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Abstract: Clay mineral authigenesis at continental margins plays an important role in global marine
element cycles. However, despite being increasingly used as tracers for both modern and past oceano-
graphic conditions, the behavior of the rare earth elements (REEs) and their isotopes during marine
clay authigenesis still remains poorly known. In this study, we report on a detailed geochemical
investigation of glauconite from the West African continental shelf, near the mouth of the Congo
River. Elemental, neodymium, and hafnium isotope analyses were conducted on both acid leachate
and separated clay-size fractions of glauconite pellets, in order to investigate the behavior of REE
during the formation of authigenic clays. Our data indicate that kaolinite dissolution and subsequent
Fe-bearing clay authigenesis act as a net source of REEs to seawater. We show that enhanced glau-
conitization, as inferred from increasing Fe and K contents, is accompanied by significant decoupling
of the REE toward markedly LREE-enriched shale-normalized patterns in neoformed clay separates.
Using both Nd and Hf isotopes and SEM observations, we rule out any seawater influence and argue
that this shift primarily reflects the progressively overwhelming presence of insoluble nanocrystals
of detrital LREE-rich phosphates, which are known to occur in close association with kaolinite in
tropical soils. Due to their marked insolubility in surface environments, such nanocrystals can be
preserved during kaolinite dissolution and subsequently incorporated into the aggregates of authi-
genic green clays forming the peloids. Most strikingly, we show that the combined influence of net
REE loss (due to kaolinite dissolution) and decoupling (due to subsequent entrapment of inherited
LREE-bearing accessory phases into neoformed clay minerals) is accompanied by preferential release
of a dissolved REE fraction characterized by seawater-like distribution patterns. These findings
reinforce the emerging view that clay mineral dissolution and authigenesis at continental margins
possibly play a major role in marine REE cycling.

Keywords: neodymium; hafnium; kaolinite; phosphate minerals; green marine clay authigenesis

1. Introduction

Authigenic clay mineral formation occurs widely on continental margins, driven by the
dissolution of reactive phases such as primary silicate minerals, biogenic silica, and Al- and
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Fe-oxyhydroxides [1]. This process is commonly referred to as reverse weathering, because
unlike continental silicate weathering, it acts as a major sink for many elements in the ocean,
but also as a net source of CO2 to the atmosphere–ocean system. Reverse weathering takes
place in organic-rich sediments deposited in deltaic systems such as the Amazon Fan [1], but
fast retrograde clay mineral reactions can also proceed at the deep seafloor [2–5]. Extensive
authigenic clay formation may have also prevailed in ancient oceans, especially during the
Precambrian, when presumably a much higher dissolved silica concentration in seawater
possibly played an important role in the global carbon cycle and Earth’s climate [6,7]. While
growing evidence exists for the importance of clay mineral authigenesis in the oceanic
geochemical cycle of major elements such as Si, K, Mg, and Fe [2–5], the behavior of trace
elements during reverse weathering still remains poorly constrained. Understanding the
impact of marine clay authigenesis on the cycling of trace elements and their isotopes in
the ocean is of particular importance because of their widespread use as paleoceanographic
and paleoenvironmental tracers in the sedimentary record. Rare earth elements (REEs)
are one the most extensively studied groups of trace elements for reconstructing modern
and past oceanographic conditions, particularly via the use of radiogenic neodymium (Nd)
isotopes [8,9]. While earlier studies argued that the oceanic REE budget was dominated by
riverine inputs and the dissolution of aeolian dusts in surface waters [10], recent work has
led to the proposal that REE and Nd isotope budgets in the ocean are strongly influenced
by exchange processes taking place at continental margins [11,12], particularly via coupled
clay mineral dissolution and authigenesis in marine sediments [13–15]. To date, however,
there is still a lack of conceptual understanding of the behavior of REEs during marine
clay authigenesis.

In this study, we analyzed a suite of authigenic clays separated from green alumino-
silicate pellets formed on the continental shelf near the mouth of the Congo River (Figure 1).
Our geochemical investigation includes the measurement of neodymium (Nd) and hafnium
(Hf) isotope ratios, in addition to the major and trace element abundances. In the eastern
South Atlantic, the distribution of Nd isotopes in the upper water column is relatively
homogeneous [16], displaying εNd values ~−15.5 (i.e., Nd isotopic ratios expressed relative
to the chondritic uniform reservoir) that largely reflect the contribution of riverine inputs
from the Congo River combined with intense particulate–seawater exchange processes in
the water column, which collectively strongly influence regional marine elemental bud-
gets [16–18]. In contrast to Nd isotopes, which are not significantly decoupled during Earth
surface processes and thus serve as powerful proxies for provenance in the sedimentary
record [19,20], radiogenic Hf isotopes can be significantly impacted by the dissolution
of terrigenous material in both continental and marine environments [21–23]. In most
rocks, soils, and suspended sediments, the Hf budget is dominated by zircon; a highly
resistant accessory mineral characterized by low lutetium–hafnium (Lu/Hf) and low (unra-
diogenic) εHf compositions compared to other rock-forming minerals [24,25]. Additionally,
continental chemical weathering typically leads to the preferential dissolution of accessory
phosphate minerals (e.g., apatite) and other Lu-rich mineral phases such as allanite and
sphene [21,26], which release a fraction of radiogenic Hf (with high εHf values) to nearby
surface environments. The combination of these two processes (i.e., ‘zircon’ effect and
preferential dissolution of Lu-rich minerals) explains why river waters and seawater are
typically characterized by more radiogenic Hf isotope compositions compared to regional
detrital sources [16,21–23,27,28]. The decoupling between Nd and Hf isotopes during Earth
surface processes is best illustrated in a εNd vs. εHf diagram (Figure 2a), where river waters
and seawater define a global ‘seawater array’ [29] that lies well above the ‘terrestrial array’
defined by most igneous rocks and bulk sediments [30,31]. On continents, the same pro-
cesses also explain why detrital clays formed in soils during chemical weathering typically
display more radiogenic Hf isotope compositions compared to the corresponding coarse-
grained, zircon-rich, sediment fractions dominated by primary minerals [32–35]. In the εNd
vs. εHf plot, the clay-size fraction of detrital sediments define a global ‘clay array’ [35] that
distinctively lies between the ‘seawater array’ and the ’terrestrial array’ (Figure 2a). All of
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the above characteristics make the combined use of Hf–Nd isotopes in clay-size sediments
particularly well-suited for investigating continental chemical weathering processes in
the sedimentary record [36–38]. Similarly, the application of Hf–Nd isotopes to marine
authigenic clays is expected to provide unique constraints on the behavior of trace elements
during reverse weathering, particularly for REEs.

2. Green Clay Authigenesis at the Congo Shelf

The Congolese Shelf is a relatively flat 40-to-80 km wide platform that extends from
coastal West Africa to the continental shelf-break located at about a 120 m water depth
(Figure 1). Regional oceanography at the Congo Shelf is dominated by the northward
flowing Benguela Coastal Current (BCC) and the Congo freshwater discharge (i.e., the
second largest river on Earth by discharge volume) (Figure 1). In its pathway, the BCC
entrains the Congo River plume northward along the coast of Cabinda and Congo while
substantial sediment loads exported by the Congo River are channeled into the Congo
submarine canyon, whose head directly lies within the river estuary [39], a large fraction of
suspended particulates is transported northward within the Congo plume and subsequently
deposited at the Congolese Shelf (Figure 1). About 180 km away from the mouth of the
Congo River, the resulting mud deposit composed of abundant fecal pellets extends up to
45-km offshore of Pointe-Noire [40] (Figure 1). At this location, the deposition of Congo
River-borne particulates associated with substantial amounts of kaolinite, reactive iron
minerals, and terrestrial organic carbon drives intense marine clay authigenesis, resulting
in the extensive formation of glauconitic grains [40,41]. The exceptionally high contents
of sedimentary iron in the muds of this area (up to 20%–30% Fe2O3) constitute one of the
determining conditions for glauconitization at the Congo margin [41].
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Figure 1. Bathymetric map of the West African margin and location of the studied samples. The
red dotted arrows represent the flow trajectory of the Benguela Coastal Current (BCC), which
redistributes kaolinite-rich Congo River-borne suspended material northward along the Congo
Shelf. Orange circles indicate the location of sediment cores containing glauconite pellets analyzed
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in this study, all recovered from the large mud deposit fed by fine-grained sediment fluxes from the
Congo River. Note that the distribution maps of both the mud deposit and glauconitic grains in the
study area are reported in [40]. All samples were collected from surficial sediment samples (0–10 cm
core depth), except for core C213. The location and name of hydrographic stations (green squares)
used for comparative Nd–Hf isotope data for seawater and river water [16] are also shown, as for the
sediment core (JC187-PC10) used for characterizing the average major and trace element composition
of the clay-size detrital fraction exported by the Congo River.

On the West African continental shelf, fecal pellets represent the main substrate for
green clay authigenesis and glauconitization [41,42]. Under relatively high sedimentation
rates, the formation of authigenic Fe-bearing phyllosilicates proceeds from the transfor-
mation of kaolinite into 7 Å Fe-rich phases, which involves the substitution of Fe and
Mg for Al in octahedral sheets [41]. This process involves successive steps of dissolution–
recrystallization reactions, which take place over a timescale of ~102–103 years [43]. During
this process, progressive Al loss resulting from kaolinite transformation leads to goethite
neoformation.

When fecal pellets remain for a longer period of time at the sediment–water inter-
face under low sedimentation rate conditions, kaolinite dissolution and the subsequent
neoformation of micaceous layers also involves the fixation of K from seawater. After the
complete disappearance of kaolinite, green clay neoformation evolves from a smectite-like
composition, with K2O contents of 2%–3%, toward a more evolved glauconitic composition
with K2O up to 5%–6%. This process is typically achieved over 104 year timescales, and is
generally not accompanied by any further increase in Fe2O3 content [44]. The neoformation
of K-rich mica-like silicates may occur either at the expense of the 7 Å Fe-bearing authigenic
phase, or directly from recrystallization following kaolinite dissolution. At the Congo Shelf,
an empirical relationship is observed between the composition of glauconitic pellets and
water depth, which relates to their age of formation, with older pellets being encountered
at deeper shelf settings characterized by slower sedimentation rates [41].

The mineralogical composition of peloid populations on the Congo Shelf has been
thoroughly investigated in previous studies through XRD analyses of different density
fractions of green grains [41,45]. Representative X-ray diffractograms are presented for
selected pellets from the same study area (Figure 3). The samples collected in coastal
environments subject to relatively high sedimentation rates are dominated by immature
green peloids containing 7 Å Fe-rich clay mineral phases (Figure 3a). Measurements of d060
for those 7 Å minerals in various density fractions indicate the progressive transformation
of kaolinite into trioctahedral l:1 phyllosilicates in these pellets. Projection of the chemical
composition inferred from the approximate crystallochemical formula onto a classification
field confirmed the transformation of kaolinite into a 7 Å Fe-rich phase via the substitution
of Fe2+ and Mg for Al in the octahedral sheet, with negligible changes in the tetrahedral
sheet [41,45]. The resulting intermediate phase has a composition closer to greenalite
than berthierine, suggesting that the evolution process may have been inhibited by the
formation of goethite [41,45]. In contrast, XRD measurements conducted on density-specific
fractions of samples from more distal outer shelf environments indicate that the heaviest
fractions in these samples, dominated by shiny and finely cracked ovoidal peloids, are
mostly composed of goethite (Figure 3b). The X-ray diffractograms corresponding to lighter
density fractions indicate the ongoing neoformation of a 10 Å mineral phase corresponding
to glauconite. The 10 Å authigenic minerals formed in mature grains from the outer shelf
display a relatively homogenous composition and typically occur in close association with
goethite and quartz [41,45].
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Figure 2. Neodymium and hafnium isotopes in the sedimentary system. (a) Nd–Hf isotope com-
positions of bulk modern marine sediments, ancient shales and sandstones, and clay- and silt-size
fractions of modern river sediments [30,31,35]. The terrestrial array corresponds to the correla-
tion defined by all terrestrial rocks including bulk sedimentary rocks [30,31], while the clay array
(εHf = 0.78 × εNd + 5.23) refers to the linear regression based on fluvial clays and the clay-size frac-
tions of modern sediments [35]. The seawater array includes the Nd–Hf isotope data for seawater
and marine ferromanganese crusts and nodules [29]. (b) Nd–Hf isotope data for the acid leachate
and separated clay-size fractions of studied glauconite grains from the Congo Shelf. Data for Congo
River and upper surface waters (<300 m water depth) at the Congo Shelf are from [16]. ‘Type 1′

samples correspond to immature multi-pellet samples containing Fe-bearing green clays, while ‘Type
2′ samples are dominated by authigenic 7 Å Fe-rich mineral phases. The ‘Type 3′ samples correspond
to mature glauconite-bearing samples. Additionally shown for comparison are the Hf–Nd isotope
data for leached sedimentary Fe-oxyhydroxides [32] and fine-grained sediments from the Congo
Fan [35,46], and clay-size fractions of suspended particulates from the Oubangui, Kasai, and Lualaba
(i.e., the main tributaries of the Congo River) [36,47].

A former pioneering study already reported elemental and Nd–Sr isotope data for
glauconite formed at the Congo Shelf [49]. After identifying the presence of several detrital
and seawater-derived components within the pellets, the authors concluded that glauconite
formation was accompanied by progressive incorporation of an authigenic phosphate-
rich phase, arguing that mature grains with K2O > 6.5% displayed seawater Nd isotope
compositions [49]. In this new study, we revise this interpretation, taking advantage of the
fact that both water masses and detrital sediment sources at the Congo Shelf are now fully
characterized for Nd and Hf isotopes.
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Figure 3. X-ray diffraction patterns of different density fractions from green pellets of the Congo
Shelf (adapted from [41,45]). (a) ‘Type 1′ sample 191 (coastal region; near core 70 VB). 2Ga (dashed
line) is sample 2G treated with HCl to remove iron oxides. Goe: goethite; K: kaolinite; B: 7◦θ Cokα
Fe-rich phase; Q: quartz. The grey bands around 14 and around 29◦θ Cokα indicate the progress of
the neoformation of iron-rich green clay minerals (7 Å phase). (b) ‘Type 3′ sample 210 (outer shelf
region; near core 213). 9G: d > 2.78; 11G: 2.70 < d < 2-78; 12G: 2.64 < d < 2.70; 13G: 2.53 < d < 2.64.
Goe: goethite; G: glauconite; Q: quartz. The grey bands around 9◦θ Cokα (001) and around 23◦θ
Cokα (020) indicate the progress of glauconite neoformation (adapted from [41,45,48]).

3. Materials and Methods
3.1. Studied Glauconitic Pellets

Selected glauconitic grains for this study were recovered at the continental shelf about
~75 to 180 km northward of the mouth of the Congo River (Figure 1). The inner (shal-
lower) part of the plateau is directly under the influence of the BCC and is characterized
by relatively high sedimentation rates. The outer continental shelf exhibits reduced sedi-
mentation rates, and is the location of one of the most productive “glauconite factories”
in the Gulf of Guinea [40,42]. Ten surface sediment samples collected between a 16 and
200 m water depth were analyzed in this study, corresponding to representative successive
stages of green clay authigenesis (Table 1). As above-mentioned, the different stages of
glauconitization at the Congolese margin are generally related to the age of corresponding
sediment deposits, inferred from the direct radiocarbon dating of large benthic foraminifera
(e.g., Amphistegina gibbosa) associated with shelly glauconitic sands or from bulk organic
14C measurements of fine-grained sediments conducted in the context of earlier paleoenvi-
ronmental investigations [44,50–52]. All of the studied samples were derived from upper
surface sediments (0–10 cm depth below the seafloor, b.s.f.), except for core C213 (113 m
water depth), from which five samples were collected from different sediment depths down
to 198 cm b.s.f. The surface samples were selected because they correspond to representa-
tive sedimentary facies at the Congo Shelf. The different samples recovered in core C213
were chosen because green pellets along this core display a range of facies and elemental
compositions indicative of various stages of green clay authigenesis. The inferred ages
of the studied green pellets and associated sediment deposits include muds from the last
glacial maximum (~20 kyr B.P.), shelly sands from the beginning of the last transgression
(~13–12 kyr B.P.), and muds from the active transgression period (~11–6 yr B.P.) and the
Holocene sea-level highstand (<6 kyr B.P.) (Table 1).
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Table 1. The studied glauconitic sediment samples on the Congo Shelf and estimated age.

# Sample Lat S (◦) Long E (◦) Core Depth
(cm b.s.f.)

Water Depth
(m b.s.l.)

Approx. Age
(kyr)

Degree of
Glauconitization a

1 C240 4◦42 11◦47 0–10 16 1–2 Type 1
2 70VB 5◦01 11◦57 0–10 25 2–3 Type 1
3 9VT 4◦57 11◦51 0–10 41 2–3 Type 2
4 44VMB 4◦57 11◦49 0–10 46 2–3 Type 2
5 C198 4◦41 11◦40 0–10 50 4–6 Type 2
6 C109 4◦52 11◦30 0–10 104 10 Type 2
7 C1180 5◦04 11◦33 0–10 110 12 Type 3
8 C203 4◦49 11◦16 0–10 125 20 Type 3
9 C236 5◦06 11◦30 0–10 200 20 Type 2
10 C213-10 4◦36 11◦06 10–20 113 10 Type 3
11 C213-39 ‘ ‘ 39–40 ‘ 12 Type 3
12 C213-90 ‘ ‘ 90–100 ‘ 13 Type 3
13 C213-130 ‘ ‘ 130–140 ‘ 15 Type 3
14 C213-198 ‘ ‘ 198 ‘ 20 Type 1

a ‘Type 1’: immature pellets containing Fe-bearing green clays. ‘Type 2’: moderately mature pellets dominated by
Fe-bearing green clays. ‘Type 3’: mature pellets dominated by glauconite. b.s.l.—below sea level.

As discussed below, the studied samples were classified into three categories based
on the corresponding K2O and Fe2O3 abundances in the separated clay fractions: ‘Type 1′

samples (70VB; C213-198), which correspond to immature multi-pellet samples with rel-
atively low K2O (between ~1.4 and 2.2%) and Fe2O3 (<20%) contents; ‘Type 2′ samples
(9VT, 44VMB, C109) with clays exhibiting moderate K2O (<2.4%) but higher Fe2O3 con-
tents (from 20% to 25%), indicative of higher proportions of authigenic 7 Å Fe-rich min-
eral phases; ‘Type 3′ samples (C203, C213-36, C213-90, C213-130) corresponding to more
mature glauconite-bearing samples with clays exhibiting higher K2O (>3%) and Fe2O3
(>25%) contents.

In this study, most green grains formed from fecal pellets produced by mud-eater
worms, except for a few samples recovered from a band of relict shelly sediments at about
a −100 m water depth (i.e.,18 kyr B.P.), which also included inner molds of organisms
such as foraminifera or various fragments of mollusks, sea urchin tests, or bryozoans. This
observation indicates that glauconitization can occur in different depositional settings at the
Congo Shelf [40,50]. Above a 50 m water depth, glauconitic pellets are mostly grey-green
and display an earthy appearance. Shallow grains are also relatively smooth and small
(250 to 400 µm in diameter). In contrast, grains from the deeper shelf setting are commonly
cracked, dark-green in color, and may reach ~1 mm in diameter. Beyond a 120 m water
depth, all glauconitic grains at the Congo Shelf correspond to almost pure green sands, in
an environment characterized by low sedimentation rates [41,42,53].

Finally, for comparison purposes, we used the average geochemical composition of
detrital clay-size fractions (n = 144) separated from a sediment core (JC187-PC10) recovered
from a terrace of the Congo submarine canyon (−5.910◦ S; 11.332◦ E; 1666 m water depth;
15.15 m long; Figure 2). These samples were processed using the same chemical and ana-
lytical procedures as for the studied green grains. Note that the clay mineral assemblages
exported from the Congo River during the late Quaternary have been dominated by kaolin-
ite (between ~45% and 70%), smectite (~15%–40%), illite (~10%–20%), and minor amounts
of chlorite (<8%) [54]. The clay-size fraction of marine muds on the Congo Shelf may also
contain substantial amounts of quartz (up to ~40%; [41]).

3.2. Sample and Chemical Preparation

The Fe-bearing peloids analyzed in this study were isolated using a paramagnetic
separator and then divided by means of density separation using bromoform and methyl
alcohol. All samples were thoroughly rinsed in ultrapure water to remove any surficial
clays attached to glauconitic pellets, oven dried, and very gently ground in an agate mortar.
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The resulting powders were split into two sub-samples for separate analyses on: (1) the
acid-leachable fraction of glauconitic pellets, which most likely includes goethite and other
Fe-oxyhydroxide phases, biogenic material, and presumably a fraction of neoformed au-
thigenic clays; (2) the separated clay-size fraction of glauconitic pellets composed of both
authigenic and detrital clay minerals. For analysis of the acid-leachable fractions, about
50 mg of powder was treated with ultrapure 5 M HCl (80 ◦C/2 days). For analysis of the
clay-size fractions, between 250 and 1000 mg of the sample was treated with a sequential
leaching procedure that selectively targets the removal of biogenic carbonate (5% v/v acetic
acid; AA), Fe-oxyhydroxide phases (15% v/v AA + 0.5 M hydroxylamine hydrochloride),
and organic matter (10% H202). A final leaching step with EDTA was applied to the remain-
ing residue in order to remove any adsorbed elements during previous leaching steps [36].
Note that none of these leachates were analyzed in this study. Finally, clay-size (<2 µm)
fractions were separated from the resulting residues by low-speed centrifugation [20]. After
drying, between ~25 and 50 mg of ground clay powder was digested in ultrapure concen-
trated HF–HCl–HNO3 (140 ◦C/5 days), followed by evaporation and a final digestion step
with ultrapure 6 M HCl (140 ◦C/2 days). Four samples (C240, C198, C109, C1180) yielded
limited amounts of separated clay material (<30 mg) and hence were only analyzed for
their 5 M HCl leachates.

3.3. SEM Observations

Tens of green pellets from one ‘Type 3′ sample (C213-130) were selected for detailed ex-
amination by scanning electron microscope (SEM) at the IC2MP Laboratory (Univ. Poitiers)
on a JEOL JSM IT500 equipped with secondary electron (SE) and backscatter electron (BSE)
detectors coupled with a Bruker Linxeye energy dispersive X-ray spectrometer (EDX). Ana-
lytical conditions were as follows: 15 kV, 1 nA, WD 11 mm, 50 s of acquisition time. Prior
to analysis, the studied pellets were mounted in epoxy resin (30 mm diameter), diamond
polished, and coated with carbon. Specific areas containing accessory mineral phases were
selected for high-resolution BSE imaging (15 nm pixel resolution) and chemical mapping
by EDS.

3.4. Major and Trace Element Analyses

Major and trace element abundances were determined at the Pôle Spectrométrie
Océan (Brest, France) with a Thermo Scientific Element XR sector field (SF) ICP-MS. Ele-
mental abundances were calculated using the Tm addition method following procedures
described in [55,56]. Briefly, elemental concentrations in any natural sample can be ob-
tained using the mass of sample (M), the amount of Tm added prior to sample digestion
(MTm), and CX, CEr, and CYb, the raw concentrations for X, Er, and Yb in the sample
solution, respectively, after correction from the analytical drift, procedural blank, and
interferences. Elemental (X) abundances are then calculated using the following equation:
[X] = (MTm × CX)/((M × (CTm − CTm*)); where CTm* corresponds to the Tm concen-
tration in the sample solution with no spike contribution, calculated using chondritic
abundances for Tm, Er, and Yb [56]. The precision and accuracy of the measured abun-
dances were assessed by analyzing a series of certified reference materials including both
silicate rocks (AGV-1, BCR-1, AN-G, DNC-1) and ferromanganese deposits (NOD-A1,
NOD-P1, GSPN-2, GSPN-3). The precision of measurements given as relative standard
deviation (RSD; n = 3) was generally <5% for all elements. Results obtained for reference
materials generally agreed <5% for REEs, Zr, Hf, Y, Ba, and TiO2; <10% for Sr, Th, U, V,
Cr, NaO, MgO, Al2O3, CaO, and Fe2O3; <20% for Li, Rb, P2O5, Co, Cu, Mo, and K2O. In
this study, shale-normalized REE abundances were determined using the set of values for
World River Average Silt (WRAS; [20]).
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3.5. Nd and Hf Isotopic Analyses

Neodymium and hafnium were purified by ion exchange chromatography [46,57] and
isotopic measurements were performed with a Thermo Scientific Neptune multi-collector
ICP-MS at the Pôle Spectrométrie Océan (Brest, France). Nd and Hf isotopic compositions
were determined using a sample-standard bracketing approach with solutions of Nd-
SPEX and AMES-Grenoble, respectively, after correction from isobaric interferences. Mass-
bias corrections were made using the exponential law using 146Nd/144Nd = 0.7219 and
179Hf/177Hf = 0.7325. Repeated analyses of JNdi-1 and JMC-475 standard solutions gave
143Nd/144Nd of 0.512114± 0.000007 (2σ, n = 6) and 176Hf/177Hf of 0.282168 ± 0.000009 (2σ,
n = 8), in full agreement with the recommended values of 0.512115 [58] and 0.282163 [59].
Associated uncertainties in the JNdi-1 and JMC-475 analyses correspond to external repro-
ducibilities of ±0.15 ε and ±0.31 ε (2σ), respectively. Note that in-run uncertainties on the
measured Hf isotopic ratios were commonly higher (up to±1.14 ε; 2σ) due to relatively low
Hf abundances in the studied acid leachate and clay-size fractions (Table 2). Epsilon values
were calculated using present-day chondritic (CHUR) values for 143Nd/144Nd (0.512630)
and 176Hf/177Hf (0.282785) from [60]. The degree of Hf–Nd isotope decoupling in studied
clay-size fractions—∆εHf CLAY—was determined using the vertical εHf deviation from the
‘clay array’ using the following equation (εHf = 0.78 × εNd + 5.23; [35]).

Table 2. Nd–Hf isotope compositions of the leached (5 M HCl) and clay-size (<2 µm) fractions of
Congo Shelf glauconies.

# Sample Degree of
Glauconitization a 143Nd/144Nd 2 se eNd 2 se 176Hf/177Hf 2 se eHf 2 se DeHf clay

5 M HCl leachates

1 C240 Type 1 0.511771 ± 0.000008 −16.75 ± 0.16 0.282760 ± 0.000021 −0.89 ± 0.73 6.9
2 70VB Type 1 0.511782 ± 0.000011 −16.55 ± 0.22 0.282698 ± 0.000013 −3.08 ± 0.46 4.6
3 9VT Type 2 0.511738 ± 0.000009 −17.40 ± 0.17 0.282664 ± 0.000032 −4.28 ± 1.14 4.0
4 44VMB Type 2 0.511746 ± 0.000011 −17.25 ± 0.22 0.282704 ± 0.000013 −2.86 ± 0.45 5.2
5 C198 Type 2 0.511687 ± 0.000005 −18.39 ± 0.10 0.282684 ± 0.000029 −3.56 ± 1.04 5.6
6 C109 Type 2 0.511720 ± 0.000004 −17.74 ± 0.08 0.282646 ± 0.000018 −4.92 ± 0.62 3.7
7 C1180 Type 3 0.511733 ± 0.000004 −17.49 ± 0.08 0.282690 ± 0.000025 −3.37 ± 0.90 5.0
8 C203 Type 3 0.511726 ± 0.000006 −17.63 ± 0.11 0.282733 ± 0.000020 −1.84 ± 0.70 6.7
9 C236 Type 2 0.511726 ± 0.000012 −17.63 ± 0.23 0.282665 ± 0.000011 −4.23 ± 0.41 4.3
10 C213-10 Type 3 0.511661 ± 0.000005 −18.89 ± 0.09 0.282709 ± 0.000015 −2.70 ± 0.51 6.8
11 C213-39 Type 3 0.511693 ± 0.000004 −18.29 ± 0.08 0.282718 ± 0.000018 −2.37 ± 0.62 6.7
12 C213-90 Type 3 0.511690 ± 0.000005 −18.33 ± 0.09 0.282703 ± 0.000015 −2.91 ± 0.54 6.2
13 C213-130 Type 3 0.511676 ± 0.000008 −18.62 ± 0.16 0.282706 ± 0.000014 −2.80 ± 0.48 6.5
14 C213-198 Type 1 0.511711 ± 0.000005 −17.93 ± 0.09 0.282683 ± 0.000013 −3.62 ± 0.47 5.1

Clay-size fractions

2 70VB Type 1 0.511785 ± 0.000009 −16.48 ± 0.17 0.282466 ± 0.000008 −11.27 ± 0.29 −3.6
3 9VT Type 2 0.511725 ± 0.000009 −17.66 ± 0.18 0.282497 ± 0.000006 −10.17 ± 0.22 −1.6
4 44VMB Type 2 0.511745 ± 0.000007 −17.27 ± 0.13 0.282501 ± 0.000007 −10.06 ± 0.24 −1.8
6 C109 Type 2 0.511742 ± 0.000007 −17.33 ± 0.13 0.282496 ± 0.000025 −10.23 ± 0.88 −1.9
8 C203 Type 3 0.511695 ± 0.000015 −18.24 ± 0.28 0.282640 ± 0.000013 −5.14 ± 0.44 3.9

11 C213-39 Type 3 0.511702 ± 0.000008 −18.10 ± 0.16 0.282592 ± 0.000014 −6.84 ± 0.48 2.0
12 C213-90 Type 3 0.511686 ± 0.000009 −18.41 ± 0.17 0.282623 ± 0.000010 −5.73 ± 0.36 3.4
13 C213-130 Type 3 0.511698 ± 0.000006 −18.19 ± 0.12 0.282619 ± 0.000010 −5.86 ± 0.37 3.1
14 C213-198 Type 1 0.511748 ± 0.000011 −17.20 ± 0.22 0.282505 ± 0.000014 −9.91 ± 0.49 −1.7

a ‘Type 1’: immature pellets containing Fe-bearing green clays. ‘Type 2’: moderately mature pellets dominated by
Fe-bearing green clays. ‘Type 3’: mature pellets dominated by glauconite.

4. Results
4.1. Major and Trace Element Abundances

The measured major and trace concentrations in the acid leachate and clay-size frac-
tions of the studied glauconitic grains are listed in Table S1. Potassium abundances
ranged from K2O ~0.6–4.7 wt% (mean: 2.6 ± 1.5 wt%; 1s.d.) and ~1.4–5.0 wt% (mean:
3.1 ± 1.4 wt%) in both the acid leachates and separated clays. These overall similar con-
centrations indicate that a substantial fraction of authigenic clay minerals was dissolved
during 5 M HCl leaching. Iron also displayed similar abundances in both the acid leachates
and clay-size fractions, with values ranging from ~14.8 to 39.2 wt% (mean: 26.1 ± 6.5 wt%)
and ~13.0–36.3 wt% (mean: 24.8 ± 6.8 wt%), also suggesting that most HCl-extractable iron
is derived from Fe-bearing authigenic clays. In contrast, while the Al contents varied signif-
icantly in the separated clays from Al2O3 ~4.5 to 19.4 wt%, the values observed in the acid
leachates were relatively constant (~6.9± 1.8 wt%), suggesting limited kaolinite dissolution
with 5 M HCl. As expected, Ca was more enriched in the acid leachates (CaO ~1.2–9.1 wt%)
than in the separated clays (~0.01–0.06 wt%) due to the dissolution of biogenic material
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and possibly calcium fluorapatite during HCl leaching. Rare earth element contents were
significantly higher in the acid leachates than in the clay-size fractions, with Nd ranging
from 15 to 50 ppm (mean: 35.2 ± 10.3 ppm) and 16 to 30 ppm (mean: 22.1 ± 5.0 ppm), re-
spectively. In contrast, Hf abundances are higher in separated clays (mean: 2.4 ± 0.9 ppm)
than in HCl leachates (mean: 0.9 ± 0.2 ppm).

4.2. Nd and Hf Isotope Compositions

The Nd and Hf isotopic ratios measured in this study are listed in Table 2. Both the
acid leachates and clay-size fractions displayed overall similar Nd isotope compositions,
yielding average εNd values of−17.8± 0.7 (1 s.d.) and−17.7± 0.6, respectively (Figure 2b).
These values are fully consistent with those previously reported for Congo glauconitic
pellets [49]. In contrast, Hf isotope compositions were significantly more radiogenic in
the acid leachates, ranging from εHf~−4.9 to −0.9 (mean: −3.1 ± 1.0), relative to the
separated clays (εHf~−11.3 to −5.1; mean: −8.4 ± 2.4). Calculated ∆εHf CLAY values, which
correspond to the vertical εHf deviation from the ‘clay array’, with an average of 5.5 ± 1.1
and 0.2 ± 2.9 in the acid leachates and clays, respectively (Figure 2b).

5. Discussion
5.1. Trace Element Behavior during Green Clay Authigenesis

Our major element data provide evidence that neoformed authigenic clays were
near-quantitatively extracted during the 5 M HCl leaching step and that the Fe and K
contents in both the acid leachable and clay-size fractions are thus largely controlled by the
presence of Fe-bearing phyllosilicates formed following the alteration of detrital kaolinite.
The process of green clay authigenesis at the Congo Shelf is illustrated when plotting the
measured Fe2O3 and Al2O3 abundances versus the approximate age for the corresponding
glauconite formation (Figure 4). This shows that the Fe and Al contents in authigenic clays
increase and decrease, respectively, together with the estimated glauconite age and the
degree of correlated authigenesis. Two ~20 kyr-old samples (C236; C213-198 cm) departed
from the observed relationships (Figure 4), which could possibly reflect the sampling
heterogeneity at the outer shelf, where surface sediment layers possibly contain glauconitic
grains of various ages due to relatively low sedimentation rates. In contrast to Fe and
Al, K abundances in both the acid leachates and separated clay fractions displayed no
apparent correlation with either the water depth (plot not shown here) or approximate
age of glauconite formation (Figure 4). This observation is in stark contrast to previous
findings for the same area [41,42]. To some extent, this discrepancy could also be tentatively
interpreted as reflecting sample heterogeneity. In particular, reworking of older glauconitic
grains of the Miocene age from the outer edge region of the Congo Shelf could represent
another explanation for this apparent discrepancy [48]. Fluctuations in the clay mineral
composition of the sediment load exported by the Congo River could also possibly account
for some of the observed discrepancy between the K content and the approximate age of
the studied green pellets. The presence of up to ~25% of illite and chlorite in the marine
muds deposited at the Congo Fan during the Late Quaternary [54] could have represented
an additional source of K-bearing clay minerals in some of the studied peloid fractions.
Additional elemental analyses of a larger suite of glauconitic grains would be required to
further assess the degree to which the K contents co-vary with the glauconite formation age
at the Congo Shelf. In any case, our dataset indicates that the Fe and Al contents for this
particular suite of studied glauconitic pellets most likely represent more robust indicators
than K for the degree of green clay authigenesis.
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contents in authigenic clays progressively increased and decreased, respectively, together with the
estimated glauconite age and inferred degree of clay authigenesis. Two ~20 kyr-old samples (C236;
C213-198) departed from the observed relationships, possibly reflecting sampling heterogeneity at
the outer shelf.

The behavior of selected trace elements during clay authigenesis at the Congo Shelf
can be assessed by normalizing concentrations for the separated clays to average values for
Congo River-borne detrital clays. As an example, we considered here the clay-size fraction
of C213-90 (~13 kyr B.P.), one of the ‘Type 3′ samples characterized by the highest Fe2O3
(~25.9 wt%) and K2O (~5.0 wt%) contents in this study (Figure 5). In Figure 5, the C213-90
data were also normalized for a comparison to the concentrations for the ‘Type 1′ sample
70VB (~2–3 kyr B.P.), which presents evidence for limited authigenic clay formation (Fe2O3
~13 wt%; K2O ~2.2 wt%). As expected, the resulting diagrams clearly show that K, Fe, and
Mg were significantly enriched during green clay authigenesis (up to ~300% relative to
Congo River-borne detrital clays; Figure 5). Our data also indicated that significant gain
occurred for Rb during glauconitization (~50%); an element that behaves similarly to K in
Earth surface environments. In this study, the lower degree of Rb enrichment in authigenic
clays compared to K (~6 times lower) confirms previous inferences that Rb is significantly
less affected by post-depositional water–sediment exchange processes [62]. Furthermore,
while the behavior of redox sensitive elements during glauconitization still remains poorly
documented, our results suggest that green clay authigenesis can sequester substantial
amounts of V, Mo, and Cr (up to ~85%), possibly reflecting the micro-reducing conditions
associated with glauconite formation in fecal pellets [63]. Additionally, recent experimental
work has demonstrated a strong binding mechanism for Cr when precipitating on clays
through the substitution of Al [64], which could partly explain the observed Cr enrichment
in authigenic Fe-bearing clays from the Congo Shelf. All other trace elements showed
evidence for significant depletion in clays separated from glauconitic pellets compared
to the initial kaolinite-rich material delivered by the Congo River, up to~−80% for Ba,
Yb, Lu, Th, Ti, Y, and Sr (Figure 5). This observation provides support that kaolinite
transformation and green clay authigenesis are accompanied by a net loss for many trace
elements including REEs. Below, we discuss in detail the possible mechanisms accounting
for the significant loss and decoupling of REEs during glauconitization and the associated
isotopic shifts in neoformed authigenic clays. For other trace elements, future work will be
required to further understand their behavior during green clay authigenesis.
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mental concentrations for mature Fe-bearing authigenic clays (sample C213-90, with Fe2O3 ~25.9 wt%
and K2O ~5.0 wt%) normalized to both the average values for kaolinite-rich Congo River-borne
detrital clays (purple circles; Table S1) and immature authigenic clays (orange diamonds; sample
70VB with K2O ~2.2 wt% and the lowest Fe2O3 ~13 wt% content). The resulting diagrams indicate
the elements that are gained (e.g., K, Fe, and Mg) or lost (expressed in %) during kaolinite dissolution
and subsequent green clay authigenesis at the Congo Shelf. Rare earth elements are highlighted
in bold.

5.2. Negligible Seawater Influence for Nd and Hf Isotopes in Marine Authigenic Clays

While a substantial fraction of HCl-extractable Fe is derived from authigenic clays
(between ~80% and 93%, as inferred from the Fe2O3 content in both the acid leachates
and separated clays), the observed relationship between Fe and ΣREEN in acid leachates
(i.e., the sum of shale-normalized REE abundances) suggests that the REE budget in bulk
glauconite pellets (including both authigenic minerals and detrital clays) is also controlled
by another Fe-rich phase (Figure 6). While displaying various shale-normalized REE
patterns, HCl leachates of studied glauconitic pellets generally displayed a positive Ce-
anomaly and mid-REE (MREE) enrichment relative to heavy-REE (Figure 7). This particular
REE pattern is typical of Fe–Mn oxyhydroxide phases extracted from Congo Fan sediments,
which mostly correspond to ‘pre-formed’ oxides associated with riverine inputs from the
Congo River [65]. By analogy, we presume that the presence of such ‘pre-formed’ oxides
could possibly influence the REE distribution in the authigenic, acid-extractable fraction of
Congo glauconite pellets. An interesting feature in Figure 6 is the evidence that the ‘Type
3′ samples exhibiting the highest ΣREEN contents in acid leachates (e.g., C203, C213-90),
which corresponded to mature green pellets, were also those that displayed the lowest
ΣREEN content in the associated clay-size fractions. This observation suggests that while
ongoing glauconitization results in the progressive loss of REE in neoformed clay mineral
phases (due to kaolinite dissolution; see discussion below), it also leads to significant
REE enrichment in authigenic mineral phases such as presumably goethite and calcium
fluorapatite precipitating from ambient bottom waters [49]. This latter hypothesis would
be consistent with the fact that high ΣREEN in acid leachates also coincide with relatively
high P2O5 contents (Figure 6), hence further suggesting that authigenic (seawater-derived)
phosphates could also play a role in controlling REE abundances in HCl leachates [49].
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clays, in the εNd versus εHf plot, many acid leachates fell between the fields defined by 
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Figure 6. Relationships between the REE abundances and Fe2O3 and P2O5 contents in the acid
leachates of Congo glauconite. ΣREEN represents the sum of shale-normalized REE abundances
(WRAS; [20]). Elemental data for the corresponding clay-size fractions (yellow boxes) are shown for
comparison. ‘Type 1′ samples correspond to immature multi-pellet samples containing Fe-bearing
green clays, while ‘Type 2′ samples are dominated by authigenic 7 Å Fe-rich mineral phases. ‘Type
3′ samples correspond to mature glauconite-bearing samples. The observed relationships suggest
that the REE budget in mature Fe-rich glauconite pellets (blue circles) is controlled by the presence
of iron-rich mineral phases (e.g., neoformed goethite, Fe-oxyhydroxides associated with Congo
terrigenous material) and authigenic, seawater-derived, calcium fluorapatite [49].
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Unlike the acid leachates, the shale-normalized REE patterns of the separated clays
displayed striking co-variation with the degree of glauconitization (Figure 7). The studied
clay-size fractions showed a pronounced depletion in heavy rare earth elements (HREEs)
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as the Fe content increased (Figure 7). These results confirm previous inferences that
REE loss during glauconitization is accompanied by substantial REE decoupling [49,66].
Enhanced glauconite maturity and associated expulsion of detrital REE are thought to result
in the progressive acquisition of seawater Nd isotope characteristics by the glauconitic
pellets [49,66]. In this study, however, this hypothesis was not supported by the Nd isotope
data for the clay-size fractions. While demonstrating a clear link with the degree of green
clay authigenesis, as inferred from the observed correlation between εNd and Fe2O3/Al2O3
(Figure 8), the Nd isotopes shifted toward more unradiogenic values (from ~−16.5 to
−18.5) as the Fe content increased in the clay separates, hence markedly departing from
the regional seawater εNd values for upper surface waters in the study area (between
~−15.2 and −15.9 for the upper <300 m water column; [16]) (Figure 2b). The absence of any
seawater REE signature in maturing authigenic clays is also supported by the Y/Ho ratio
(i.e., a powerful proxy for tracing the relative contribution of seawater versus terrestrial
signatures in marine sediments) [67]. In this study, all of the separated clay-size fractions
displayed near-constant values (27.2± 1.0; Table S1), similar to that for Congo River detrital
clays (26.9 ± 0.4; Table S1), hence further suggesting that neoformed clays do not integrate
any substantial amount of REEs from ambient bottom waters. In contrast to clays, in the εNd
versus εHf plot, many acid leachates fell between the fields defined by mature authigenic
clays and the seawater end-member defined by the direct measurement of upper seawater
waters in the study area [16] and sedimentary Fe-oxyhydroxides from the Congo Fan [32]
(Figure 2b). This observation reinforces the view that while green clay authigenesis does not
result in the acquisition of seawater isotope characteristics in neoformed clays, glauconite
pellets formed at the Congo Shelf still include an authigenic ‘seawater’ component that
can be extracted by HCl leaching, most likely corresponding to the presence of goethite,
Fe-oxyhydroxide, and calcium fluorapatite phases [49].
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and Lu/Hf elemental ratios in the clay-size fractions of the glauconite pellets. The measured εNd

and εHf values co-varied with the degree of green clay authigenesis inferred from higher Fe/Al
ratios. The observed relationships between the Nd–Hf radiogenic isotope ratios and parent–daughter
elemental ratios reflect a mineralogical effect, corresponding to the progressive incorporation of a
residual LREE-bearing accessory mineral phase characterized by low Sm/Nd and high Lu/Hf ratios.
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5.3. Relict Accessory Phosphate Minerals Control REE Budget in Green Authigenic Clays

As discussed above, the observed Nd and Hf isotope shifts that accompany green clay
authigenesis cannot be explained by any seawater influence. The measured εNd and εHf
values also significantly departed from expected Congo River detrital source compositions.
The Nd isotope composition of the suspended sediment load delivered by the Congo River
is mostly governed by particulates from the Kasai left-bank tributary (εNd −15.5 ± 0.7),
with minor contributions from the Oubangui (−17.6 ± 0.4) and the Upper Congo/Lualaba
(−17.6 ± 0.4) [47,68]. At present, modern sediments from the Congo Fan and the main
Congo River tributaries plot near the clay array in the εNd and εHf diagram (Figure 2). Over
the last 40 kyr B.P., the Congo terrigenous discharge has displayed relatively constant εNd
values fluctuating between−16.3 and−15.3 [46,47], while εHf punctually departed from the
clay array toward a less radiogenic composition (negative ∆εHf CLAY values), particularly
during periods of drier and cooler climate due to reduced chemical weathering conditions
in the Congo Basin [46]. All of the above consideration indicates that the observed shifts
toward unradiogenic εNd and more radiogenic εHf values in maturing authigenic clays
at the Congo Shelf are unlikely to reflect a provenance change within the Congo Basin,
nor any contribution from other regional sediment sources since the study area directly
lies under the influence of the Congo River plume. Instead, we propose that the observed
isotopic shifts during green clay authigenesis probably relates to a mineralogical effect,
by which successive dissolution–crystallization events would result in the progressive
concentration of a residual accessory mineral phase inert to alteration and characterized
by low Sm/Nd and high Lu/Hf values. This hypothesis is supported by the evidence
that the measured isotopic values in authigenic clays displayed strong correlations with
both the Sm/Nd and Lu/Hf ratios (Figure 8). During the glauconitization process, whilst
detrital REE become progressively depleted within neoformed clays (Figure 7), residual
LREE-bearing accessory minerals characterized by low Sm/Nd and high Lu/Hf ratios
could be incorporated within the clay mineral assemblages that constitute the green grains,
thereby explaining the observed shifts toward more unradiogenic (low εNd) and radiogenic
(high εHf) values, respectively.

To test this hypothesis, we investigated the mineralogical composition of a few green
pellets from the ‘Type 3′ sample C213-130 by SEM-EDS, which exhibited geochemical
characteristics (e.g., Fe2O3 >25% and K2O ~4.7%) of relatively ‘mature’ glauconitic grains
on the Congo Shelf (Table 1). Our results provide direct evidence for the presence of
micro-inclusions of heavy minerals in the glauconitic pellets (Figure 9). In fact, most of
these micro-inclusions corresponded to small (<1 µm) LREE-bearing phosphate minerals
with a chemical composition indicative of both LREE-rich aluminum-phosphate-sulfate
(APS) minerals such as florencite (Figure 9C,D) and Th-rich LREE phosphate minerals such
as monazite or rhabdophane (Figure 9G,H). While additional accessory mineral phases in
the studied glauconitic pellets also include quartz, micro-inclusions of Ti-bearing minerals
(ilmenite, rutile and/or anatase; Figure 9E) as well as very rare zircon grains, the ubiquitous
presence of LREE-bearing phosphate phases in sample C213-130, with high contents of
La, Ce, and Nd (several oxide weight percent for each element) provides strong evidence,
despite their small size, that they are likely to strongly influence the REE budget of such
mature glauconite pellets on the Congo Shelf.
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authigenic clays. Al, P, S, La, Ce, and Nd elements in the EDS spectrum of the micro-inclusion (2) 
are indicative of LREE-rich aluminum-phosphate-sulfate minerals (APS). (d) EDS mapping for a 
micro-inclusion of LREE-bearing APS. SEM-EDS observations and elemental mapping of Congo 
glauconitic pellets (sample C213). (e,f) SEM-BSE images showing evidence for multiple LREE-rich 
phosphate minerals and Ti-oxides in the glauconite grain. (g,h) SEM-BSE image and EDS spectrum 
of a LREE-rich monazite grain. 
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of Fe-bearing clays is accompanied by a net loss of REEs (Figure 5). This loss can be quan-
tified by normalizing the measured REE abundances to average values for detrital clays 
exported by the Congo River (Figure 10a), indicating that up to 80% of HREEs was lost 
during clay authigenesis. The resulting loss for LREE and, to a lesser extent, MREE, was 
less significant (between ~40% and 60%) due to the presence of accessory LREE-rich phos-
phate minerals. In comparison, only 10%–20% of Ce was lost during green clay authigen-
esis, which probably largely reflects the pronounced Ce enrichment observed in the micro-
inclusions of LREE-bearing phosphate minerals (Figure 9). Alternatively, a greater stabil-
ity of Ce4+ complexes during glauconitization relative to its neighboring REE3+ elements 

Figure 9. SEM-EDS observations and elemental mapping of Congo glauconitic pellets (sample C213).
(a) SEM-BSE image showing the presence of a micro-inclusion of the LREE-bearing phosphate mineral.
(b,c) The red circles correspond to two areas analyzed by EDS with the corresponding EDS spectrum
indicating a micro-inclusion of LREE-rich phosphate embedded in Fe-bearing authigenic clays. Al, P,
S, La, Ce, and Nd elements in the EDS spectrum of the micro-inclusion (2) are indicative of LREE-rich
aluminum-phosphate-sulfate minerals (APS). (d) EDS mapping for a micro-inclusion of LREE-bearing
APS. SEM-EDS observations and elemental mapping of Congo glauconitic pellets (sample C213).
(e,f) SEM-BSE images showing evidence for multiple LREE-rich phosphate minerals and Ti-oxides in
the glauconite grain. (g,h) SEM-BSE image and EDS spectrum of a LREE-rich monazite grain.

The proposed hypothesis is fully consistent with the evidence that in tropical regions,
the chemical weathering of primary accessory minerals (e.g., apatite, allanite, monazite)
in soil sequences releases substantial amounts of REE and phosphate, which typically
result in the formation of secondary phosphate minerals intertwined in kaolinite in soil-
saprolite profiles [69]. Secondary LREE-rich phosphate minerals such as APS minerals
of the crandallite series rhabdophane have frequently been reported in tropical soils and
laterites [70–73]. In tropical soils, the alteration of monazite can also result in the formation
of Th-rich rhabdophane [74], hence suggesting that the Th-rich LREE-bearing phosphate
mineral phases identified in sample C213-130 by SEM-EDS mapping (Figure 9G,H) could
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possibly correspond to hydrated monazite formed by chemical weathering in the Congo
Basin. These minerals typically occur as discrete <0.1–10 µm crystals, occurring in low
abundance (>0.05 wt%) in most soils or sedimentary rocks and hence are difficult to identify
using conventional microscopic techniques [75]. Importantly, these accessory minerals
are stable up to 400–500 ◦C and remain insoluble over a wide range of pH and Eh condi-
tions [76], meaning that they are unlikely to be affected by early marine diagenesis [75].
Recent micro-scale investigations have shown that these minerals dominate the LREE
budget of kaolinite in tropical regions [77,78].

Based on the above consideration, we thus argue that as kaolinite dissolves during
glauconitization, inherited nanocrystals of LREE-rich phosphate minerals become progres-
sively incorporated into neoformed Fe-bearing clays. Such a mechanism would provide a
plausible explanation accounting for both the pronounced LREE enrichment over HREE in
authigenic clays. Because these minerals are directly derived from the alteration of primary
phosphate minerals characterized by low Sm/Nd and high Lu/Hf ratios [21,26], their
progressive incorporation into neoformed Fe-bearing clays on the Congo Shelf also clearly
explains the observed shifts in Sm/Nd, Lu/Hf, εNd, and εHf during glauconitization. This
observation is also fully consistent with the evidence that kaolinite-bearing river muds
worldwide commonly display radiogenic Hf isotope compositions associated with positive
∆εHf clay values (i.e., plotting ‘above’ the clay array; [35]).

5.4. Implications for the Impact of Clay Authigenesis on the Marine REE Cycling

To some extent, the proposed mechanism accounting for LREE enrichment in neo-
formed clays at the Congo Shelf compensates for the observed depletion in structural REEs
caused by the dissolution of kaolinite silicate sheets. Indeed, despite the preservation
of inherited REE-enriched accessory minerals in green authigenic clays, the formation of
Fe-bearing clays is accompanied by a net loss of REEs (Figure 5). This loss can be quantified
by normalizing the measured REE abundances to average values for detrital clays exported
by the Congo River (Figure 10a), indicating that up to 80% of HREEs was lost during clay
authigenesis. The resulting loss for LREE and, to a lesser extent, MREE, was less significant
(between ~40% and 60%) due to the presence of accessory LREE-rich phosphate miner-
als. In comparison, only 10%–20% of Ce was lost during green clay authigenesis, which
probably largely reflects the pronounced Ce enrichment observed in the micro-inclusions
of LREE-bearing phosphate minerals (Figure 9). Alternatively, a greater stability of Ce4+

complexes during glauconitization relative to its neighboring REE3+ elements could also
possibly account for the observed positive Ce anomaly in the clay-size fractions separated
from mature glauconitic pellets.

Finally, our data can be used to determine the shale-normalized distribution pattern
of the dissolved REE fraction released during kaolinite dissolution and subsequent clay
authigenesis at the Congo margin (Figure 10b). Taking the example of the ‘Type 3′ samples
C213-90 and C213-130, the resulting patterns displayed striking similarity with the average
REE composition for seawater, characterized by positive La-anomaly, negative Ce-anomaly,
and a gradual enrichment in HREEs (Figure 10b). While further investigation would be
needed to assess whether similar findings can be obtained from the analysis of green pellets
formed in other kaolinite-dominated shelf environments worldwide, these first results
acquired on Congo glauconitic pellets provide direct support to previous inferences based
on pore water analyses that clay mineral dissolution and the subsequent fractionation of
REEs during uptake by authigenic clays could play a major role in the marine cycling of
REEs (e.g., [13]).
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Figure 10. Impact of kaolinite dissolution and green clay authigenesis on the marine REE cycle.
(a) Rare earth element abundances for the separated clay-size fractions of Congo glauconite nor-
malized to the average kaolinite-rich detrital clay exported by the Congo River (thick black line;
Table S1), expressed as loss %. (b) Shale-normalized distribution pattern of the dissolved REE fraction
released during kaolinite dissolution and subsequent clay authigenesis at the Congo margin, taking
the example of mature C213-90 and C213-130 glauconite samples. The average REE pattern for global
seawater is also shown for comparison [79]. The observed similarity between the REE patterns for
global seawater and the elemental fraction released from clay authigenesis suggests that reverse
weathering processes at continental margins play a major role in the marine cycling of REEs.

6. Conclusions

Our geochemical investigation of glauconite grains from the Congo Shelf provides
new evidence that reverse weathering processes at continental margins act as a net source
of REEs to the ocean. At the Congo margin, kaolinite transformation into Fe-bearing clays is
accompanied by significant REE depletion, up to 80% for the heavy-REEs. Neoformed clays
display pronounced LREE enrichments, which we interpreted, using both Nd-Hf isotope
measurements and SEM-EDS observations, as reflecting the entrapment of insoluble LREE-
rich accessory mineral phases initially present within the kaolinite aggregates, presumably
aluminum-phosphate-sulfate (APS) nanocrystals such as florencite and/or hydrated LREE
phosphate (e.g., rhabdophane). Overall, our data indicate that the combination of kaolinite
dissolution and subsequent entrapment of minor insoluble LREE-bearing mineral phases
into aggregates of authigenic clays releases a dissolved REE fraction that strikingly displays
seawater REE characteristics. This finding hence provides direct support that green clay
authigenesis could play an important role in the marine REE cycle.
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