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Abstract: Identifying multi-scale anomalies that have simple forms and geological significance
is critical for enhancing the interpretability of gravity and magnetic survey data. In recent years,
empirical mode decomposition (EMD), which was developed as a significant data-driven approach for
analyzing complex signals, has been widely used in identifying gravity and magnetic anomalies due
to its advantages of adaptability to nonlinear and nonstationary data. Nevertheless, the traditional
EMD method is usually sensitive to outliers and irregularly spaced data because of the interpolation
process in the construction of envelopes. In this regard, an extended algorithm called statistical EMD
(SEMD) has been proposed based on the smoothing technique. In this study, for validation purposes,
the novel SEMD method has been employed to identify multi-scale gravity and magnetic anomalies.
The sensitivities of local polynomial and cubic spline smoothing methods in SEMD to combination
and arrangement patterns of field sources including the size, depth, and distance in gravity and
magnetic anomaly identification were investigated and compared by forward modeling under the
same conditions. The results demonstrated that the local polynomial smoothing method performed
better than the cubic spline smoothing method. Thus, in the case study, the SEMD method using
the local polynomial smoothing technique was employed for identifying multi-scale gravity and
magnetic anomalies in the eastern Tianshan orogenic belt, northwestern China. It has illustrated
that the SEMD method provides a novel and useful data-driven method for extracting gravity and
magnetic anomalies.

Keywords: empirical mode decomposition; Bouguer gravity; aerial magnetic; intrinsic mode function;
eastern Tianshan; China

1. Introduction

Identifying significant anomalies with simple forms and geological meanings is one
of the most fundamental tasks for interpreting gravity and magnetic survey data [1–3].
Nevertheless, it is usually hindered by nonlinear and nonstationary gravity and magnetic
data, which are superimposed by complex signals from multiple field sources that may
have different sizes or/and may be located at different depths [4]. Thus, in the past several
decades, many sophisticated signal processing methods such as spectral analysis [5,6],
wavelet analysis [7,8], fractal analysis [9–11], singular value decomposition [8,12–16], and
empirical mode decomposition (EMD) [17] have been employed to extract gravity and
magnetic anomalies. In these methods, EMD has been increasingly applied as a data-driven
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approach for decomposing complex gravity and magnetic signals due to its strong adapt-
ability to nonlinear and nonstationary data. This is because it defines and utilizes intrinsic
mode functions (IMFs) to isolate a given signal according to the local oscillation magnitude
in the physical domain [18–25]. For instance, Huang et al. [26] used the bidimensional
EMD (BEMD) method to handle the gravity data of a gold field, which yielded IMF maps
depicting the spatial distribution relationship between gold deposits and the geological
units; Chen et al. [27] decomposed gravity and magnetic signals using the BEMD method to
extract the local anomalies that indicate exploration targets; Hou et al. [28] applied BEMD to
separate the magnetic anomalies associated with silver, lead, and zinc polymetallic deposits
from a regional field; Zhao et al. [29] developed an improved BEMD method and used
it to characterize the multi-scale anomalies of aeromagnetic survey data; Chen et al. [30]
employed BEMD to extract the gravity anomaly indicating the ore-controlling geological
factors and granites in a tin–copper polymetallic ore field; Asl and Manaman [31] proposed
to utilize the modified EMD method for locating magnetic bodies by extracting the IMFs of
the magnetic data; and Animesh and Shankho [32] applied BEMD in delineating gravity
signatures related to complex near-surface features from noisy gravity data.

However, EMD suffers from several limitations, including sensitivities to meaningless
fluctuations and irregularly spaced data, which distort the subsequent decomposition
results [33–37]. In this regard, statistical EMD (SEMD) has been developed as an improve-
ment over the traditional EMD method [33,34]. SEMD addresses these limitations by using
a smoothing technique instead of an interpolation when constructing upper and lower
envelopes to improve the reliability of the IMFs. This allows for a more accurate and
robust decomposition of irregularly spaced signals with outliers and very high-frequency
components, making it a useful tool for analyzing and processing real-world data [33]. The
SEMD method is increasingly applied in many fields and has been shown to outperform
EMD in various applications, including financial time series analysis [38,39], biomedical
signal processing [40], and isolating geochemical logging data [41]. Nevertheless, the per-
formance of SEMD depends on the choice of the smoothing technique used for constructing
the upper and lower envelopes, which accordingly define the upper and lower bounds of
the IMFs and thus can affect the accuracy of the decomposition [33,34]. If the smoothing
method is not appropriate, the envelopes may be too smooth or too rough, resulting in the
generation of inaccurate IMFs or the loss of important features in the signal. The envelopes
are typically estimated using a cubic spline or local polygon smoothing techniques [33].
These methods can yield different results, particularly in regions where the signal has
sharp transitions or discontinuities [42–44]. In this regard, the selection of an appropriate
smoothing method in SEMD should be carefully considered based on the characteristics of
the signal and the intended use of the IMFs.

Therefore, to validate its applicability, the novel SEMD method was applied to separate
multi-scale gravity and magnetic anomalies from the background. The sensitivities of
smoothing methods in SEMD to the combination and arrangement patterns of source fields
including size, depth, and distance were investigated and compared using the numerical
forward modeling method. In the case study, an SEMD method adopting a local polynomial
smoothing approach was applied to process the aerial gravity and magnetic data in the
eastern Tianshan orogenic belt for the decomposition of regional and local anomalies, which
were used to gain insight into regional tectonics and mineral prospectivity.

2. Methods
2.1. SEMD Method

The EMD method, which was originally proposed by Huang in 1998 [14], is a data-
driven and adaptive time-frequency analysis method for analyzing nonlinear and nonsta-
tionary signals. It decomposes a signal into a finite number of IMFs that correspond to
different scales or frequency components of the signal. Each IMF is defined as an oscillatory
wave that satisfies two conditions: having the same number of extrema (maxima and
minima) and the same number of zero crossings, or differing by one, and its envelopes
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connected by the local maxima and minima of the signal being symmetric with respect
to zero. The SEMD is an extension of EMD designed to handle complex signals with
noninformative fluctuations, such as noisy fluctuations and outliers, and irregularly spaced
data [33]. The difference between SEMD and EMD is only in the way of extracting the first
IMF, where a smoothing technique has been applied instead of an interpolation method.

2.1.1. Sifting Process

The sifting process (Figure 1) of SEMD for obtaining IMFs can be summarized as
follows [33]:
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(1) Identify the local maximum and minimum values Ω of the signal h0
1, α(t), where

h0
1, α(t) represents the original signal s(t) and t is the time.
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(2) Construct the upper envelope Ω+
α (t) and lower envelope Ω−α (t) of the signal by using

a smoothing technique with a smoothing parameter α to the maximum and minimum
values Ω.

(3) Calculate the mean of the upper and lower envelopes:

mα(t) =
1
2
[
Ω+

α(t) + Ω−α(t)
]

(1)

(4) Subtract the mean from the original signal to obtain an updated signal:

h1
1, α(t) = h0

1, α(t)−mα(t) (2)

(5) Perform steps 1–4 on the updated signal until the resulting signal hj
1, α(t) at the jth

iteration satisfies the above-mentioned IMF conditions and thereafter the first IMF,
namely im f1, α(t), is obtained.

(6) Subtract im f1, α(t) from the original signal to obtain the residual signal:

rα(t) = s(t)− im f1, α(t) (3)

(7) Use rα(t) as the updated original signal and find all its local maxima and minima.
(8) Fit the local maxima and minima to create the upper envelope u(t) and lower envelope

l(t) of the signal accordingly using the cubic spline interpolation method.
(9) Compute the mean of the upper and lower envelopes:

m2(t) =
1
2
[u(t) + l(t)] (4)

(10) Subtract the mean from the original signal to obtain an updated signal:

h2(t) = rα(t)−m2(t) (5)

(11) Iterate steps 7–10 on the updated signal until the resulting signal satisfies the above-
mentioned IMF conditions, and thereafter the second IMF, denoted as im f2(t),
is derived.

(12) Separate the second IMF from the original signal to obtain a residual signal:

r2(t) = rα(t)− im f2(t) (6)

(13) Update the original signal to r2(t) in step 7 and repeat steps 7–12 on the residual
signal to obtain another IMF.

(14) Continue the sifting process until the updated or residual signal is less than the
predetermined value of substantial consequence, or no more IMFs can be extracted
from the residual signal.

By performing the sifting process on the signal, SEMD separates the signal into
different IMF components that correspond to different time scales or frequencies of the
signal. These IMFs can then be further analyzed or processed separately to extract useful
information from the signal.

2.1.2. Smoothing Technique

In this study, the two most commonly used smoothing techniques, which are cubic
spline smoothing and local polynomial smoothing, have been applied in the SEMD method.
Their basic principles may be summarized as follows:

(1) Cubic spline smoothing is a useful technique for smoothing data by fitting a piecewise
cubic function to the data points [45,46]. Each cubic spline function can be defined as:

s̃i(t) = ai + bi(t− ti) + ci(t− ti)
2 + di(t− ti)

3 (7)
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where a, b, c, and d are undetermined coefficients. This method involves constructing
a set of cubic polynomials that approximate the data, ensuring that the resulting curve
is smooth and continuous. Thus, it aims to minimize squared error and the curvature
of cubic splines. This is expressed as:

min ∑n
i=1[si − s̃i(ti)]

2 + λ
∫
[s̃′′ (t)]2dt (8)

where λ is the smoothing parameter, the value of which is non-negative and not greater
than one. If λ = 0, the curvature constraints are lifted, and the smoothing cubic spline
then passes through all data points, resulting in an interpolation cubic spline.

(2) Local polynomial smoothing smooths a signal by fitting a polynomial function to a
localized subset of data points [45–48]. The local polynomial can be expressed as:

p̂i(t) = β0 + β1(ti)t + β2(ti)t2 + · · ·+ βp(ti)tm = ∑m
n=0 βn(ti)tn (9)

where β0, β1, · · · , and βp are the coefficients to be estimated. This smoothing method
tries to use a weighted least squares approach to find the polynomial coefficients that
minimize the sum of squared errors between the observed values and the predicted
values. The weights are determined by a weighting function that assigns larger
weights to nearby observations and smaller weights to distant ones. Thus, local
polynomial fitting can be solved as a minimize problem given by:

min ∑ti∈Ti
κ

( ti − tj

h

)[
si −∑m

n=0 βn(ti)tn
i

]2
(10)

where κ denotes a non-negative weight function and h is the bandwidth controlling
the size of the local neighborhood. By fitting the localized data, local polynomial
smoothing can provide a smoothed curve that adapts to the local behavior of the data,
allowing for more flexibility in capturing variations and features in the dataset.

2.2. Forward Model

To validate the applicability of SEMD in identifying gravity and magnetic anomalies
and clarifying their geological significance, the forward modeling method has been used
to generate synthetic data for the decomposition. The coordinate system was designed as
shown in Figure 2, where the horizontal axis x represents distance, and the vertical axis h
represents depth. There are three square field sources and their central coordinate values
are (xa, ha), (xb, hb), and (xc, hc), respectively. The sizes of these three field sources are a, b,
and c, respectively. The density and magnetic susceptibility of the three blocks are set to
2.77 g/cm3 and 0.01 SI, respectively. These properties for the background are defined to be
2.67 g/cm3 and 0.00 SI, respectively. In this regard, the three field sources are assumed to
have the same constant positive residual density and magnetic susceptibility, which are
equal to 0.1 g/cm3 and 0.01 SI, respectively.

In this study, a total of 36 forward models are constructed by using the control variable
method, and the effects of field source size (i.e., a, b, and c), depth (i.e., ha, hb, and hc), and
distance (i.e., xb−xa and xc−xb) on decomposition results are studied. These models are
shown in Table 1. The 9 models that were labeled from M01 to M09 were designed to study
the influence of field source size on SEMD. These models were assigned three sets of field
sources with the same depth, and each set of models was arranged in three different sizes.
The 9 models numbered from M10 to M18 were used to investigate the dependence of
SEMD on field source depth. These models have three sets of field sources of the same
size, with three depth arrangements for each set of the models. The 18 models numbered
M19 to M36 are derived from three sets of models with the same field source size and
different depths. Examples of these models highlight the impact of the relative distances
between the models on SEMD. The SEMD method was used to decompose the synthetic
data simulated by each of the designed models. As mentioned above, two smoothing
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techniques, cubic spline and local polynomial, were used in the sifting process of the
SEMD. The advantages and disadvantages of these two smoothing methods were studied
by comparing the decomposition results.
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Table 1. Size, depth, and distance of field sources in the designed forward models.

Model
Size (m) Depth (m) Distance (m)

a b c ha hb hc xb − xa = xc − xb

M01 50 100 150 100 100 100 200
M02 50 150 100 100 100 100 200
M03 100 50 150 100 100 100 200
M04 50 100 150 150 150 150 200
M05 50 150 100 150 150 150 200
M06 100 50 150 150 150 150 200
M07 50 100 150 200 200 200 200
M08 50 150 100 200 200 200 200
M09 100 50 150 200 200 200 200

M10 50 50 50 100 150 200 200
M11 50 50 50 100 200 150 200
M12 50 50 50 150 100 200 200
M13 100 100 100 100 150 200 200
M14 100 100 100 100 200 150 200
M15 100 100 100 150 100 200 200
M16 150 150 150 100 150 200 200
M17 150 150 150 100 200 150 200
M18 150 150 150 150 100 200 200

M19 50 50 50 100 200 150 50
M20 50 50 50 100 200 150 100
M21 50 50 50 100 200 150 150
M22 50 50 50 100 200 150 250
M23 50 50 50 100 200 150 300
M24 50 50 50 100 200 150 350
M25 100 100 100 150 100 200 100
M26 100 100 100 150 100 200 150
M27 100 100 100 150 100 200 250
M28 100 100 100 150 100 200 300
M29 100 100 100 150 100 200 350
M30 100 100 100 150 100 200 400
M31 150 150 150 100 150 200 150
M32 150 150 150 100 150 200 250
M33 150 150 150 100 150 200 300
M34 150 150 150 100 150 200 350
M35 150 150 150 100 150 200 400
M36 150 150 150 100 150 200 450
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3. Results and Discussion
3.1. Forward Modeling
3.1.1. The Size of Field Sources

Figure 3 shows the IMFs obtained by decomposing the simulated gravity and mag-
netic data of the M01 to M09 forward models using the SEMD methods adopting cubic
spline and local polynomial smoothing techniques, respectively. The SEMD methods can
decompose more magnetic models than gravity models, regardless of the smoothing ap-
proach. The reason may be that under the same field source conditions, including size,
depth, and distance, magnetic signals have larger fluctuation than gravity signals. In these
decomposable forward models, no matter the gravity or magnetic data, they are more
likely to be decomposed by the local-polynomial-based SEMD method rather than the
cubic-spline-based approach. SEMD based on local polynomial smoothing can identify at
least one IMF in most of the tested models. For example, the gravity (Figure 4) and magnetic
(Figure 5) data of the M03 forward model can utilize the SEMD method adopting the local
polynomial smoothing technique to decompose the long-wave and short-wave anomalies
that represent and interpret the source features. However, this cannot be achieved using
the SEMD method with the cubic spline smoothing approach. Figures 4a and 5a show that
the IMF1 signal could identify two peaks that indicate the positive gravity and magnetic
anomalies caused by the two larger blocks (i.e., the field sources a and c, respectively).
Nevertheless, the responses of both gravity and magnetic fields for the smallest source
(i.e., the b block) have been ignored, because there are no more IMFs decomposed to char-
acterize the anomalies. The residual signals (Figures 4a and 5a) mainly characterize the
total density and magnetic susceptibility contrasts between the three field sources and the
background, respectively. Figures 4b and 5b indicate that the IMF1 signal could hint at the
gravity and magnetic anomalies produced by the two larger field sources, respectively. The
gravity and magnetic anomalies caused by the smallest field source (i.e., the b blocks) could
not be distinguished. Thus, these results indicate that the SEMD method using the local
polynomial smoothing technique is more applicable for identifying multi-scale anomalies,
which are hidden in the complex gravity and magnetic survey signals.
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3.1.2. The Depth of Field Sources

Figure 6 shows the IMFs decomposed by the SEMD methods, which were applied
to the simulated gravity and magnetic data of the M10 to M18 forward models using
the cubic spline and local polynomial smoothing techniques, respectively. It also shows
that most of the models, no matter gravity and magnetic data, can be decomposed by
the SEMD method using local polynomial smoothing rather than that using cubic spline
smoothing. In the decomposable models, more were extracted by the SEMD method
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adopting the polynomial smoothing technique with two IMFs. Considering the residual
components, these decomposition results are consistent with the number of field sources set
in the forward model. This indicates that the SEMD method may have correctly identified
individual anomalies caused by these field sources. For example, the IMFs identified by the
SEMD method using the local polynomial smoothing technique from the gravity (Figure 7b)
and magnetic (Figure 8b) data of the M14 forward model indicate anomalous features of
the field sources, while the SEMD method adopting the cubic spline smoothing approach
cannot separate enough IMFs from the mixed signal (Figures 7a and 8a). Figures 7a and
8a show that the anomalies of both gravity and magnetic fields for the sources at shallow
and moderate depth (i.e., blocks a and c) can be identified, whereas the anomalies from the
deepest source (i.e., the b block) are also ignored, as shown in the model M03 mentioned
above. The residual signals (Figures 7a and 8a) characterize the long-wave anomalies
caused by the total contrast of density and magnetic susceptibility between the field sources
and background. Figures 7b and 8b indicate that the gravity and magnetic anomalies
from the shallow source (i.e., block a) could be identified from the IMF1 signals, and the
anomalies from the moderate depth and deep sources can be trailed by the IMF2 signals.
Therefore, it can be considered that the SEMD method adopting local polynomial smoothing
is more useful than that adopting cubic spline smoothing for identifying multi-scale gravity
and magnetic anomalies.
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3.1.3. The Distance between Field Sources

To investigate in more detail the dependence of SEMD on field source distance, the
decomposition results of the M18 to M36 models were compared and shown in Figure 9.
These 18 models have been classified into three groups, which accordingly represent three
types of models with characterized sizes and depths. Compared to the models with small
field source distances, regardless of their size and depth, the models with large field source
distances are not only more likely to be successfully decomposed by the SEMD methods
but also the number of the decomposed IMFs is closer to that of field sources set in the
forward models. Therefore, forward modeling shows that increasing the distance between
field sources seems to be beneficial for the decomposition of the synthetic signal they cause
using SEMD. This can be explained as that, the larger the distance between individual
field sources, the smaller the superposition effects between the signals produced by these
fields, resulting in more significant differences in signal extrema and frequencies at different
field sources, and vice versa. This is like many geophysical signal processing methods. In
addition, the decomposable models indicate that the SEMD method using local polynomial
smoothing is more applicable than that using cubic spline smoothing. This is because the
SEMD method adopting local polynomial smoothing can generally decompose IMFs that
are equivalent to the number of field sources. On the contrary, cubic spline smoothing
possibly introduces spurious oscillations in the envelopes, which can affect the accuracy
of the IMFs. The reasons include the fact that many models cannot be decomposed by
the SEMD method using cubic spline smoothing, and there is a model (i.e., M22) that has
been decomposed into too many IMFs (Figure 9b). In addition, Figure 10a shows that
the pattern of the IMF1 signal is almost the same as the original gravity data, indicating
that SEMD adopting the cubic spline smoothing technique may not be able to effectively
decompose the mixed gravity signal. Figures 10b and 11b illustrated that the peaks for the
IMFs of both gravity and magnetic data derived by the SEMD using the local polynomial
smoothing technique could locate the field sources of the forward model. Furthermore,
the interpretations of the interpretable IMFs and residual signals for the M22 model are
essentially similar to those for the M14 model. This similarity arises due to the identical
arrangement of field sources in both models, with the only difference being the varying
size and spacing distance of the field sources. Nevertheless, it has been demonstrated
by comparison of the decomposition results between these two models that the larger
the distance between field sources, the more favorable it is for the mixed signal to be
decomposed into simple form signals, as the increase in the distance between field sources
leads to a decrease in the degree of mixture between their gravity and magnetic signals.

3.2. Case Study: Identifying the Multi-Scale Gravity and Magnetic Anomalies of the Eastern
Tianshan Orogenic Belt
3.2.1. Geological Setting and Data

The eastern Tianshan is in the southern part of the world-famous orogenic belt, namely
the Central Asia orogenic belt (CAOB), which is formed by the amalgamation of serval
blocks between the Siberia and Tarim–North China cratons [49–53]. This district has a
long and complex history of tectonic activity, resulting in a wide range of rock types
and structures (Figure 12a). The oldest rocks in the eastern Tianshan orogenic belt are
exposed in the northwestern part of the belt and mainly consist of granitic gneisses and
schists that were formed during the Precambrian. The Paleozoic sequence consists of a
series of sedimentary rocks that were deposited during the Devonian, Carboniferous, and
Permian periods. These rocks are exposed throughout the belt and include sandstones,
shales, and limestones. The Mesozoic is characterized by a series of granitic intrusions
that were emplaced during the Jurassic and Cretaceous periods. These intrusions have
been demonstrated to serve as sources of mineralization, including copper, gold, and
molybdenum [54–56]. The Cenozoic is represented in the eastern Tianshan orogenic belt by
a series of sedimentary basins that were formed during the Tertiary period. These basins
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are characterized by thick sequences of sedimentary rocks, including sandstones, shales,
and conglomerates, that were deposited in fluvial, lacustrine, and deltaic environments.

Minerals 2023, 13, 1118 13 of 23 
 

 

 
Figure 9. Bar diagrams showing the IMFs derived by decomposing the simulated gravity (a,c,e) and 
magnetic (b,d,f) data of the M19 to M36 forward models using SEMD. 

Figure 9. Bar diagrams showing the IMFs derived by decomposing the simulated gravity (a,c,e) and
magnetic (b,d,f) data of the M19 to M36 forward models using SEMD.



Minerals 2023, 13, 1118 13 of 21
Minerals 2023, 13, 1118 14 of 23 
 

 

 

Figure 10. Decomposition results of the simulated gravity data of the M22 forward model using 
SEMD adopting the cubic spline (a) and local polynomial (b) smoothing techniques. 

Figure 10. Decomposition results of the simulated gravity data of the M22 forward model using
SEMD adopting the cubic spline (a) and local polynomial (b) smoothing techniques.

Minerals 2023, 13, 1118 15 of 23 
 

 

 

Figure 11. Decomposition results of the simulated magnetic data of the M22 forward model using 
SEMD adopting the cubic spline (a) and local polynomial (b) smoothing techniques. 

3.2. Case Study: Identifying the Multi-Scale Gravity and Magnetic Anomalies of the Eastern 
Tianshan Orogenic Belt 
3.2.1. Geological Setting and Data 

The eastern Tianshan is in the southern part of the world-famous orogenic belt, 
namely the Central Asia orogenic belt (CAOB), which is formed by the amalgamation of 
serval blocks between the Siberia and Tarim–North China cratons [49–53]. This district has 
a long and complex history of tectonic activity, resulting in a wide range of rock types and 
structures (Figure 12a). The oldest rocks in the eastern Tianshan orogenic belt are exposed 
in the northwestern part of the belt and mainly consist of granitic gneisses and schists that 
were formed during the Precambrian. The Paleozoic sequence consists of a series of sedi-
mentary rocks that were deposited during the Devonian, Carboniferous, and Permian pe-
riods. These rocks are exposed throughout the belt and include sandstones, shales, and 
limestones. The Mesozoic is characterized by a series of granitic intrusions that were em-
placed during the Jurassic and Cretaceous periods. These intrusions have been demon-
strated to serve as sources of mineralization, including copper, gold, and molybdenum 
[54–56]. The Cenozoic is represented in the eastern Tianshan orogenic belt by a series of 
sedimentary basins that were formed during the Tertiary period. These basins are charac-
terized by thick sequences of sedimentary rocks, including sandstones, shales, and con-
glomerates, that were deposited in fluvial, lacustrine, and deltaic environments. 

Figure 11. Decomposition results of the simulated magnetic data of the M22 forward model using
SEMD adopting the cubic spline (a) and local polynomial (b) smoothing techniques.



Minerals 2023, 13, 1118 14 of 21Minerals 2023, 13, 1118 16 of 23 
 

 

 

 
Figure 12. Simplified geological map (a) and the geological profile AB (b) where the decomposed 
aerial gravity and magnetic data are located. 

There are four EW-trending deep faults identified in the eastern Tianshan region. 
They are, from north to south, the Dacaotan-Dananhu, Kanguertag-Huangshan, Ya-
mansu-Kushui, and Aqikekuduke-Shaquanzi faults. Separated by the Dacaotan-
Dananhu, Yamansu-Kushui, and Aqikekuduke-Shaquanzi faults, the eastern Tianshan 
orogenic belt can be divided into four main tectonic units. They are the Dananhu-
Tousuquan arc belt, the Kanguertag-Huangshan forearc/intra-arc basin belt, the Aqishan-
Yamansu forearc basin belt, and the Middle Tianshan arc belt, respectively (Figure 12a). 
The Dananhu-Tousuquan arc belt is located within the southern margin of the eastern 
Tianshan orogenic belt. It formed in the Late Paleozoic, specifically during the Carbonif-
erous to Permian period [49]. The arc belt consists of a series of volcanic rocks including 
andesite, dacite, rhyolite, plutonic, and sedimentary rocks. Most of this arc belt has been 
covered by the Gobi Desert layer. The Kanguertg-Huangshan forearc/intra-arc basin belt 
is on the southern side of the Dananhu-Tousuquan arc belt. It is a complex basin system 
composed of a variety of rock types, including sedimentary and volcanic rocks. The basin 
system is believed to have formed in the Late Paleozoic because of the subduction of the 
Paleo-Asian Ocean (PAO) under the southern margin of the CAOB. The Aqishan-Yamansu 
forearc basin belt is situated south of the Kanguertg-Huangshan forearc/intra-arc basin 
belt. It is a complex basin system composed of a variety of rock types, including sedimen-
tary and volcanic rocks. It is also considered to have formed due to the subduction of the 
PAO under the southern margin of the CAOB during the Late Paleozoic. The Middle 
Tianshan arc, which is complex and includes a variety of rock types, including sedimen-
tary, volcanic, and metamorphic rocks, is in the southern margin of the eastern Tianshan 
orogenic belt. The basement rocks in the study area are highly weathered, and there is a 
widespread distribution of eolian sand and loess. Nearly half of the area is covered by the 
Gobi Desert, including sand, soil, and gravel. This landscape severely hinders geological 
mapping in the eastern Tianshan area, and subsequently leads to significant challenges 
for structural analysis and mineral exploration [57]. Nevertheless, the eastern Tianshan 
region is well known for its diverse and extensive mineral resources, including a variety 
of different types of ore deposits [55,56,58,59]. The dominant metal minerals mainly 

Figure 12. Simplified geological map (a) and the geological profile AB (b) where the decomposed
aerial gravity and magnetic data are located.

There are four EW-trending deep faults identified in the eastern Tianshan region.
They are, from north to south, the Dacaotan-Dananhu, Kanguertag-Huangshan, Yamansu-
Kushui, and Aqikekuduke-Shaquanzi faults. Separated by the Dacaotan-Dananhu, Yamansu-
Kushui, and Aqikekuduke-Shaquanzi faults, the eastern Tianshan orogenic belt can be
divided into four main tectonic units. They are the Dananhu-Tousuquan arc belt, the
Kanguertag-Huangshan forearc/intra-arc basin belt, the Aqishan-Yamansu forearc basin
belt, and the Middle Tianshan arc belt, respectively (Figure 12a). The Dananhu-Tousuquan
arc belt is located within the southern margin of the eastern Tianshan orogenic belt. It
formed in the Late Paleozoic, specifically during the Carboniferous to Permian period [49].
The arc belt consists of a series of volcanic rocks including andesite, dacite, rhyolite, plu-
tonic, and sedimentary rocks. Most of this arc belt has been covered by the Gobi Desert
layer. The Kanguertg-Huangshan forearc/intra-arc basin belt is on the southern side of
the Dananhu-Tousuquan arc belt. It is a complex basin system composed of a variety of
rock types, including sedimentary and volcanic rocks. The basin system is believed to
have formed in the Late Paleozoic because of the subduction of the Paleo-Asian Ocean
(PAO) under the southern margin of the CAOB. The Aqishan-Yamansu forearc basin belt is
situated south of the Kanguertg-Huangshan forearc/intra-arc basin belt. It is a complex
basin system composed of a variety of rock types, including sedimentary and volcanic rocks.
It is also considered to have formed due to the subduction of the PAO under the southern
margin of the CAOB during the Late Paleozoic. The Middle Tianshan arc, which is complex
and includes a variety of rock types, including sedimentary, volcanic, and metamorphic
rocks, is in the southern margin of the eastern Tianshan orogenic belt. The basement
rocks in the study area are highly weathered, and there is a widespread distribution of
eolian sand and loess. Nearly half of the area is covered by the Gobi Desert, including
sand, soil, and gravel. This landscape severely hinders geological mapping in the eastern
Tianshan area, and subsequently leads to significant challenges for structural analysis and
mineral exploration [57]. Nevertheless, the eastern Tianshan region is well known for its
diverse and extensive mineral resources, including a variety of different types of ore de-
posits [55,56,58,59]. The dominant metal minerals mainly include porphyry and magmatic
sulfide-rich copper polymetallic deposits, epithermal and sedimentary rock-hosted gold
deposits, and volcanic iron deposits [56].
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To interpret the regional structure of the eastern Tianshan district, aerial gravity and
magnetic data from an NS-trending profile AB (Figure 12a), which is generally perpendicu-
lar to the tectonic belts there, were decomposed by SEMD in this study. This geological
profile is shown in Figure 12b. The gravity data were derived from Bouguer correction that
has considered height, mass, and terrain effects in the measurement of natural gravity [1,3].
The aeromagnetic data have been processed utilizing the reduced-to-pole transforma-
tion method [2], which aligns magnetic anomalies with causative geological targets. The
measurement points of these gravity and magnetic data are approximately 2 km apart.

3.2.2. Densities and Magnetic Properties of Lithologies

The densities and magnetic properties of rocks within a district are significant for
interpreting gravity and magnetic data there [2]. Thus, the density data and magnetic
properties data including both susceptibilities and remnant magnetizations of the major
rock units in the eastern Tianshan region were collected from previous studies [50,60,61],
and the results are shown in Table 2. The unconsolidated sediments of the Gobi Desert
have the lowest densities, magnetic susceptibility, and remanent magnetization. Therefore,
they are commonly believed to produce low gravity–magnetic anomalies. The density
of sedimentary rocks, including siltstone and glutenite, is usually low to moderate, and
their magnetic susceptibility and remanent magnetization are almost zero. Thus, the
sedimentary rocks generally produce gravity anomalies ranging from low to medium, as
well as low magnetic anomalies in the study area. The density and magnetic properties
of intrusive rocks and volcanic rocks vary significantly with changes in their mineral
composition. In general, mafic–ultramafic rocks that consist of many magnesium- and
iron-bearing minerals and have few feldspathic minerals tend to have high density and
magnetism, while intermediate–acidic rocks that are primarily composed of feldspathic
minerals and contain almost no magnesium and iron-bearing minerals tend to have low
density and magnetism. In this regard, mafic–ultramafic rocks have higher densities and
magnetic properties compared to intermediate–acidic rocks. Metamorphic rocks such as
gneiss, schist, marble, and amphibolite usually have relatively moderate to high densities,
whereas they have very low magnetic susceptibility and remanent magnetization. Thus,
the metamorphic rocks usually could produce moderate to high gravity anomalies and low
magnetic anomalies in the eastern Tianshan district.

Table 2. The average density and magnetic properties of rocks from the eastern Tianshan district.

Lithology Density
(103 kg/m3)

Magnetic Susceptibility
(10−6 4πSI)

Remnant Polarization
(10−3 A/m)

Gobi Desert 1.77 0.00 0.00
Marble 2.77 0.00 0.00

Andesite 2.75 N.A. N.A.
Basalt 2.77 N.A. N.A.
Tuff 2.68 950 550

Siltstone 2.66 0.00 0.00
Schist 2.68 76.0 60.0
Gneiss 2.67 N.A. N.A.
Quartz

porphyry 2.66 N.A. N.A.

Glutenite 2.68 0.00 0.00
Granite 2.61 1079 N.A.

Granodiorite 2.68 50.0 0.00
Dacite porphyry 2.66 N.A. N.A.

Serpentinite 2.93 3850 4600
Diabase 2.86 58,510 N.A.
Diorite 2.79 2872 N.A.
Gabbro 2.90 8330 1500

Amphibolite 2.79 N.A. N.A.
N.A. means no data.
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3.2.3. Multi-Scale Gravity and Magnetic Anomalies

The forward modeling results mentioned above indicate that the SEMD method
using the local polynomial smoothing technique generally performs better in decomposing
gravity and magnetic data than the method using cubic spline smoothing. Consequently,
the SEMD method adopting the local polynomial smoothing technique was applied to
decompose the gravity and magnetic data (Figure 12b) to identify multi-scale anomalies in
the eastern Tianshan district.

Figure 13 shows the decomposition results of Bouguer gravity data. Three IMFs
(i.e., IMF1, IMF2, and IMF3) from high to low frequencies and one residue signal were
obtained. The IMF1 signal has a small amplitude, with its fluctuation range around −3 to
2 mGal, and a high frequency, which may reflect density differences in shallow geological
bodies and/or noise components inherent in the data. The IMF2 signal has a moderate
frequency and amplitude. The fluctuation range of the signal amplitude is approximately
between −6 and 6 mGal, which has significant contrast and thus could indicate changes
in lithology and/or the presence of metal mineral belts. For example, basins covered
by the Gobi Desert generally exhibit significant gravity anomalies; areas dominated by
granitic rocks show low gravity anomalies; areas with andesites and basalts exhibit high
gravity anomalies; and the ore fields of iron, copper, and gold almost without exception
display high gravity anomalies. The IMF3 signal most likely indicates anomalies caused
by deep and large field sources, because it has a considerable amplitude ranging from
approximately −15 to 15 mGal, and a very low frequency. This gravity anomaly signal
has two peaks and two valleys. Compared with the geological profile, the IMF3 signal
characterizes the structural framework of the eastern Tianshan district. The two long-wave
anomalies with low amplitudes (i.e., signal valleys) are in the Kanggurtag forearc basin and
the sedimentary basin on the north side of the Dananhu-Tousuquan arc belt, respectively,
due to the relatively low density of sedimentary rocks. The two long-wave anomalies
with high amplitudes (i.e., signal peaks) are located on the Middle Tianshan arc belt and
the south side of the Dananhu-Tousuquan arc belt, respectively, because the basements
of these two regions are metamorphic rocks and basic intrusions, respectively, both of
which have relatively high densities in the eastern Tianshan area. The residual gravity
anomaly signal has the largest amplitude, which varies from −164 to −140 mGal, and has
a monotonic feature of being low in the south and high in the north. According to the
forward modeling results, in which the residual signal anomalies characterize the changing
trends of the density and magnetic susceptibility of the field sources, this gravity anomaly
can explain the characteristic of the average density of the crust in the south being lower
than that of the crust in the north of the study area. This is because there may be a large
amount of high-density basalts intruded into the northern crust, although only a part of
them is exposed.

Figure 14 shows the decomposition results of aeromagnetic data. Similar to gravity
data, three IMFs (i.e., IMF1, IMF2, and IMF3) and one residual component signal have
been identified. The frequency of these signals is decreasing in sequence. IMF1 and IMF2
have relatively large amplitudes, while IMF3 and the residual signals have relatively small
amplitudes. Besides the noise component in the aeromagnetic survey data, IMF1 may
indicate the magnetic contrast of shallow geological bodies, as the magnetic susceptibility
and remnant polarization of these field sources with different lithologies in the study
area can differ by one to two orders of magnitude. IMF2 characterizes regional magnetic
anomalies of moderate depth, where high magnetic anomalies may be attributed to the
presence of mafic intrusive rocks, including andesite and basalt, as well as marine volcanic
rocks, and metal ore districts closely associated with these rock types. The mafic rocks
are closely related to copper–nickel sulfide deposits. Marine volcanic rocks are the main
ore-bearing strata for iron ore in the study area. Therefore, these factors collectively lead
to the relatively high magnetic anomalies. The low magnetic anomalies indicated by the
IMF2 signal correspond to the location of an intermediate–acid intrusion belt, normal
sedimentary rocks, and the Gobi Desert-covered basin. The reason is that these rocks have
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little or no magnetism. The long-wavelength anomalies characterized by the IMF3 signal
indicate crustal-scale structural units. From south to north, the IMF3 signal alternates
with two peaks and two valleys. The high anomaly in the south reflects the magnetic
metamorphic basement of the Middle Tianshan arc, while the high anomaly in the north is
likely caused by the deep, large-scale upwelling of mafic magma due to the junction of the
Kanggurtag-Huangshan forearc/intra-arc basin and the Dananhu-Tousuquan arc. The low
anomaly in the south primarily indicates the large-scale intermediate–acid magma activity
of the Aqishan-Yamansu forearc basin belt. The low anomaly in the north mainly implies
the sedimentary basin in the northern part of the Dananhu-Tousuquan arc. The residual
component signal shows a monotonous magnetic anomaly trend of high in the north and
low in the south. This shows information about the average magnetic susceptibility of the
crust in the eastern Tianshan orogenic belt. The result indicates that the northern crust has
stronger magnetism than the southern crust. This finding supports the interpretation result
of the aforementioned residual gravity anomaly, indicating the possibility of large-scale
mafic–ultramafic intrusions in the northern crust of the eastern Tianshan orogenic belt.
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4. Conclusions

The current study used forward modeling data and actual aeromagnetic and gravity
data from the eastern Tianshan region to verify the applicability of the SEMD method, which
uses the cubic spline and local polynomial smoothing techniques, to identify multi-scale
gravity anomalies. The main conclusions are as follows:

(1) A comparison of forward modeling results shows that the SEMD method using the
local polynomial smoothing technique performs better in decomposing gravity and
magnetic data than the SEMD method using the cubic spline smoothing technique.

(2) The decomposition results of aeromagnetic and gravity data in the eastern Tianshan
district further demonstrate the effectiveness of the SEMD method using local polyno-
mial smoothing in identifying multi-scale gravity anomalies. This method uses the
smoothing technique to remove noise and extracts the high-frequency component
(i.e., IMF1) that has almost no geological significance from the original signal. This is
equivalent to denoising the original signal, eliminating the interference of meaning-
less fluctuations in the subsequent decomposition process, which could potentially
contaminate all signals. Therefore, the remaining IMFs and residual component sig-
nals often have distinct geological significance and effectively reveal the regional
scale and middle-to-deep level structural framework of the Gobi Desert-covered area
in the eastern Tianshan region. Both the gravity and magnetic anomalies indicate
that the junction zone of the Kanggurtag-Huangshan forearc/intra-arc basin and the
Dananhu-Tousuquan arc may have the characteristics of a plate or block boundary.
This provides more geophysical evidence to resolve the disputed issue of the division
of the eastern Tianshan tectonic unit caused by the coverage of the Gobi Desert.
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