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Abstract: Northeast China composes the main part of the Central Asian Orogenic Belt. Traditionally,
Northeast China has been considered a collage of several microcontinental blocks. However, the
tectonic evolution of these blocks remains uncertain. Igneous rocks can be used to infer the magmatic
histories of the blocks and thus help reconstruct their evolution. In this study, we present new
zircon U–Pb and whole-rock geochemical data for Carboniferous igneous rocks from the Wunuer
area, northern Great Xing’an Range, Northeast China, to constrain the Carboniferous amalgama-
tion of the united Xing’an–Erguna and Songnen–Zhangguangcai Range massifs. On the basis of
zircon U–Pb dating results, we identify two main stages of magmatism, i.e., early Carboniferous
(332–329 Ma) and late Carboniferous (312–310 Ma). The early Carboniferous igneous rocks include
diorites and granodiorites, with the former being classified as calc-alkaline to tholeiitic and the latter
as tholeiitic. Both rock types are enriched in Th and U and depleted in Nb and Ti. The rocks display
slightly fractionated rare earth element (REE) patterns, with an enrichment in light REEs and a deple-
tion in heavy (H)REEs. The geochemical characteristics of the early Carboniferous rocks indicate that
they formed in a subduction-related continental-arc setting. The late Carboniferous igneous rocks
include monzogranites and syenogranites, both of which are classified as high-K calc-alkaline rocks
and show enrichment in Th, U, and Rb and depletion in Nb and Ti. The rocks display strongly frac-
tionated REE patterns, with an enrichment in light REEs and a depletion in HREEs. The geochemical
characteristics of the late Carboniferous rocks indicate that they formed in a syn-collisional tectonic
setting. Combining the new geochronological and geochemical results and inferred tectonic settings
with regional magmatic data, we propose a new three-stage model to interpret the late Paleozoic
tectonic evolution of the united Xing’an–Erguna and Songnen–Zhangguangcai Range massifs of
Northeast China: (1) early Carboniferous (360–340 Ma) subduction of the Paleo-Asian oceanic plate
beneath the united Xing’an–Erguna Massif and formation of the Wunuer oceanic basin in the Yakeshi
area; (2) early to late Carboniferous (340–310 Ma) sustained subduction of the Paleo-Asian oceanic
plate beneath the united Xing’an–Erguna Massif and initiation of subduction of the Wunuer oceanic
basin; and (3) late Carboniferous–early Permian (310–275 Ma) syn-collisional to post-collisional
tectonic transition between the united Xing’an–Erguna Massif and the Songnen–Zhangguangcai
Range Massif.

Keywords: great Xing’an range; central Asian orogenic belt; Carboniferous; igneous rocks; geochronology;
geochemistry; tectonic evolution

1. Introduction

The Central Asian Orogenic Belt (CAOB) is one of the largest Phanerozoic accretionary
orogens in the world (Figure 1). This belt is bounded by the Siberian Craton to the north

Minerals 2023, 13, 1090. https://doi.org/10.3390/min13081090 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13081090
https://doi.org/10.3390/min13081090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min13081090
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13081090?type=check_update&version=3


Minerals 2023, 13, 1090 2 of 20

and the Tarim and North China cratons to the south and extends from the Ural Mountains
in the west through Kazakhstan, Tien Shan, the Altai Mountains, and Mongolia to the
Pacific Ocean in the east [1–15]. This huge orogenic belt developed as a result of multiple
accretionary and collisional events during the closure of the Paleo-Asian Ocean [16–20]. As
a prime example of Paleozoic continental crust and modification, the tectonic evolution of
the CAOB has been intensely studied [4,17,21–23].

Northeast China is located in the eastern CAOB. Traditionally, Northeast China has
been considered a collage of several microcontinental blocks from southeast to northeast; i.e.,
the Jiamusi, Songnen, Xing’an, and Erguna blocks, which are separated by the Mudanjiang
fault, the Hegenshan suture zone, and the Xinlin–Xiguitu suture zone, respectively [6,24–40]
(Figure 2). Advances in research methods and the development of high-precision geological
dating techniques have allowed the attributes of the Precambrian basement of the Erguna
and Jiamusi blocks to be established and the Xing’an and Songnen blocks to be recognized
as accretionary terranes that formed via subduction and collision [7,8,41,42].
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Figure 1. Tectonic sketch map showing the main units of central and eastern Asia (modified
after [31,32]).

Uncertainty remains regarding the subduction of paleo-oceanic plates in North-
east China and how and when the amalgamation between the abovementioned blocks/
microcontinents took place, especially in regard to the evolution of the Xinlin–Xiguitu
suture zone. This suture zone contains the Xinlin ophiolites, Tayuan metagabbros, Jifeng
ophiolites, and Yimin blueschists [43–51]. Geochronological data for these units include
a K–Ar phlogopite age for the Xinlin ophiolite of 539 Ma [43], a U–Pb zircon age for the
Gaxian pyroxenite of 628.4 ± 9.7 Ma [52], a U–Pb zircon age for meta-gabbro from the
Huanerku area of 696.8 ± 2.9 Ma [51], a U–Pb zircon age for gabbro from the Jifeng area of
647 ± 5 Ma, and a U–Pb zircon age of greenschist from the Toudaoqiao area of 511 ± 2 Ma.
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Early Paleozoic post-orogenic A-type granites reported from the Tahe area are regarded as
a product of the closure of the Xinlin–Xiguitu suture zone caused by the collision of the
Erguna and Xing’an blocks [24]. The Wunuer ophiolitic mélange occurs in the southwest
of the Xinlin–Xiguitu suture zone. This ophiolitic mélange comprises gabbro, diabase,
metabasalt, and radiolarian bedded chert with serpentinized amphibole–pyroxene peri-
dotites. Zircon U–Pb dating of the gabbro and diabase has yielded ages of 341 ± 6 and
346 ± 6 Ma, respectively, which suggest that the ophiolite formed during the early
Carboniferous. The ophiolite is classified as SSZ type according to geochemical char-
acteristics and may be a late product of a mature back-arc basin tectonic setting [53].
The Xinlin–Xiguitu oceanic basin is generally considered to have closed during the late
Cambrian [5–8,24,33,41,50,54]. However, the recent discovery of the early Carboniferous
Wunuer ophiolite suggests that the Xinlin–Xiguitu oceanic basin may have closed later
than previously thought and that the late Paleozoic tectonic evolution of Northeast China
needs to be reassessed.

In this study, we present zircon U–Pb and whole-rock geochemical data for Carbonifer-
ous igneous rocks from the Wunuer area, northern Great Xing’an Range, Northeast China,
to reconstruct the tectonic evolution of this area during the late Paleozoic, including the
opening (by subduction initiation) and closure (by collision) of the Wunuer Ocean. The
integration of the new results with previous data allows us to reconstruct the late Paleozoic
tectonic evolution of Northeast China.
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from [33,43,50–53].

2. Geological Setting and Sample Descriptions

The study area is in the vicinity of Wunuer town, Yakeshi City, in the northern Great
Xing’an Range of Inner Mongolia. Tectonically, the study area is located in the Xinlin–
Xiguitu suture zone (Figure 2). Ordovician outcrops in the area are composed mainly of
the Duobaoshan and Luohe formations. The Duobaoshan Formation comprises a set of
intermediate–felsic volcanic rocks with island-arc characteristics [54,55], whereas the Luohe
Formation is a set of clastic rocks that formed in an active-continental-margin setting [56,57].
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Silurian strata are absent from the study area. Exposed Devonian strata are mainly the
Niqiuhe and Daminshan formations, with the former comprising a set of continental-
margin clastic rocks [58] and the latter a set of intermediate–felsic volcanic rocks with
island-arc characteristics [59]. A large number of late Paleozoic intrusive rocks occur in the
study area, including diorite, granodiorite, monzogranite, and syenogranite [60,61], which
are emplaced into Ordovician or Devonian strata and overlain by Mesozoic volcanic rocks
and Quaternary cover (Figure 3).

Minerals 2023, 13, x FOR PEER REVIEW 4 of 19 
 

 

Luohe Formation is a set of clastic rocks that formed in an active-continental-margin 
setting [56,57]. Silurian strata are absent from the study area. Exposed Devonian strata 
are mainly the Niqiuhe and Daminshan formations, with the former comprising a set of 
continental-margin clastic rocks [58] and the latter a set of intermediate–felsic volcanic 
rocks with island-arc characteristics [59]. A large number of late Paleozoic intrusive rocks 
occur in the study area, including diorite, granodiorite, monzogranite, and syenogranite 
[60,61], which are emplaced into Ordovician or Devonian strata and overlain by Meso-
zoic volcanic rocks and Quaternary cover (Figure 3). 

Intrusive rocks in the Wunuer area include diorite, granodiorite, monzogranite, and 
syenogranite. A diorite pluton is located ~15 km to the southwest of Wunuer town. The 
pluton forms an approximately ellipsoidal body with an exposed area of 25 km2 and in-
trudes the Devonian Niqiuhe Formation (Figure 3). The diorite is gray to gray-green and 
has a fine-grained texture (Figure 4a). The rock consists of plagioclase (~55 vol.%), horn-
blende (~20 vol.%), quartz (~10 vol.%), biotite (~7 vol.%), and K-feldspar (~5 vol.%), with 
accessory minerals (~3 vol.%) including magnetite, zircon, and apatite. 

A granodiorite pluton is located ~16 km to the southwest of Wunuer town. The 
pluton is an approximately ellipsoidal body with an exposed area of 15 km2 and intrudes 
the abovementioned diorite pluton (Figure 3). The granodiorite is light gray to 
gray-green and has a fine-grained texture (Figure 4b). The rock consists of plagioclase 
(~45 vol.%), quartz (~20 vol.%), K-feldspar (~15 vol.%), hornblende (~15 vol.%), and bio-
tite (~5 vol.%). 

The monzogranite pluton is located ~12 km SE of Wunuer town and is an approxi-
mately ellipsoidal body with an exposed area of 20 km2 (Figure 3). The monzogranite is 
light pink in color and has a coarse-grained texture (Figure 4c). The rock consists of pla-
gioclase (~40 vol.%), quartz (~25 vol.%), K-feldspar (~30 vol.%), and biotite (~5 vol.%). 

The syenogranite pluton is located ~18 km SW of Wunuer town. The pluton is an 
approximately ellipsoidal body with an exposed area of 32 km2 (Figure 3). The sye-
nogranite is pink in color and has a coarse-grained texture (Figure 4d). The rock consists 
of quartz (~25 vol.%), K-feldspar (~60 vol.%), and plagioclase (~15 vol.%). 

 
Figure 3. Geological map of Wunuer area with sample locations (simplified and modified after the 
1:50,000 geological map). 
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Intrusive rocks in the Wunuer area include diorite, granodiorite, monzogranite, and
syenogranite. A diorite pluton is located ~15 km to the southwest of Wunuer town. The
pluton forms an approximately ellipsoidal body with an exposed area of 25 km2 and
intrudes the Devonian Niqiuhe Formation (Figure 3). The diorite is gray to gray-green
and has a fine-grained texture (Figure 4a). The rock consists of plagioclase (~55 vol.%),
hornblende (~20 vol.%), quartz (~10 vol.%), biotite (~7 vol.%), and K-feldspar (~5 vol.%),
with accessory minerals (~3 vol.%) including magnetite, zircon, and apatite.

A granodiorite pluton is located ~16 km to the southwest of Wunuer town. The pluton
is an approximately ellipsoidal body with an exposed area of 15 km2 and intrudes the
abovementioned diorite pluton (Figure 3). The granodiorite is light gray to gray-green and
has a fine-grained texture (Figure 4b). The rock consists of plagioclase (~45 vol.%), quartz
(~20 vol.%), K-feldspar (~15 vol.%), hornblende (~15 vol.%), and biotite (~5 vol.%).

The monzogranite pluton is located ~12 km SE of Wunuer town and is an approx-
imately ellipsoidal body with an exposed area of 20 km2 (Figure 3). The monzogranite
is light pink in color and has a coarse-grained texture (Figure 4c). The rock consists of
plagioclase (~40 vol.%), quartz (~25 vol.%), K-feldspar (~30 vol.%), and biotite (~5 vol.%).

The syenogranite pluton is located ~18 km SW of Wunuer town. The pluton is an
approximately ellipsoidal body with an exposed area of 32 km2 (Figure 3). The syenogranite
is pink in color and has a coarse-grained texture (Figure 4d). The rock consists of quartz
(~25 vol.%), K-feldspar (~60 vol.%), and plagioclase (~15 vol.%).



Minerals 2023, 13, 1090 5 of 20Minerals 2023, 13, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 4. Representative photomicrographs of the Carboniferous intrusive rocks in Wunuer area. 
(a) Diorite(+), (b) granodiorite(+), (c) monzogranite(+), (d) syenogranite(+). Hbl = Hornblende, Bt = 
biotite, Pl = plagioclase, Kfs = K-feldspar, Qz = quartz. 

3. Analytical Methods 
One sample for zircon geochronological analysis (U–Pb2071001) and eight samples 

for geochemical analysis were collected from the diorite pluton. One sample for zircon 
geochronological analysis (U–Pb2071003) and four samples for geochemical analysis 
were obtained from the granodiorite pluton. One sample for zircon geochronological 
analysis (U–Pb2072001) and two samples for geochemical analysis were collected from 
the monzogranite pluton. One sample for zircon geochronological analysis (U–
Pb2071005) and seven samples for geochemical analysis were obtained from the sye-
nogranite pluton. 

3.1. Zircon U–Pb Dating 
Zircons were separated from samples using conventional heavy liquid and magnetic 

techniques. Zircon grains were then randomly handpicked in alcohol under a binocular 
microscope, mounted in epoxy along with zircon standards, and polished to expose grain 
centers for cathodoluminescence (CL) imaging and U–Pb analysis. CL images were ob-
tained at Beijing Geoanalysis Co., Ltd., Beijing, China. U–Pb analysis was performed by 
laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) at Beijing 
Createch Testing Technology Co., Ltd., Beijing, China. The analytical instruments used 
for the dating were a ThermoFisher Neptune multi-receiver ICP-MS instrument and an 
SIUP193FXArF LA system. The operating conditions during analyses included a laser 
denudation spot diameter of 35 µm, a laser energy density of 10–13 J/cm2, and a fre-
quency of 8–10 Hz. Age data were plotted using Isoplot [62].  

3.2. Major and Trace Elements 
Whole-rock geochemical analyses were performed at the Analytical Laboratory of 

Beijing Research Institute of Uranium Geology, Beijing, China. Major elements (SiO2, 

Figure 4. Representative photomicrographs of the Carboniferous intrusive rocks in Wunuer area.
(a) Diorite (+), (b) granodiorite (+), (c) monzogranite (+), (d) syenogranite (+). Hbl = Hornblende,
Bt = biotite, Pl = plagioclase, Kfs = K-feldspar, Qz = quartz.

3. Analytical Methods

One sample for zircon geochronological analysis (U–Pb2071001) and eight samples
for geochemical analysis were collected from the diorite pluton. One sample for zircon
geochronological analysis (U–Pb2071003) and four samples for geochemical analysis were
obtained from the granodiorite pluton. One sample for zircon geochronological analysis
(U–Pb2072001) and two samples for geochemical analysis were collected from the monzo-
granite pluton. One sample for zircon geochronological analysis (U–Pb2071005) and seven
samples for geochemical analysis were obtained from the syenogranite pluton.

3.1. Zircon U–Pb Dating

Zircons were separated from samples using conventional heavy liquid and magnetic
techniques. Zircon grains were then randomly handpicked in alcohol under a binocu-
lar microscope, mounted in epoxy along with zircon standards, and polished to expose
grain centers for cathodoluminescence (CL) imaging and U–Pb analysis. CL images were
obtained at Beijing Geoanalysis Co., Ltd., Beijing, China. U–Pb analysis was performed
by laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) at Beijing
Createch Testing Technology Co., Ltd., Beijing, China. The analytical instruments used
for the dating were a ThermoFisher Neptune multi-receiver ICP-MS instrument and an
SIUP193FXArF LA system. The operating conditions during analyses included a laser
denudation spot diameter of 35 µm, a laser energy density of 10–13 J/cm2, and a frequency
of 8–10 Hz. Age data were plotted using Isoplot [62].

3.2. Major and Trace Elements

Whole-rock geochemical analyses were performed at the Analytical Laboratory of
Beijing Research Institute of Uranium Geology, Beijing, China. Major elements (SiO2, FeO,
TiO2, Al2O3, Fe2O3, MgO, MnO, CaO, Na2O, K2O, and P2O5) were analyzed using an
AxiosmAX X-ray fluorescence spectrometer, with an analytical precision of approximately



Minerals 2023, 13, 1090 6 of 20

±5%. Trace elements and rare earth elements (REEs) were analyzed using a NexION300D
ICP-MS instrument, with an accuracy better than 10%.

4. Results
4.1. Zircon U–Pb Ages
4.1.1. Early Carboniferous Intrusive Rocks

Most zircon grains from the sampled diorite are subhedral, display oscillatory zoning
in CL images (Figure 5a), and have Th/U ratios of 0.62–1.40, indicating a magmatic origin.
Analyses of zircons from sample U–Pb2071001 yielded 206Pb/238U ages of 347–310 Ma,
with a weighted mean age of 329.7 ± 5.0 Ma (MSWD = 2.3, N = 18; Table S1 and Figure 6a),
which is interpreted as the crystallization age of the zircons. The emplacement age of the
diorite pluton is therefore inferred to be early Carboniferous.
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Zircons from the sampled granodiorite are predominantly dark and subhedral, and
some display oscillatory zoning in CL images (Figure 5b). The Th/U ratios of the zircons
range from 1.04 to 2.68, consistent with a magmatic origin. Analyses of zircons from
sample U–Pb2071003 yielded 206Pb/238U ages of 350–322 Ma, with a weighted mean age
of 332.6 ± 6.9 Ma (MSWD = 3.1, N = 11; Table S1 and Figure 6b), which is interpreted as
the crystallization age of the zircons. The emplacement age of the granodiorite pluton is
therefore inferred to be early Carboniferous.

4.1.2. Late Carboniferous Intrusive Rocks

Most zircon grains from the sampled monzogranite are subhedral and display oscil-
latory zoning in CL images (Figure 5c) with Th/U ratios of 0.63–1.24, indicating a mag-
matic origin. Analyses of zircons from sample U–Pb2072001 yielded 206Pb/238U ages of
321–308 Ma, with a weighted mean age of 310.8 ± 4.7 Ma (MSWD = 0.26, N = 10;
Table S1 and Figure 6c), which is interpreted as the crystallization age of the zircons. The
emplacement age of the monzogranite pluton is therefore inferred to be late Carboniferous.

Zircons from the sampled syenogranite are predominantly subhedral, display oscil-
latory zoning in CL images (Figure 5d), and have Th/U ratios of 0.63–1.19, indicating
a magmatic origin. Analyses of zircons from sample U–Pb2071005 yielded 206Pb/238U
ages of 331–293 Ma, with a weighted mean age of 312.1 ± 9.4 Ma (MSWD = 4.2, N = 8;
Table S1 and Figure 6d), which is interpreted as the crystallization age of the zircons. The
emplacement age of the syenogranite pluton is therefore inferred to be late Carboniferous.

4.2. Geochemistry
4.2.1. Major Element Compositions

The sampled diorites have low SiO2 contents (52.59–57.85 wt.%) and contain Al2O3
(15.87–17.11 wt.%), Na2O + K2O (3.492–5.31 wt.%), TiO2 (0.556–1.02 wt.%), Fe2O3T
(7.54–9.73 wt.%), MgO (0.125–0.18 wt.%), CaO (5.82–8.68 wt.%), and MnO (3.54–5.96 wt.%)
(Table 1). These samples are classified mainly as gabbro diorites in a total-alkali–silica
(TAS) diagram (Figure 7a), are metaluminous with A/CNK values of 0.75–0.95 (Table 1
and Figure 7b), and are classified as calc-alkaline to tholeiitic in a K2O vs. SiO2 diagram
(Figure 7c).
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The sampled granodiorites have low SiO2 contents (62–64.74 wt.%) and contain
Al2O3 (12.23–13.77 wt.%), Na2O + K2O (3.11–3.88 wt.%), TiO2 (0.30–0.31 wt.%), Fe2O3T
(5.93–6.59 wt.%), MgO (0.10–0.12 wt.%), CaO (5.13–6.37 wt.%), and MnO (4.65–5.31 wt.%)
(Table 1). These samples are classified mostly as granodiorites in a TAS diagram
(Figure 7a), are metaluminous with A/CNK values of 0.78–0.87 (Table 1 and Figure 7b),
and are classified as tholeiitic in a K2O vs. SiO2 diagram (Figure 7c).
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Table 1. Major and trace elements of the Carboniferous intrusive rocks in Wunuer area.

Rocks Diorite Granodiorite Monzogranite Syenogranite

Sample 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021

Major oxides (wt%)

SiO2 56.01 54.41 57.85 55.68 52.59 54.49 55.71 57.22 62.00 64.74 64.57 64.35 71.07 74.64 76.97 75.10 78.50 72.60 71.68 72.15 76.97

TiO2 0.78 0.94 0.77 0.90 0.88 1.02 0.82 0.56 0.31 0.30 0.30 0.31 0.38 0.28 0.16 0.21 0.18 0.24 0.24 0.22 0.17

Al2O3 16.35 16.43 17.11 16.00 16.28 16.58 16.41 15.87 13.77 12.86 12.81 12.23 14.21 13.30 12.41 13.33 11.65 14.68 15.28 15.57 12.51

TFe2O3 7.76 9.12 8.23 8.88 9.57 9.73 8.63 7.54 6.53 5.93 6.19 6.59 3.17 1.56 0.82 0.91 0.70 1.48 1.43 0.98 0.72

MgO 0.18 0.16 0.13 0.15 0.16 0.14 0.15 0.13 0.12 0.11 0.10 0.12 0.04 0.04 0.05 0.04 0.02 0.04 0.03 0.02 0.04

MnO 5.13 5.12 3.54 4.69 5.96 4.39 4.44 4.26 5.18 4.65 5.02 5.31 0.62 0.32 0.14 0.25 0.18 0.53 0.53 0.37 0.15

CaO 7.84 6.40 6.58 5.82 7.44 7.78 7.53 8.68 6.37 5.29 5.13 5.75 0.33 0.26 0.43 0.65 0.42 1.00 1.39 1.09 0.42

Na2O 3.64 3.93 3.38 3.91 3.69 3.69 3.84 2.54 3.12 3.08 2.99 2.92 3.95 3.39 3.63 3.91 3.22 4.42 4.48 3.86 3.52

K2O 0.77 1.38 0.41 0.78 0.83 0.66 0.58 0.95 0.76 0.48 0.46 0.19 4.95 4.97 4.67 4.83 4.40 3.75 3.82 5.32 4.66

P2O5 0.14 0.13 0.14 0.15 0.13 0.11 0.15 0.07 0.06 0.06 0.06 0.06 0.07 0.04 0.02 0.04 0.03 0.11 0.10 0.08 0.03

LOI 1.38 1.94 1.83 2.99 2.42 1.38 1.71 2.14 1.76 2.40 2.30 2.15 1.20 1.11 0.61 0.64 0.61 1.07 1.01 0.23 0.73

Total 99.48 99.44 99.54 99.45 99.35 99.48 99.56 99.56 99.52 99.43 99.46 99.47 99.90 99.85 99.91 99.91 99.91 99.92 99.99 99.90 99.91

A/NK 2.40 2.06 2.85 2.20 2.34 2.45 2.36 3.05 2.31 2.30 2.36 2.44 1.20 1.21 1.12 1.14 1.16 1.30 1.33 1.28 1.15

A/CNK 0.78 0.84 0.95 0.90 0.79 0.79 0.80 0.76 0.79 0.85 0.87 0.79 1.14 1.16 1.05 1.04 1.08 1.12 1.09 1.11 1.08

Trace elements (ppm)

Rb 11.10 27.40 6.78 12.10 18.40 8.73 7.36 13.40 15.50 9.82 6.66 2.66 285.00 320.00 184.00 193.00 164.00 117.00 118.00 155.00 189.00

Ba 144.00 192.00 158.00 200.00 113.00 115.00 107.00 145.00 177.00 147.00 157.00 82.60 546.00 346.00 179.00 179.00 141.00 428.00 553.00 870.00 164.00

Th 1.88 1.49 0.94 1.73 1.87 1.43 1.21 2.57 2.50 3.37 3.00 3.61 19.60 29.80 18.40 19.80 16.70 9.40 11.60 7.90 18.60

U 0.37 0.42 0.38 0.30 0.49 0.49 0.30 0.50 0.42 0.78 0.66 0.89 2.49 2.68 2.37 2.11 1.72 0.10 1.07 0.62 2.04

Ta 0.33 0.26 0.15 0.22 0.21 0.45 0.35 0.23 0.15 0.18 0.16 0.19 1.26 1.40 1.09 1.16 0.10 1.30 1.28 0.97 1.23

Nb 4.18 3.08 2.03 2.50 2.54 6.15 5.08 2.51 2.10 2.32 2.05 2.49 11.50 12.90 11.70 12.60 11.10 7.83 7.39 5.23 13.60

La 13.30 9.06 7.75 8.71 8.94 10.50 10.60 9.37 9.27 9.85 8.49 10.40 31.20 22.90 29.20 35.90 29.70 18.10 22.60 14.40 39.40
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Table 1. Cont.

Rocks Diorite Granodiorite Monzogranite Syenogranite

Sample 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021

Ce 33.70 21.70 20.00 19.30 22.30 29.60 31.20 22.30 20.60 20.80 18.60 22.30 86.00 60.30 55.50 65.40 56.20 39.10 47.30 29.40 70.60

Sr 307.00 351.00 351.00 288.00 290.00 310.00 327.00 314.00 273.00 144.00 170.00 214.00 130.00 90.80 45.50 47.90 41.80 449.00 468.00 460.00 44.50

Nd 18.90 14.30 13.90 12.20 14.80 21.10 25.00 13.80 9.71 9.40 8.63 10.70 23.70 16.60 17.20 20.40 17.20 16.40 19.30 12.00 21.70

Zr 48.30 47.50 17.30 31.90 36.10 16.80 14.40 20.70 25.70 46.10 36.10 65.90 55.20 69.10 31.20 36.90 30.60 20.80 22.00 17.50 34.90

Hf 2.13 2.07 1.01 1.71 1.78 1.07 0.85 1.28 1.33 1.88 1.61 2.28 2.63 3.10 2.10 2.38 2.04 0.99 1.12 0.86 2.42

Sm 4.37 3.78 3.83 3.12 3.68 5.22 6.65 3.23 2.12 2.02 1.83 2.27 3.53 3.08 2.90 3.42 2.90 3.14 3.51 2.13 3.66

Y 26.80 24.90 26.40 19.80 20.50 38.20 45.10 18.90 15.50 14.40 13.40 16.30 7.34 11.20 15.60 17.00 13.70 9.09 8.83 5.86 16.90

Yb 2.63 2.42 2.66 2.07 2.02 3.66 4.47 1.99 1.76 1.65 1.56 1.88 0.78 1.17 1.72 1.75 1.32 0.70 0.70 0.48 1.79

Lu 0.41 0.37 0.41 0.31 0.30 0.59 0.69 0.31 0.28 0.26 0.24 0.31 0.19 0.18 0.28 0.27 0.22 0.10 0.10 0.07 0.29

La 13.30 9.06 7.75 8.71 8.94 10.50 10.60 9.37 8.49 9.27 9.85 10.40 31.2 22.90 29.20 35.90 29.70 18.10 22.60 14.40 39.40

Ce 33.70 21.70 20.00 19.30 22.30 29.60 31.20 22.30 18.60 20.60 20.80 22.30 86.00 60.30 55.50 65.40 56.20 39.10 47.30 29.40 70.60

Pr 4.29 2.97 2.79 2.62 3.12 4.50 5.06 3.06 2.15 2.37 2.35 2.60 6.76 4.71 5.20 6.14 5.30 4.26 5.24 3.21 6.56

Nd 18.90 14.30 13.90 12.20 14.80 21.10 25.00 13.80 8.63 9.71 9.40 10.70 23.70 16.60 17.20 20.40 17.20 16.40 19.30 12.00 21.70

Sm 4.37 3.78 3.83 3.12 3.68 5.22 6.65 3.23 1.83 2.12 2.02 2.27 3.53 3.08 2.90 3.42 2.90 3.14 3.51 2.13 3.66

Eu 1.47 1.25 1.24 1.10 1.20 1.51 1.97 1.00 0.41 0.51 0.47 0.48 0.43 0.43 0.39 0.43 0.36 0.63 0.75 0.70 0.44

Gd 4.92 4.38 4.41 3.66 4.02 5.67 7.07 3.55 2.13 2.40 2.26 2.56 3.02 2.83 2.92 3.51 2.93 2.71 3.00 1.91 3.78

Tb 0.75 0.70 0.73 0.60 0.62 0.91 1.17 0.55 0.33 0.37 0.35 0.40 0.31 0.38 0.40 0.47 0.38 0.35 0.37 0.23 0.49

Dy 4.42 4.24 4.48 3.51 3.60 5.47 6.99 3.20 2.04 2.33 2.17 2.51 1.39 1.96 2.19 2.51 1.99 1.72 1.65 1.09 2.58

Ho 0.93 0.90 0.97 0.75 0.75 1.17 1.47 0.67 0.46 0.53 0.49 0.55 0.25 0.39 0.46 0.52 0.40 0.30 0.29 0.19 0.53

Er 2.76 2.67 2.84 2.21 2.23 3.56 4.43 2.03 1.48 1.69 1.59 1.80 0.80 1.16 1.51 1.63 1.25 0.81 0.82 0.54 1.68

Tm 0.40 0.37 0.41 0.31 0.31 0.54 0.66 0.29 0.22 0.26 0.24 0.27 0.11 0.17 0.24 0.25 0.18 0.11 0.11 0.07 0.25

Yb 2.63 2.42 2.66 2.07 2.02 3.66 4.47 1.99 1.56 1.76 1.65 1.88 0.78 1.17 1.72 1.75 1.32 0.70 0.70 0.48 1.79

Lu 0.41 0.37 0.41 0.31 0.30 0.59 0.69 0.31 0.24 0.28 0.26 0.31 0.13 0.18 0.28 0.29 0.22 0.10 0.10 0.07 0.29

Y 26.80 24.90 26.40 19.80 20.50 38.20 45.10 18.90 13.40 15.50 14.40 16.30 7.34 11.20 15.60 17.00 13.70 9.09 8.83 5.86 16.90
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Table 1. Cont.

Rocks Diorite Granodiorite Monzogranite Syenogranite

Sample 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021

ΣREE 93.25 69.11 66.41 60.47 67.89 94.00 107.43 65.34 53.90 48.58 54.20 59.03 158.41 116.27 120.11 142.62 120.33 88.44 105.737 66.422 153.75

LREE/
HREE 4.42 3.31 2.93 3.51 3.90 3.36 2.99 4.19 4.98 4.74 4.64 4.74 22.34 13.09 11.36 12.05 12.88 12.00 14.03 13.51 12.50

δEu 0.97 0.94 0.92 0.99 0.95 0.84 0.87 0.90 0.66 0.63 0.69 0.61 0.39 0.44 0.41 0.38 0.37 0.65 0.69 1.04 0.36

δCe 1.09 1.02 1.05 0.98 1.03 1.06 1.04 1.02 1.03 1.04 1.05 1.02 1.39 1.35 1.02 0.99 1.01 1.05 1.03 1.02 0.98

LaN/
YbN 3.63 2.69 2.09 3.02 3.17 2.06 1.70 3.38 4.28 3.90 3.78 3.97 28.77 14.04 12.18 14.72 16.15 18.60 23.22 21.61 15.80

LaN/
SmN 2.18 1.72 1.45 2.00 1.74 1.44 1.14 2.08 3.33 3.14 3.50 3.29 6.34 5.34 7.23 7.53 7.35 4.14 4.62 4.85 7.73

GdN/
YbN 1.55 1.50 1.37 1.46 1.65 1.28 1.31 1.48 1.13 1.13 1.13 1.13 3.21 2.00 1.40 1.66 1.84 3.21 3.56 3.31 1.75
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The sampled monzogranites have high SiO2 contents (71.07–74.64 wt.%) and con-
tain Al2O3 (13.3–14.21 wt.%), Na2O + K2O (8.36–8.9 wt.%), TiO2 (0.282–0.381 wt.%),
Fe2O3T (1.36–3.17 wt.%), MgO (0.036–0.044 wt.%), CaO (0.259–0.332 wt.%), and MnO
(0.323–0.618 wt.%) (Table 1). These samples are classified as granites in a TAS diagram
(Figure 7a), are peraluminous with A/CNK values of 1.14–1.16 (Table 1 and Figure 7b), and
are classified as high-K calc-alkaline in a K2O vs. SiO2 diagram (Figure 7c).

The sampled syenogranites have high SiO2 contents (71.68–78.5 wt.%) and contain
Al2O3 (11.65–15.57 wt.%), Na2O + K2O (7.62–9.18 wt.%), TiO2 (0.16–0.24 wt.%), Fe2O3T
(0.7–1.48 wt.%), MgO (0.02–0.05 wt.%), CaO (0.42–1.39 wt.%), and MnO (0.14–0.528 wt.%)
(Table 1). These samples are classified as granites in a TAS diagram (Figure 7a), are
peraluminous with A/CNK values of 1.03–1.12 (Table 1 and Figure 7b), and are classified
as high-K calc-alkaline in a K2O vs. SiO2 diagram (Figure 7c).

4.2.2. Trace Element Compositions

The sampled diorites are relatively enriched in Th and U and depleted in some high-
field-strength elements (HFSEs; e.g., Nb and Ti). The rocks display slightly fractionated REE
patterns between light REEs (LREEs) and heavy REEs (HREEs) (LREE/HREE = 2.93–4.42,
(La/Yb)N = 1.7–3.63), with LREE enrichment, HREE depletion, and slight or no negative
Eu anomalies (Eu/Eu* = 0.84–0.99) (Table 1 and Figure 8a,b).

The sampled granodiorites are relatively enriched in Th and U and depleted in some
HFSEs (e.g., Nb and Ti). The rocks display lightly fractionated REE patterns
(LREE/HREE = 4.64–4.98, (La/Yb)N = 3.78–4.28), with LREE enrichment, HREE depletion,
and negative Eu anomalies (Eu/Eu* = 0.61–0.69) (Table 1 and Figure 8c,d).

The sampled monzogranites are enriched in Th, U, and large-ion lithophile elements
(LILEs; e.g., Rb) and depleted in some HFSEs (e.g., Nb and Ti). The rocks display strongly
fractionated REE patterns (LREE/HREE = 13.09–22.34, (La/Yb)N = 14.04–28.77), with LREE
enrichment, HREE depletion, and negative Eu anomalies (Eu/Eu* = 0.39–0.44) (Table 1 and
Figure 8e,f).

The sampled syenogranites are enriched in Th, U, and LILEs (e.g., Rb and K) and
depleted in some HFSEs (e.g., Nb and Ti). The rocks display strongly fractionated REE
patterns (LREE/HREE = 11.36–14.03, (La/Yb)N = 12.18–23.22), with LREE enrichment,
HREE depletion, and negative Eu anomalies (Eu/Eu* = 0.36–1.04) (Table 1 and Figure 8g,h).
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5. Discussion
5.1. Carboniferous Intrusive Rocks in the Great Xing’an Range

According to our geochronological analyses, the studied diorite and granodiorite
were emplaced during the early Carboniferous, and the syenogranite and monzogranite
were emplaced during the late Carboniferous. There are widespread occurrences of coeval
magmatic rocks in the Great Xing’an Range. Most of the early Carboniferous intrusive rocks
are distributed in a strip along the Xinlin–Xiguitu and Hegenshan suture zones (Figure 9).
The late Carboniferous intrusive rocks have a wider distribution, occurring mainly in the
Yakeshi, Duobaoshan, Zhalantun, Heihe, and Wudalianchi areas.
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5.2. Petrogenesis of Carboniferous Intrusive Rocks in the Northern Great Xing’an Range
5.2.1. Petrogenesis of the Wunuer Early Carboniferous Igneous Rocks

Early Carboniferous igneous rocks in the Wunuer area comprise diorite and gran-
odiorite. These rocks contain hornblende and biotite but no primary muscovite. The
mineral assemblages are consistent with those of I-type granites [74–79]. A/CNK values
(0.75–0.95) classify the diorites and granodiorites as metaluminous rocks. The rocks are
characterized by relatively high Al2O3, Fe, Mg, and Sr and low Si and K contents, the
enrichment in LILEs and LREEs, and the depletion in HREEs. The granodiorites plot in
the I-type and S-type granite fields in the Nb–(10,000 Ga/Al), Ce–(10,000 Ga/Al), and
Y–(10,000 Ga/Al) diagrams (Figure 10a–c) and mainly in the I-type granite field in an ACF
diagram (Figure 10d).

The average value of Rb/Sr for the diorite and granodiorite is 0.04, which is close to
the primitive mantle (0.03), E-MORB (0.033), and OIB (0.047) [80], but lower than the crustal
ratio (0.15). These geochemical characteristics suggest that the diorite and granodiorite are
sourced from partial malting of the mantle.
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5.2.2. Petrogenesis of the Wunuer Late Carboniferous Igneous Rocks

Late Carboniferous igneous rocks in the Wunuer area comprise monzogranite and
syenogranite. These rocks are composed predominantly of quartz, K-feldspar, and pla-
gioclase. A/CNK values (1.03–1.16) classify the monzogranites and syenogranites as
peraluminous rocks. The rocks are characterized by relatively high SiO2 and K2O and low
P2O5 contents, the enrichment in Rb, Th, and U, and the depletion in Ba, Nb, Ta, Sr, P,
and Ti. These characteristics are consistent with those of S-type granites. The monzogran-
ites and syenogranites plot in the I-type and S-type granite fields in Nb—(10,000 Ga/Al),
Ce—(10,000 Ga/Al), and Y—(10,000 Ga/Al) diagrams (Figure 10a–c) and mostly in the
S-type granite field in an ACF diagram (Figure 10d).
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The average value of Rb/Sr for the monzogranite and syenogranite is 2.53, which is
close to the crustal ratio (0.15) but higher than the primitive mantle (0.03), E-MORB (0.033),
and OIB (0.047) [80]. These geochemical characteristics suggest that the monzogranite and
syenogranite are sourced from partial melting of the crust.

5.3. Inferred Tectonic Settings

The geochemical characteristics of the diorites and granodiorites (Section 4.2) are
consistent with formation in a subduction-related continental-arc setting, and those of the
monzogranites and syenogranites suggest formation in a syn-collisional tectonic setting.
The granodiorites plot in the volcanic arc fields in Rb–(Y + Nb) and Rb–(Yb + Ta) diagrams
(Figure 11a,b) and mostly in the volcanic arc fields in Rb/10–Hf–3Ta and Rb/30–Hf–3Ta
diagrams (Figure 11c,d). The syenogranites and monzogranites fall predominantly in the
syn-collisional fields in Rb–(Y + Nb) and Rb–(Yb + Ta) diagrams (Figure 11a,b) and in the
syn-collisional fields in Rb/10–Hf–3Ta and Rb/30–Hf–3Ta diagrams (Figure 11c,d).
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5.4. Tectonic Implications

The integrated results of this study, combined with regional geological data, allow
a new model to be proposed for the late Paleozoic tectonic evolution of the northern
Great Xing’an Range (Figure 12), as follows. During the early Carboniferous (360–340 Ma),
subduction of the Paleo-Asian oceanic plate beneath the united Xing’an–Erguna Massif
occurred, with the associated development of a back-arc ocean basin (the Wunuer oceanic
basin). The early Carboniferous igneous rocks (360–340 Ma) display markedly different
rock associations and geochemical characteristics from east to west across the Xing’an
block. Igneous rocks in the east of the Xing’an block (the Heihe, Nenjiang, Zhalantun,
and Moguqi areas) are composed of gabbro, gabbro diorite, monzogranite, and syenogran-
ite and are classified as calc-alkaline, consistent with formation in a subduction-related
setting [41,85–88]. In contrast, ophiolites and gabbros in the west of the Xing’an block
(the Wunuer area) are consistent with a back-arc ocean basin setting, for example, the
age of the Wunuer ophiolitic mélange is 341~346 Ma; the Wunuer ophiolitic mélange is
classified as SSZ type according to geochemical characteristics and may be a late product of
a mature back-arc basin tectonic setting [53]. We suggest that early Carboniferous igneous
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rocks formed as a result of northwest-directed subduction of the Paleo-Asian oceanic plate,
which was initiated during the late Devonian [66,89]. The continuous subduction of the
Paleo-Asian oceanic slab generated a magmatic arc encompassing the Heihe, Nenjiang,
Zhalantun, and Mogiqi areas, as well as the Wunuer back-arc oceanic basin in the Wunuer
area [53,60,66,90–92].

During the early–late Carboniferous (340–310 Ma), sustained subduction of the Paleo-
Asian oceanic plate and subduction of the Wunuer oceanic basin occurred. Igneous rocks
in the east of the Xing’an block (the Longzhen and Yaergenchu areas) are composed
of granodiorite and monzogranite, which are classified as calc-alkaline series, implying
formation in a subduction-related setting [93,94]. The diorite, granodiorite, monzogranite,
and syenogranite in the west of the Xing’an block (Tahe, Taerqi, and Wunuer areas) formed
in a subduction-related setting, indicating that the Wunuer oceanic basin had entered the
subduction phase [28,52,95,96].
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Erguna Massif; SZM = the Songnen–Zhangguangcai Range Massif.

The late Carboniferous–early Permian (310–275 Ma) was characterized by a syn-
collisional to post-collisional tectonic setting between the united Xing’an–Erguna Mas-
sif and the Songnen–Zhangguangcai Range Massif. The widely distributed late early
Carboniferous–early Permian igneous rocks in the northern Great Xing’an Range are
composed mostly of syenogranite and monzogranite and signify a syn-collisional set-
ting [61,67,96]. The occurrence of early Permian alkaline rocks implies a subsequent
extensional tectonic environment in a post-collisional setting [52,67]. Therefore, we suggest
that the late Carboniferous–early Permian igneous rocks formed in a syn-collisional to
post-collisional transitional setting in the Wunuer and Taerqi areas [52,67,96] and in the
Heihe, Duobaoshan, Nenjiang, and Zhalantun areas [28,67,68,97], implying that both the
Wunuer Ocean and Paleo-Asian Ocean had closed.
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6. Conclusions

We generated new zircon U–Pb and whole-rock geochemical data for Carboniferous
igneous rocks from the Wunuer area, northern Great Xing’an Range, to reconstruct the late
Paleozoic tectonic evolution of this area and, in combination with regional geological and
geochronological data, to establish an integrated tectonic history of Northeast China. The
main conclusions of this study are as follows:

(1) Intrusive rocks in the Wunuer area include diorite, granodiorite, monzogran-
ite, and syenogranite. The zircon U–Pb mean ages of the diorite and granodiorite are
329.7 ± 5.0 and 332.6 ± 6.9 Ma, respectively, indicating early Carboniferous emplacement
of these rocks. The zircon U–Pb mean ages of the monzogranite and syenogranite are
310.8 ± 4.7 and 312.1 ± 9.4 Ma, respectively, indicating late Carboniferous emplacement.

(2) The geochemical signatures of the Wunuer rocks indicate that the diorite and gran-
odiorite formed in a subduction-related continental-arc setting and that the syenogranite
and monzogranite formed in a syn-collisional tectonic setting.

(3) A new three-stage model for the late Paleozoic tectonic evolution of Northeast
China is proposed: (1) early Carboniferous (360–340 Ma) subduction of the Paleo-Asian
oceanic plate beneath the united Xing’an–Erguna Massif and formation of the Wunuer
oceanic basin in the Yakeshi area; (2) early Carboniferous–late Carboniferous (340–310 Ma)
subduction of the Paleo-Asian oceanic plate beneath the united Xing’an–Erguna Massif
and initiation of subduction of the Wunuer oceanic basin; and (3) late Carboniferous–early
Permian (310–275 Ma) syn-collisional to post-collisional tectonic transition between the
united Xing’an–Erguna and Songnen–Zhangguangcai Range massifs.

Supplementary Materials: The following supporting information can be downloaded froom: https:
//www.mdpi.com/article/10.3390/min13081090/s1, Table S1: LA-ICP-MS U-Pb-Th data for zircons
for the Carboniferous intrusive rocks in Wunuer area.
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