 60 705 km 2019/9/12 [38]

ZY-3 full-color, multispectral 2.1/3.5/6 5/3 51/52 505 km 2012/1/9 [88]
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3. Methods
3.1. Feature Extraction

Feature extraction is crucial in RS image classification and recognition. It converts raw
pixel data into discriminative feature vectors [16], unveiling meaningful relationships [62]
and patterns to enhance MLAs’ performance [40]. This chapter comprehensively reviews
spectral features, terrain features, and texture features used in constructing models for
lithological mapping, providing detailed insights into their characteristics and applications.

3.1.1. Spectral Features

Reflective properties extracted from various bands of optical imagery (VNIR, SWIR,
and TIR) and backscatter derived from radar data (C, L, and X-bands) play a crucial role
in mapping lithology within vegetated regions. Optical bands such as VNIR and SWIR
provide valuable information for rock identification based on color, reflectance, and ab-
sorption properties [16,23,24,29,75,89]. Additionally, TIR data aids in surface temperature
inversion, revealing thermal characteristics and subsurface influences [90]. Temperature-
related parameters like TVDI and other thermal features [91] can quantitatively assess
land or rock properties. On the other hand, radar bands like X-band offer insights into
surface morphology and texture through surface and volume scattering, while C-band
penetrates vegetation and shallow soil, providing information about rock morphology
and structure [44,45]. The longer wavelengths of the L-band enable deeper penetration,
facilitating echo signal analysis for lithology classification and geological structural anal-
ysis [44]. However, response characteristics in the L-band may exhibit complexity and
overlap among different lithology types [45].

Understanding the interplay between reflectance/radiance characteristics and lithol-
ogy helps us comprehend the impact of lithology on aboveground plant communities in
two key ways: nutrient provision for plant growth [92] and influence on water storage po-
tential through weathering depth and porosity changes [93]. Variations in rock types across
different regions with similar climates contribute to the formation of diverse plant commu-
nities [94]. Vegetation indices used in lithology mapping include the normalized difference
vegetation index (NDVI), greenness and short-wave infrared vegetation index (VIGS),
and short-wave infrared normalized vegetation index (SWVI) [28,75]. NDVI indicates
vegetation coverage [78], VIGS detects vegetation stress from heavy metal elements [28],
and SWVI reflects vegetation leaf water content [95].

Band ratio (BR) is widely used in lithological classification to differentiate different
rock types by extracting various geological information through different combinations of
bands [96]. For example, the Landsat TM [14,26] ratio of band 5/4 is sensitive to changes
in ferrous minerals, while the ratio of band 3/1 is sensitive to changes in trivalent iron,
aiding in the characterization of goethite. The ratio of band 4/3 [26] is highly sensitive
to vegetation density but less sensitive to lithological changes, making it suitable for
vegetation delineation. The ratio of band 5/7 [26] typically varies with the abundance of
hydroxyl-bearing minerals, carbonates, and other minerals.

3.1.2. Topographic and Geomorphic Features

Topography and geomorphology are influenced by factors such as lithology, structure,
and external dynamics [97], and they offer valuable insights into variations in erosion
and weathering across different lithologic areas, which can be utilized for lithological
mapping [98]. Several common topographic features are commonly employed, including
height, slope, aspect, topographic position index (TPI), surface roughness (SR), Height
Integral (HI), and Surface Index (SI) [28,96].

Slope and SR provide indications of landscape fragmentation, with karst regions
typically exhibiting a higher degree of fragmentation compared to non-karst regions, as
observed by Hou and Gao [99]. TPI plays a crucial role in lithological identification by ex-
tracting terrain features and mitigating topographic effects, thus facilitating the recognition
of rock types [96]. In a study by Richard [50], significant variations in slope were attributed
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to tectonic uplift, which reflects the varying erosion resistance of different lithologies.
Moreover, SR characterizes surface deformation [28]. SI combines with the HI for surface
smoothness and SR for surface incision, providing a comprehensive characterization of
preservation and erosion status within a landscape (refer to Figure 1a) [76,100].
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3.1.3. Texture Feature

Texture features play a critical role in capturing the spatial distribution and organi-
zational structure of surface objects, as well as their relationship with the surrounding
environment [101]. These features provide valuable insights for various applications, in-
cluding vegetation classification [78], land use and land cover mapping [53,102], and rock
identification [28]. In vegetation-covered areas, common texture features derived from
gray-level co-occurrence matrices include mean, variance, homogeneity, contrast, dissimi-
larity, entropy, second moment, and correlation [28,103]. Each of these features serves a
specific purpose in characterizing the texture of an image. Contrast, for example, serves
as an indicator of the linear relationship between adjacent pixels, revealing differences
in intensity or color values [101]. Homogeneity reflects the uniformity or similarity of
neighboring pixels, ranging from 0 to 1 [28]. Entropy quantifies the degree of spatial disor-
der with higher values, indicating greater randomness in pixel distribution [104]. Energy
reflects the uniformity of gray distribution and highlights fine details in the texture (refer
to Figure 1b). Notably, Hahm [94] observed a distinct transition zone of approximately
200 km in the Northern California Coast Range. This zone acts as a boundary, separating
broadleaf-coniferous evergreen mixed forests from oak savannahs, and it corresponds
to the geological boundaries depicted on the map. This observation suggests a relation-
ship between the texture features captured in the image and the underlying lithological
characteristics that influence vegetation patterns.
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3.1.4. Spectral Curve Morphological Feature

In vegetated areas, accurately differentiating various rock materials using traditional
spectral feature extraction methods can be challenging due to significant spectral overlap
caused by vegetation. However, by analyzing the morphology of the spectral curve and
considering features such as absorption band depth, position, width, slope, and peak
position [16,23,29], it becomes possible to distinguish between different rock materials.
For example, rocks containing iron minerals exhibit pronounced absorption bands in the
short-wave infrared (SWIR) region (2000–2500 nm), while rocks with aluminum minerals
display strong reflectance in the visible and near-infrared (NIR) regions (700–900 nm) [16].

3.1.5. Dimensionality Reduction/Feature Extraction

Dimensionality reduction and feature extraction methods play a crucial role in the
analysis of remote sensing (RS) image data by reducing the dimensionality of the data
and retaining essential information [28,42,105]. Techniques such as principal component
analysis (PCA), minimum noise fraction (MNF), Discrete Wavelet Transformation (DWT),
and deep learning algorithms (DLAs) [23] can be employed for this purpose. By reducing
dimensionality, these methods effectively eliminate redundant or irrelevant information,
leading to improved computational efficiency and faster analysis. Additionally, these
techniques enable the extraction of valuable information from raw RS images, including
object boundaries, texture features, and spectral characteristics. This extracted information
is highly useful for lithological classification and identification tasks.

3.2. Classification Methods

Different methods suit different data and problem types, requiring careful consid-
eration of data characteristics and classification requirements [42,106]. Commonly used
classification algorithms for lithological identification include SMA, SVM, RF, DL, and
object-based image analysis (OBIA). Other methods like MLC [67,107], LDA [42,91], par-
tial least square discrimination analysis (PLSDA) [42], SAM [108], SFF [12,107], the Ko-
honen self-organizing map (SOM) [22], and the Nearest Distance [42] are also options.
However, due to limitations on shadowing [14], bedrock exposures [109], spectral library
constraints [110], and the assumption of spectral mixture [111] significantly restrict the
applications of these methods, their applicability may be limited. For example, LDA is sen-
sitive to noise and lacks non-linear classification capability [91], while PLSDA is sensitive
to outliers, prone to overfitting, and requires substantial training data (Lu et al., 2021). In
this context, we will focus on introducing SMA, SVM, RF, DL, and OBIA as viable options
for lithological mapping in vegetated areas.

3.2.1. Spectral Mixing Analysis (SMA)

Spectral unmixing assumes that each pixel’s spectral reflectance is a combination
of endmember radiance values representing specific materials with consistent spectral
characteristics [112]. The abundance of these endmembers determines the division of
the total surface area of pixels. The radiance of each endmember is directly proportional
to its abundance, resulting in a linear spectral mixing process [113]. This relationship
between pixel spectral reflectance, endmember radiance, and abundance is mathematically
described by Equation (1).

Re fpixe = ∑m
i=1 fiDNi (1)

In Equation (1), Ref represents the pixel reflectance value, m denotes the number
of endmembers, fi represents the abundance of each endmember (i.e., the area ratio of
endmembers, with ∑m

i=1 fi = 1), and DNi represents the band value of each endmember.
SMA is a valuable method for quantitatively analyzing and classifying mixed pixels

in RS images, facilitating lithological classification in vegetated areas. Hyperspectral or
multispectral data is necessary to obtain comprehensive spectral information [15]. Prior to
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analysis, preprocessing and noise filtering should be conducted to enhance data quality and
reduce noise interference [114]. Consideration of factors such as pixel size, non-linearity,
no uniformity within pixels, and spectral overlap among different lithologies is important
as they can affect the results of analysis [16]. Selection of an appropriate pixel size based on
specific circumstances is crucial. Notably, Amaral [15] achieved an impressive accuracy
of 85% in identifying geological facies and lithological classification of forest species in
the Mogi-Guaçu River Basin, Brazil, by integrating vegetation surveys, sediment sample
analysis, self-organizing maps, and spectral unmixing analysis. Similarly, Pal [16] achieved
lithological classification with an accuracy exceeding 80% in heterogeneous geological
regions using multiple RS data sources such as Hyperion, ASTER, and Landsat 8-OLI,
along with spectral unmixing analysis.

3.2.2. Support Vector Machine (SVM)

SVM is a classification method that finds a hyperplane to separate different classes
of samples, maximizing the margin between them. It excels in handling non-linear clas-
sification problems by using a kernel function to map the data into a high-dimensional
space [79,115,116]. SVM minimizes empirical and structural errors by generalizing from
limited training data to achieve classification [117]. This method performs well in handling
high-dimensional data and is effective in addressing non-linear classification problems [96].
It is widely recommended for complex classification tasks in multispectral and hyperspec-
tral data analysis [116–118].

SVM combined with RS data has successfully achieved lithological classification in
various regions. For instance, using ASTER satellite data for terrain features, texture,
and multispectral information, the Mawat Ophiolite Complex in the Kurdistan Region
of Iraq was classified with an overall accuracy of 80.5% [76]. In the Souk Arbaa Sahel
area of Morocco, Landsat OLI data and SVM resulted in a high classification accuracy
of 85% [13]. SVM, combined with Sentinel-1, ALOS PALSAR, Landsat OLI, ASTER, and
ALI data achieved a classification accuracy exceeding 85% in densely vegetated regions
of southern Tunisia [45]. In Duolun County, Inner Mongolia Autonomous Region, China,
GF-2, Sentinel-2A, ASTER, and GF-3 RS data, along with a particle swarm optimization
(PSO)-based SVM classifier, led to a lithological classification accuracy of 90.90% [86].

However, SVM faces challenges when handling large-scale data, including long train-
ing times and sensitivity to noise and outliers [119]. Additionally, selecting appropriate
parameters for SVM can be difficult, and the interpretability of results may be limited,
making it challenging to understand the decision-making process of the classifier [45,96].

3.2.3. Random Forest (RF)

RF is an ensemble learning algorithm proposed by Breiman in 2001 [120]. It simulta-
neously constructs multiple decision trees to achieve classification, demonstrating strong
generalization ability, high computational efficiency, and good robustness [121]. In litholog-
ical classification, RF has shown good accuracy and computational efficiency. For instance,
Guo et al. [44] utilized Sentinel-1 satellite data and the 2D DWT method to classify six rock
types in the western Tianshan region of China. They achieved an accuracy of 85.5% by
employing the RF algorithm. Similarly, Han et al. [28] employed multiple RS data sources
and various features to automatically classify Quaternary formations in the Viet Chi region
of Vietnam, achieving a classification accuracy of 80.99% using the RF algorithm.

It is worth noting that RF is highly dependent on the quantity and distribution of
the samples [122], and the maximum depth parameter significantly influences the out-
of-bag error [123]. RF is sensitive to noise and outliers, and in the case of imbalanced
data, resampling or adjusting class weights may be necessary. Additionally, RF may
face challenges when fitting and predicting data with hidden relationships and complex
patterns [44].
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3.2.4. Deep Learning (DL)

DL, an advanced branch of MLAs, overcomes the limitations of traditional algorithms
that focus solely on pixel-level classification and neglect spatial features [23]. In the context
of vegetation-covered areas, DLAs such as multilayer perceptron (MLP) [106] and convolu-
tional neural networks (CNN) [23,124,125] have been extensively studied for lithological
mapping. MLP, a feedforward neural network with multiple layers, excels at capturing non-
linear relationships and automatically learning features, making it suitable for classification
and regression tasks [126,127]. On the other hand, CNN, with its hierarchical structure
comprising convolutional, pooling, and fully connected layers, excels at feature extraction
and image classification [128]. Compared to traditional MLAs, CNN can automatically
learn higher-level feature representations and demonstrate strong pattern recognition and
generalization capabilities [129]. Moreover, CNN allows end-to-end training, eliminating
the need for manual feature engineering.

These advantages have led to the widespread adoption of DLAs in lithological iden-
tification within vegetation-covered regions. For instance, Otele [106] utilized MLP and
Landsat imagery to classify lithology in densely forested areas of southern Cameroon,
achieving a classification accuracy of 53.01%. Similarly, Brandmeier and Chen [29] com-
bined Sentinel-2 and ASTER data with a U-Net model to classify lithology in the Mount
Painter region of Australia, achieving a classification accuracy of 75%. Pan [23] employed a
CNN with RS imagery and geochemical survey data for geological mapping in Jilin Baolige,
Inner Mongolia, China. The CNN model achieved an accuracy of 83.0%, outperforming
the random forest model and effectively addressing the “salt and pepper phenomenon”
in traditional shallow MLAs. Furthermore, Liu et al. [124] utilized the Thermal Airborne
Spectrographic Imager (TASI) and a 3D CNN for lithology classification in three locations
in Liuyuan, Gansu Province, China, achieving the highest accuracy of 98.56%.

However, DLAs pose challenges such as the need for ample data and computational
resources, resulting in longer training times and a higher risk of overfitting. Regularization
techniques are often required to mitigate these challenges [106]. Additionally, DLAs have
complex structures that necessitate careful parameter tuning and optimization for optimal
performance [45]. Moreover, DLAs tend to lack interpretability, making it difficult to fully
comprehend their internal workings [23].

3.2.5. Object-Based Image Analysis (OBIA)

Pixel-based image classification methods have limitations as they ignore the spatial
correlation among image pixels, leading to the “salt and pepper” phenomenon in resulting
classification maps [21,130]. OBIA has emerged as an alternative approach, considering
objects as distinct entities and taking into account characteristics such as shape, size, and
texture for more accurate surface feature identification and classification [131].

4. Lithological Mapping in High Vegetation Areas
4.1. Selection and Impact of Data Source
4.1.1. RS Data Sources

Multispectral data offers significant advantages for lithological classification, including
comprehensive spectral information, higher spatial resolution, diverse feature extraction
methods, and varied options for band combination. However, data selection should align
with the study’s specific characteristics. Lower spatial resolution may reduce classification
accuracy and detail retention [69]. Higher spatial resolution provides detailed vegetation
and surface information, aiding in lithological distinction. However, increasing spatial
resolution can introduce challenges such as mixed pixel problems and data noise [23],
which may lead to a decrease in classification accuracy [45]. As the resolution increases,
the reduction in pixel area leads to more complex object boundaries and a rise in mixed
pixel occurrences. Additionally, pixels that have not been assigned to a specific class are
categorized only when their likelihood of belonging to a certain class outweighs that of
alternative classes. Nevertheless, as resolution further escalates, the diminishing pixel area
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and subtle distinctions between objects amplify the challenges posed by data noise, thus
ultimately affecting the accuracy of classification. Moreover, multispectral data offers a
broader range of spectral information, but the lower spectral resolution between bands can
lead to spectral overlap and difficulties in distinguishing different lithological features.

Hyperspectral data is particularly appropriate to SMA and advanced ML algorithms
as it offers higher spectral resolution, enabling more accurate estimation of rock and mineral
content within finer spectral ranges [105]. Hyperion demonstrates the highest accuracy
(0.92) in lithological classification compared to ASTER and Landsat 8 (see Table 5) [16].
However, hyperspectral data presents challenges of large volumes, complex processing,
noise, and errors. Surface coverings like vegetation, water bodies, and clouds affect data
acquisition and analysis, influencing lithological classification accuracy [81].

Table 5. The average overall accuracy (%) of cross-validation for classification accuracy assessment,
modified from [16]. “Proposed” represents a weighted pooling-based ensemble method proposed by
the author.

Classifier Hyperion ASTER Landsat 8 Combined

MD 49.02 66.82 63.55

SAM 71.24 45.21 47.16

SID 66.43 42.38 48.22

SVM 87.03 64.89 60.79

MAXW 71.98 54.21 60.78 70.80

Proposed 91.93 75.90 67.16 93.22

Radar data, capable of penetrating clouds and surface vegetation, provides informa-
tion on subsurface rocks, making it advantageous for heavily vegetated areas or regions
with less apparent surface lithological features [42]. Using Sentinel-1 with a 10 m spatial
resolution and Discrete Wavelet Transformation, Guo et al. [44] achieved 55.6% accuracy
in lithological mapping. However, SAR data has lower spatial resolution and lacks color
information compared to optical RS, posing challenges in capturing detail and less accurate
rock identification and classification. Integration with other data sources is often necessary
for comprehensive analysis [132].

4.1.2. Data Preprocessing and Integration

RS data preprocessing includes various steps such as radiometric correction, atmo-
spheric correction, geometric correction, data registration, data cropping, resampling, data
filtering, and data fusion [33,45,96]. Hyperspectral data requires more advanced prepro-
cessing methods than multispectral data due to its higher spectral resolution and larger
data volume. These methods aim to reduce data size, eliminate noise and errors, and correct
for spectral mixing effects [16]. In contrast, preprocessing methods for multispectral data
are relatively simpler, usually involving basic calibration and noise reduction procedures.

Data integration improves the classification accuracy of geological images by com-
bining complementary information. Existing literature suggests various approaches for
data fusion: (1) Integration of different multispectral data: Integrating different sources to
enhance spatial resolution and represent surface features more accurately [40,45]; (2) Mul-
tispectral RS imagery and terrain data: This fusion enables better extraction of features
essential for lithological classification, including color, texture, and surface morphology
(refer to Figure 2) [20,28,96]; (3) Multispectral data and airborne geophysical data: This
integration provides comprehensive geological information, improving the accuracy and
level of detail in lithological zoning [133]; (4) Multispectral RS imagery and geochemical
survey data: Combining surface cover types, vegetation indices, lithology, and mineral
composition information to enhance lithological classification (refer to Figure 3) [23]; (5) Hy-
perspectral and multispectral imagery: This technique improves spatial and spectral resolu-
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tion, reduces noise and errors, thereby increasing the accuracy and reliability of lithological
identification (See Table 5) [16]; (6) Hyperspectral RS and terrain data: Integrating these
datasets enhances the detection capability of ground objects, particularly in areas with
complex terrain and dense vegetation cover [96]; (7) SAR and terrain data: This fusion
approach provides a comprehensive description of terrain and subsurface features, leading
to improved accuracy in lithological classification [42].
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When conducting data fusion processing, it is crucial to consider challenges such as
data inconsistency (varying coordinate systems, resolutions, and spectral ranges), large
data volume, and complex data processing tasks (data preprocessing, feature extraction,
and data registration) [45].

4.2. Comparative Analysis of Different Feature Extraction Methods
4.2.1. Analyze for Dimensionality Reduction/Feature Extraction

Comparing various methods for feature extraction, including PCA, MNF, DWT, and
DLAs, requires careful consideration of their respective strengths and limitations. Principal
component analysis (PCA) [28] focuses on linear transformations and identifies orthogonal
components that capture the maximum variance in the data, reducing dimensionality
while preserving crucial information. However, it is sensitive to data distribution and only
applicable to linear relationships. Minimum noise fraction (MNF) [105] is designed for
noise processing and orders components based on their noise content, enhancing the inter-
pretability of RS images by emphasizing meaningful components. Unlike PCA, the resulting
components from MNF transformation [105] may not be orthogonal, implying potential
correlations between the transformed axes. Discrete Wavelet Transformation (DWT) [44]
in lithological classification offers the extraction of high-frequency and low-frequency
components, enhancing classification smoothness and boundary detection. Nonetheless,
it has limitations in affecting the high-frequency components of small-sized samples and
requires further validation for mapping larger-scale regions. Deep learning algorithms
(DLAs) [23] excel in automatic feature learning, high-level information extraction, robust-
ness, and scalability. However, they necessitate substantial data, computational resources,
and labeled data, while lacking interpretability and being prone to overfitting. Therefore,
careful consideration of the application context and data characteristics is essential when
selecting an appropriate method.

4.2.2. Performance Evaluation and Comparison of Methods for Feature Extraction

In this section, we aim to demonstrate the advantages of feature extraction in litho-
logical mapping within vegetated areas. Comparative analysis of different RS datasets
has provided valuable insights into their respective strengths and advantages. For in-
stance, ASTER demonstrated superior performance in lithological identification compared
to Sentinel-2, primarily due to its six SWIR bands, while Sentinel-2 excelled in mapping
iron-bearing minerals, showcasing the strengths of each dataset [134]. Furthermore, Land-
sat 8 demonstrated better performance in differentiating lithological units compared to
Landsat 7 due to its wider spectral range. However, Landsat 7 exhibited superior capabili-
ties in distinguishing water and clay minerals using specific bands, highlighting the unique
advantages of each dataset [135]. Additionally, when comparing ASTER, OLI/Landsat 8,
and WorldView-3 datasets, WorldView-3 achieved a higher accuracy rate of 87% [33]. This
can be attributed to the SWIR bands of WorldView-3, which contain more diagnostic
absorption features, combined with its high spatial resolution, providing more detailed
information for lithological classification.

Moving on to feature extraction and fusion, various techniques, such as spectral
indices, terrain features, texture features, and dimensionality reduction/feature extraction,
have shown their effectiveness in lithological classification. Comparative analysis of
classification results has demonstrated that combining multispectral reflectance, terrain
features, and PCA with the SVM algorithm yields the best classification results (refer to
Table 6 and Figure 4) [20]. Similarly, combining the R, BR, TPI, PCA, and XY features
using the RF algorithm led to the highest classification accuracy of 79.66% and a Kappa
coefficient of 0.75 [96]. Notably, using only the R and XY features achieved a satisfactory
classification accuracy of 74% and a Kappa of 0.68. Adding any additional feature based
on these two slightly improved or had minimal impact on classification results. However,
introducing two extra feature variables resulted in a significant drop in classification
accuracy, with an overall decline of 8% to 10%, accompanied by a reduction of 0.09 to 0.13
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in the Kappa coefficient (as shown in Figure 5). Moreover, integrating spectral, texture,
terrain, and thermal features, while excluding vegetation features, can lead to optimal
lithological classification performance with an overall accuracy of 80.99% (see Figure 6) [28].
Traore [108] used image processing techniques, including band combination, PCA, MNF,
and SAM, to generate detailed surface distribution maps of iron oxide minerals, ferrous
silicate minerals, clay minerals, and carbonate minerals. These examples highlight the
importance of feature selection and extraction in lithological mapping, emphasizing the
need to consider the specific characteristics and advantages of different datasets and feature
sets for accurate and reliable classification results.

Table 6. Classification results for MLC and SOM classifiers, adapted from [20]. Li represents terrain
features obtained from LiDAR data.

Variable
MLC SOM

OA (%) Kappa OA (%) Kappa

ATM 9 61.6 0.50 60.3 0.48
ATM PCA 51.4 0.37 50.2 0.35
ATM MNF 59.3 0.46 65.5 0.54

ATM-Li 61.9 0.50 70.2 0.60
ATM-Li MNF 60.8 0.49 72.7 0.63
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4.3. Selection and Application for Classification Methods

The choice of classification method is crucial in lithological mapping, taking into
account the unique strengths and limitations of each method as discussed in Section 3.2.
Considering the specific characteristics of the RS images and the objectives of the classifica-
tion task is essential when applying these methods. The following comparative analysis
highlights the significance of these methods in lithological mapping.
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Figure 6. (a) OLI image and (b) lithological sketch of the study area, and lithological classification
results of the study area based on (c) spectrum (SPEC), (d) fused SPEC and thermal (TEM), (e) fused
SPEC, TEM, and topographic (TOPO), and (f) SPEC, TEM, TOPO, and textural (TEXT), modified
from [28].

The self-organizing map (SOM) is an unsupervised learning model that leverages
artificial neural networks. It incorporates non-parametric, noise-resistant, and pattern-
learning capabilities, leading to significant enhancements in lithological classification
precision. In the context of detailed lithological mapping of the Troodos ophiolite in
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Cyprus, the SOM showcased exceptional performance, outperforming MLC and achieving
the best classification results with an overall accuracy of 72.7% and Kappa of 0.63 [20]. RF
outperformed ML and SVM in terms of overall accuracy, attaining an accuracy rate of 79.66%
in the contributed dataset [96]. Additionally, the CNN model surpassed RF in lithological
unit classification, resulting in a 5% improvement in overall accuracy [23]. Notably, the
CNN model exhibited favorable performance in lithological classification across three
small sites in Liuyuan, Gansu Province, China, outperforming classical machine learning
methods and neural networks. Among various CNN architectures, the 3D CNN achieved
the highest classification accuracy (take Liuyuan 1 as an example, refer to Table 7 and
Figure 7).

Table 7. Classification results of all the methods for Liuyuan 1. (a) SAM; (b) SID; (c) FCLSU; (d) SVM;
(e) RF; (f) NN; (g) 1-D CNN; (h) 2-D CNN; (i) 3-D CNN. Modified form [124].

SAM SID FCLSU SVM RF NN 1D CNN 2D CNN 3D CNN

OA 75.87 72.12 73.42 84.68 86.01 81.27 84.38 94.18 94.70
Kappa 0.64 0.59 0.63 0.77 0.79 0.78 0.77 0.91 0.92
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Grebby [21] used OBIA with airborne multispectral and LiDAR data to indirectly
map lithology by leveraging associations between terrain and vegetation types. They
achieved an overall accuracy of 73.5%, which improved the classification accuracy by
13.1% compared to the pixel-based methods. However, the effectiveness of this indirect
approach may be limited in larger or more heterogeneous landscapes. In a different study,
Shayeganpour et al. [80] employed OBIA with WorldView-3 VNIR imagery for lithology
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mapping in Hormuz Island, southern Iran. They achieved an overall accuracy of 86.54%,
which improved the accuracy by 19.33% compared to the pixel-based classification. These
findings demonstrate the potential of OBIA in enhancing the accuracy and reliability of
lithology mapping tasks.

Ensemble classifiers and hybrid model integration offer an enhanced solution for
lithological classification tasks. In the study conducted by Pal et al. [16], SVM demonstrated
commendable classification results compared to MD, SAM, and SID. However, the proposed
weighted pooling-based ensemble mapping method outperformed the Majority Voting-
based Technique (MAXW) method which relies on the combination of multiple classifiers,
with each pixel’s classification result determined by the class that receives the most votes.
This enhancement resulted in a significant 22.42% increase in classification accuracy. Hybrid
VSM and SVM [13] can effectively suppress vegetation information and achieve direct
classification of lithology.

5. Discussion and Future Opportunities

In vegetated areas, the presence of dense vegetation often obstructs the underlying
lithological information, leading to a complex relationship between lithology and vege-
tation. Despite significant efforts to integrate remote sensing techniques into lithological
mapping, the attained classification accuracy still falls short of the expected levels. Remark-
ably advanced technologies like high-resolution optical satellites, InSAR, ground-based
SAR, airborne LiDAR, and airborne geophysics are underutilized in the field of lithological
mapping in vegetated areas. The development of classification models for lithological map-
ping in different regions is still in its early stages, particularly in areas with dense vegetation
cover, where further advancements in lithological mapping techniques are needed.

5.1. Integration of Advanced RS Techniques

The emergence of the big data era has brought robust data support for lithological
mapping in vegetated areas, particularly in regions with dense vegetation cover. By
leveraging advanced RS techniques like hyperspectral imaging, LiDAR, and multi-temporal
data analysis, the accuracy and reliability of lithological identification in vegetated areas can
be significantly improved. Furthermore, exploring the potential synergies among various
data sources and adopting innovative data fusion methods can contribute to improved
classification results.

5.2. Enhanced Feature Extraction and Selection

In lithological mapping research in high-vegetation areas, multiple data fusion gener-
ates a substantial amount of data. Progress in feature extraction and selection techniques
enhances the identification of lithological features in vegetated areas. The Gini Impurity-
based Weighted Random Forest (GIWRF) model [136] addresses imbalanced samples and
improves feature selection accuracy by considering the Gini impurity measure and assign-
ing weights to samples. Random forest (RF) [78] is widely used for feature importance
evaluation, offering high accuracy, suitability for high-dimensional data, and robustness.
However, RF may exhibit bias and is not suitable for highly correlated features. To re-
duce feature dimensionality while considering data correlation, a hybrid feature selection
method utilizing a multilayer perceptron (MLP) network [137] has been proposed for
multi-class network anomalies. This method leverages the MLP network’s capabilities
to capture complex feature relationships and effectively reduce the dimensionality of the
feature space, improving the overall performance of the classification model.

5.3. Development of Hybrid Classification Approaches

The integration of multiple classification methods, including object-based and pixel-
based approaches, ensemble learning techniques, and hybrid model integration, has the
potential to enhance classification accuracy in vegetated areas. Future research can focus
on exploring optimal fusion strategies and developing hybrid classification frameworks
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tailored to specific research domains. The literature has shown that the combination of
pixel-based and object-based approaches produces more accurate land cover classification
maps compared to using each method separately [102]. The advantages of ensemble
learning techniques have been discussed in Section 4.3. Additionally, hybrid convolutional
neural network (CNN) models, incorporating both 2D and 3D-CNN architectures [138,139],
along with variations in kernel sizes, batch normalization (BN), and dropout layers, can
effectively mitigate issues related to model overfitting.

5.4. Exploration of DLAs

DLAs are a significant approach in image classification due to their ability to extract
effective features, exhibit powerful classification capabilities, handle complex scenes, re-
duce data requirements, and demonstrate strong scalability [140]. However, in the specific
context of lithology classification in vegetated areas, DLAs have primarily focused on
image classification with relatively simple algorithm constructions. For example, the use
of convolutional neural networks (CNNs) [23,125] for classification may result in a loss
of spatial information and hinder precise segmentation due to pooling and convolution
operations that decrease the resolution of feature maps. It is worth noting that DLAs
have been widely applied in various image processing tasks, including image enhance-
ment, denoising, super-resolution reconstruction, image registration, image fusion, feature
extraction, and image classification.

To address the need for large-scale data in DLAs, data augmentation techniques [141]
can increase the number of training samples and significantly reduce the risk of model
overfitting. Synthetic methods, such as generative adversarial networks (GANs) [142],
allow the generation of virtual samples that closely resemble real data. Additionally,
transfer learning approaches [143,144] leverage knowledge acquired from pre-trained
models on one task and apply it to new tasks, enabling the utilization of historical training
data without the need for continuous manual efforts.

In terms of image preprocessing, image super-resolution methods [145] effectively
address challenges in poor image quality, blurry regions of interest, and the need for
efficient image reconstruction in RS applications. Additionally, techniques like image
registration using GANs [146] aid in aligning and overlaying images acquired at different
times or from different sensors.

In image classification, novel approaches have been proposed to overcome challenges
unique to high-resolution images, including small inter-class differences, low intra-class
similarities, and difficulties in capturing fine-grained structural features. For instance,
Liu et al. [147] introduced the Self-Cascaded CNN, a method specifically designed to ad-
dress these challenges. Additionally, domain adaptation methods, such as an integrated
approach combining contrastive learning and adversarial learning [148], provide practi-
cal solutions for aligning high-dimensional image representations between source and
target domains.

5.5. Incorporation of Domain Knowledge and Expert Systems

Previous research on rock identification in vegetation-covered areas has faced two
practical challenges. Firstly, the high variability within rock classes and the similarity
between different classes have resulted in low identification accuracy [42,106]. Secondly,
a complex relationship exists between vegetation and rock types. For instance, limestone
areas exhibit above-ground vegetation types such as evergreen and deciduous broadleaf
forests, shrub forests, and barren slopes. The bedrock of evergreen deciduous broadleaf
forests consists of limestone and calcareous dolomite [149].

To address these issues, integrating domain knowledge and expert systems into the
classification process can enhance the interpretability and accuracy of rock identification
in vegetation-covered areas. By combining geological, topographic, soil, ecological, and
botanical knowledge [21,49,50], knowledge-driven models can be developed. These models
are designed to create customized rock classification systems for different study areas,
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providing valuable insights for precise classification and supporting decision-making in
various applications.

6. Conclusions

Multi-source remote sensing technologies, particularly hyperspectral data and radar
data, have witnessed rapid advancements in remote sensing image processing techniques.
As a result, research on lithological mapping of vegetation-covered areas worldwide has
been significantly accelerated, leading to noteworthy achievements. However, despite
these advancements, this field encounters several challenges in the era of big data.

The variability of remote sensing data applicability across regions requires extensive
experimentation, while limitations in coverage range and commercialization mechanisms
impede the utilization of ultra-high spatial resolution remote sensing sensors.

Despite the early proposal of using vegetation suppression to reveal subsurface infor-
mation, there has been a lack of significant innovation to enhance the application of VSM
in effectively addressing the complex relationship between vegetation and lithology.

Multi-source data fusion involves integrating diverse sensor data from different time
periods and varying signal reception angles. This necessitates the further enhancement of
dedicated algorithms for effective multi-source data fusion.

In the era of big data, extracting and utilizing valuable information for classification
tasks becomes crucial as there is an abundance of data to navigate.

Further exploration is needed in the development of algorithm integration or hybrid
algorithm integration, considering that individual algorithms have their own unique
strengths and weaknesses.

Deep learning has significantly contributed to image processing, but additional re-
search and investigation are required to explore its innovative application in lithological
mapping within vegetation-covered areas.

This study provides a comprehensive review of previous research on lithological
mapping based on RS in vegetation areas. Moreover, it offers unique insights into future
developments, serving as a valuable reference for the implementation of forthcoming work
in this field.
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