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Abstract: Fuzzy C-Means (FCM) clustering is an unsupervised machine learning algorithm that helps
to integrate multiple geophysical datasets and provides automated objective-oriented information.
This study analyzed ground-based Bouguer gravity and aeromagnetic datasets using the FCM
clustering algorithm to classify lithological units in the western part of the North Singhbhum Mobile
Belt, a mineralized belt in the Eastern Indian Craton. The potential field signatures of clusters obtained
using FCM correlate remarkably well with the existing surface geology on a broad scale. The cluster
associated with the highest gravity signatures corresponds to the metabasic rocks, and the cluster
with the highest magnetic response represents the mica schist rocks. The cluster characterized by the
lowest gravity and magnetic responses reflects the granite gneiss rocks. However, few geological
formations are represented by two or more clusters, probably due to the close association of similar
rock types. The fuzzy membership scores for most of the data points in each cluster show above 0.8,
indicating a consistent relationship between geophysical signatures and the existing lithological units.
Further, the study reveals that integrating multi-scale geophysical data helps to disclose bedrock
information and litho-units under the sediment cover.

Keywords: Fuzzy C-Means clustering; unsupervised machine learning; geological mapping; Bouguer
gravity and aeromagnetic data; North Singhbhum Mobile Belt

1. Introduction

Lithological mapping of the area has numerous imperative applications, such as tar-
geting natural resources, estimating geological hazards, and understanding geological
evolution. However, the direct lithological interpretation of the area can be challenging in
the case of the soil cover regions. In such scenarios, multi-parameter ground and airborne
geophysical datasets are crucial for accurately mapping the lithology. Conventionally, these
geophysical datasets are processed and interpreted individually to obtain lithological infor-
mation, which is time-consuming, and the success of interpretations is highly dependent on
the user’s experience. Data-driven approaches have proven to be effective for automatically
extracting information from one or multiple co-located datasets [1–5]. Before machine
learning (ML), weights of evidence (WofE) was widely used for automatic lithological
mapping and mineral prospectivity modeling (MPM) [6–10]. One main drawback of WofE
is that the analysis requires an independent thematic map, and the target layer must include
the known points of interest [11]. As a result, it may not be appropriate for small areas
containing the targets of interest. Another limitation of this method is the uncertainty
in interpreting the target depth when constructing a 3D geological model based on the
geological cross sections [8].

Recently, supervised and unsupervised ML algorithms have emerged to interpret
geoscience datasets due to their remarkable capability in identifying the nonlinear relation-
ships between known lithologies and geophysical anomalies [1,3–5,12–17]. Both methods

Minerals 2023, 13, 1014. https://doi.org/10.3390/min13081014 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13081014
https://doi.org/10.3390/min13081014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-4119-5831
https://doi.org/10.3390/min13081014
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13081014?type=check_update&version=1


Minerals 2023, 13, 1014 2 of 18

have their own advantages and disadvantages. Building an appropriate supervised ML
model requires training the model with sufficient known label datasets, which can be
tedious, especially when dealing with big datasets. On the other hand, unsupervised ML
algorithms such as crisp or fuzzy cluster analysis do not require such labeled datasets, and
they provide different clusters based on the similarities or patterns of the datasets [18,19].
A crisp clustering algorithm, for example, k-means clustering analysis, assigns each data
point to its nearest cluster center without ambiguity [18]. In contrast, fuzzy clustering
analysis allows each data point to have some degree of fuzzy membership regarding the
other clusters [19]. This fuzzy membership degree indicates the quantitative significance of
a data point belonging to a particular cluster.

Several researchers have successfully used crisp clustering algorithms for lithological
differentiation and exploration targets using remote sensing and ground-based geophysical
datasets [3,20–25]. In recent years, fuzzy clustering analysis has gained popularity as it
allows for quantitative assessment of the identified clusters [1,3,5,26]. Similar to crisp clus-
tering, fuzzy clustering analysis has been used to integrate multiple geophysical datasets
for automated geological/geochemical mapping and mineral exploration [1,3,5,26], as well
as petrophysical characterization [4,27–29]. One of the drawbacks of applying pixel-based
cluster analysis methods is that they may pose challenges due to the lack of distinct clus-
tering in the overall dataset. Similar issues arise when processing thin-section images
using cluster analysis and seismic datasets [8,30]. To mitigate these drawbacks, a possible
solution is to employ the characteristic analysis developed by Botbol et al. for geochemical
prospection [31–33]. Essentially, this method involves working within a neighborhood
window or template around a pixel location rather than solely focusing on the pixel itself.
Another approach is the factorial kriging analysis, which takes into account the spatial
structures [34,35].

The present study utilizes the Fuzzy C-Means (FCM) clustering algorithm with the
aim of integrating ground gravity and airborne magnetic datasets for automated geological
mapping of the western part of the North Singhbhum Mobile Belt (NSMB). Initially, we per-
formed feature engineered procedures on ground gravity and airborne magnetic datasets
to provide unbiased input to the FCM clustering algorithm. Subsequently, we generated a
geo-attributed cluster map (pseudo lithological map) of the NSMB based on the correlation
between the integrated geophysical signatures of FCM clusters and the existing surface
geological map. Furthermore, the study also computes the fuzzy membership score of each
cluster to quantitatively assess the relationship between the geophysical signatures of the
cluster and litho-units.

2. Study Area

The study area covers a latitude range from 22.75◦ to 23.25◦ N and a longitude range
from 85.75◦ to 86.00◦ E within the NSMB and the southernmost part of the Chotanagpur
Granite Gneiss Complex (CGGC) (Figure 1). The area is of great importance for understand-
ing the geodynamic and metallogenic evolution of the Eastern Indian Shield [36–40]. Within
the study area, five distinct geological domains are identified, namely CGGC, Chandil,
Dalma, Dhalbhum, and Chaibasa Formations (Figure 1). The CGGC portion primarily
consists of granite gneiss rocks with minor porphyritic granitoid [41,42]. The remaining
four formations belong to the NSMB and are separated from the CGGC by the South
Purulia Shear Zone (SPSZ). The Chandil Formation comprises phyllite, quartz-mica schist
with interbedded phyllite (QMSIP), carbon phyllite, metabasic, and acid-tuff rocks [43–46].
The Dalma Formation is characterized by metabasic and ultrabasic rocks with carbonate
lenses [43–46]. The Chaibasa and Dhalbhum Formations consist of phyllite, mica schist,
rhyolite, and chlorite phyllite/sericite muscovite schist (CP/SMS) rocks [45,46].
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Figure 1. Illustration of the detained geological map of the western North Singhbhum Mobile Belt 
(NSMB) (modified after Chaudhuri and Roy [36]). Black dashed-dotted lines represent the linea-
ments/shear zones. AKL: Antabera–Kuda lineament; BBL: Babaikundi–Birgaon lineament; LPL: 
Lungtu–Parasi lineament; SPSZ: South Purulia Shear Zone. 

Based on geochemical and petrographical studies, previous researchers have re-
ported gold deposits and potential gold zones within the Chandil and Dalma Formations 
[36,39,47–51] (Figure 1). In the Chandil Formation, gold mineralization occurs within the 
quartz reef rocks near the Babaikundi–Birgaon lineament, where mica schist serves as the 
host rock [36,47]. In the Dalma Formation, gold mineralization is found along the sheared 
contact of volcanic tuffs, sheared quartzites, and phyllite rocks along the Lungtu–Parasi 
lineament [39,52–54]. Along the Antabera–Kudda lineament, gold mineralization is ob-
served in the ferruginous quartzites and quartz veins interacting with phyllites and meta-
basic rocks [50]. 

3. Data and Methodology 
In order to characterize the geology of the study area, we utilized ground gravity and 

airborne magnetic datasets. The workflow of the FCM clustering algorithm implemented 
in this study is illustrated in Figure 2. The ground gravity data consisted of approximately 
1085 observations taken along all available roads, with a spacing of approximately 1.5–2.0 
km. These observations were acquired using the Scintrex CG-5 Autograv gravimeter, 
which has a precision of 0.001 mGal. The airborne magnetic datasets were collected be-
tween 1968 and 1969 by the Geological Survey of India as part of the Operation Hard Rock 
(OHR) program [55]. The survey involved north–south oriented lines spaced 0.5 km apart 

Figure 1. Illustration of the detained geological map of the western North Singhbhum Mobile
Belt (NSMB) (modified after Chaudhuri and Roy [36]). Black dashed-dotted lines represent the
lineaments/shear zones. AKL: Antabera–Kuda lineament; BBL: Babaikundi–Birgaon lineament;
LPL: Lungtu–Parasi lineament; SPSZ: South Purulia Shear Zone.

Based on geochemical and petrographical studies, previous researchers have reported
gold deposits and potential gold zones within the Chandil and Dalma Formations [36,39,47–51]
(Figure 1). In the Chandil Formation, gold mineralization occurs within the quartz reef rocks
near the Babaikundi–Birgaon lineament, where mica schist serves as the host rock [36,47].
In the Dalma Formation, gold mineralization is found along the sheared contact of volcanic
tuffs, sheared quartzites, and phyllite rocks along the Lungtu–Parasi lineament [39,52–54].
Along the Antabera–Kudda lineament, gold mineralization is observed in the ferruginous
quartzites and quartz veins interacting with phyllites and metabasic rocks [50].

3. Data and Methodology

In order to characterize the geology of the study area, we utilized ground gravity and
airborne magnetic datasets. The workflow of the FCM clustering algorithm implemented
in this study is illustrated in Figure 2. The ground gravity data consisted of approxi-
mately 1085 observations taken along all available roads, with a spacing of approximately
1.5–2.0 km. These observations were acquired using the Scintrex CG-5 Autograv gravime-
ter, which has a precision of 0.001 mGal. The airborne magnetic datasets were col-
lected between 1968 and 1969 by the Geological Survey of India as part of the Operation
Hard Rock (OHR) program [55]. The survey involved north–south oriented lines spaced
0.5 km apart and was conducted at terrain-corrected heights of 61 m and 122 m. The gravity



Minerals 2023, 13, 1014 4 of 18

observations were subjected to standard corrections, including latitude, free-air, Bouguer,
and terrain corrections, to derive the Bouguer gravity anomaly.
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Figure 2. Flowchart illustrating the integration of the Bouguer gravity and aeromagnetic anomalies
using the Fuzzy C-Means clustering algorithm.

Similarly, the magnetic observations were corrected for the Earth’s main magnetic
field using a suitable International Geomagnetic Reference Field (IGRF) model to obtain
the magnetic anomaly. Additionally, the regional-residual separation of Bouguer gravity
and magnetic anomalies was carried out as they contain information from anomalous
sources with different depths and different densities or magnetizations. For this purpose,
upward continuation filtering was applied to the Bouguer gravity and magnetic anoma-
lies to obtain the long wavelength signatures associated with deep-seated sources [56].
These long wavelength signatures were further subtracted from Bouguer gravity and
magnetic anomalies to obtain the residual Bouguer gravity/magnetic anomalies. To uti-
lize these datasets in our study, we generated residual Bouguer gravity (Figure 3a) and
magnetic anomaly maps (Figure 3b) using a uniform grid spacing of 500 m, resulting in
10,201 samples. The corresponding data distributions are presented in Figure 3c,d, respectively.
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Figure 3. (a) Bouguer gravity and (b) magnetic anomalies maps were generated with a regular grid
interval spacing of 500 m. Corresponding histogram plots are shown in (c) and (d), respectively. In
Figure 3a,b, black dashed-dotted lines represent lineaments/shear zones, while solid white lines
indicate the major geological boundaries of the study area. AKL refers to the Antabera–Kuda
lineament, BBL represents the Babaikundi–Birgaon lineament, CGGG stands for Chotanagpur Granite
Gneiss Complex, LPL denotes the Lungtu–Parasi lineament, and SPSZ represents the South Purulia
Shear Zone.

3.1. Fuzzy C-Means (FCM) Clustering Algorithm

The Fuzzy C-Means (FCM) clustering algorithm [19] is an unsupervised ML method
used to discover patterns or structures in data and group similar data points together. The
primary objective of this method is to maximize the similarity among data points within
clusters and minimize the similarity between clusters. In this approach, each data point is
assigned to real values between ‘0’ and ‘1’, known as membership degrees [19]. The sum of
membership degrees for data points across all clusters is equal to ‘1’. The magnitude of
membership degrees indicates the degree of belongingness to each cluster. To identify the
optimal fuzzy c-partitions, the least square error function is defined using the following
equation [19]:

JFCM(U, V) =
c
∑

i=1

n
∑

k=1
(uik)

m‖ xk − vi ‖2

dependent upon ∑c
i=1 uik= 1,

(1)

where n is the total number of data points (x1, x2, x3 , · · · , xk, · · · xn); c is the total number
of clusters; m is the weighting exponent (1 ≤ m < ∞), which controls the degree of fuzzi-
ness; and V ={v1, v2, v3 · · · vc} specifies the location of center points. U ={uik ∈ [0, 1]} is
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the membership matrix where each element (u ik) represents the membership degree of
i-th data point to the k-th cluster. The symbol ‖ . ‖ denotes the Euclidean norm, which
measures the degree of similarity between the data point and the center point. The center
point (vi) of the ith cluster is determined using the following equation [19]:

vi =
∑n

k=1(uik)
mxk

∑n
k=1(uik)

m (2)

Further, each element (uik) of the U matrix can be calculated using the following
equation [19]:

uik =

[
c
∑

a=1

(
dik
dak

)2/(m−1)
]−1

subjected to d2
ik = ‖ xk − vi ‖2

(3)

To determine the optimal values of centers and membership degrees, the algorithm
iteratively calculates the U and V matrixes for each data point. This process begins by
providing initial parameters, including the number of clusters, the weighting exponent m,
and an initial estimation of either the membership matrix U or the matrix V representing
the cluster center locations. The matrix V is determined from the membership matrix U
using Equation (2), while the membership matrix U is determined from the matrix V using
Equation (3). This iterative process continues until the norm of the updated membership
matrixes Uk and Uk+1 for two consecutive steps (k-step and k + 1 step) falls below a
predetermined threshold value ε. At this point, the algorithm converges and provides the
final membership degrees and cluster center locations.

3.2. Feature Engineering

In order to achieve optimal performance of ML algorithms, it is important to have
appropriate input features. This process, known as feature engineering [57], involves
transforming raw datasets into suitable input features for ML algorithms. Essentially,
before applying ML algorithms, it is necessary to pre-process the raw datasets using
feature engineering techniques such as imputation, binning, outlier handling, filtering, log
transformation, scaling, etc. This ensures better algorithm performance. In this study, we
utilized the Fuzzy C-Means (FCM) clustering algorithm, an unsupervised ML algorithm, to
analyze the Bouguer gravity and aeromagnetic datasets. The FCM clustering algorithm
operates based on Euclidian distance [19,58], and the resulting clusters tend to exhibit a
spherical shape. However, input datasets with long-tailed or skewed distributions can
pose challenges in achieving optimal clustering results. Therefore, it is crucial for all
input features to exhibit relatively normal distributions within the data domain, without
significant long tails and skewed distributions.

The Bouguer gravity and magnetic anomaly data are illustrated in Figure 3a,b, respec-
tively. Their corresponding histogram plots are shown in Figure 3c,d, respectively. The data
distribution of the Bouguer anomaly exhibits a bimodal nature, indicating the presence
of two distinct modes or peaks (Figure 3c). On the other hand, the magnetic anomaly
distribution displays long tails, indicating the occurrence of extreme values (Figure 3d).
Based on the observed data distributions, we employed various feature engineering tech-
niques to enhance the specific datasets. For the Bouguer gravity, we utilized its vertical
gradient anomaly data to magnify the signatures of shallow subsurface source bodies. To
eliminate dipolar signatures in the magnetic data, we applied a step-by-step feature engi-
neering process. Step 1 involved computing the vertical gradient of the magnetic data to
enhance the shallow body signatures (Figure 4a) [59,60]. The corresponding histogram plot
is presented in Figure 4d, showing a more condensed distribution around zero (Figure 4d).
Step 2 entailed taking the absolute values of the vertical gradient magnetic data to eliminate
negative values (Figure 4b). The corresponding data distribution is displayed in Figure 4e,
revealing a highly skewed shape with a long tail. To address this skewness and long tail,
step 3 involved applying a logarithmic transformation to the absolute vertical gradient
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magnetic data. This transformation resulted in consistent magnetic signatures (Figure 4c,f).
After performing these steps, we applied a low-pass filter technique to both datasets to
attain suitable data distribution and ensure their compatibility. Finally, we applied the
normalization technique to both datasets to obtain comparable datasets in the clustering
parameter space. The feature engineered gravity and magnetic datasets are displayed in
Figure 5a,b, respectively, whereas their data distribution is shown in Figure 5c,d, respec-
tively. Figure 6 demonstrates the data distribution in the 2D cross-plots of the Bouguer
gravity and magnetic anomalies before and after the feature engineering.
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3.3. Optimal Cluster Number Selection

In order to utilize the FCM clustering algorithm effectively, determining the appropri-
ate number of clusters for a given dataset is necessary. In the present study, the optimal
clustering number was determined by comparing the results obtained from three distinct
mathematical techniques: the Elbow method [61], the Caliński–Harabasz score [62], and
the Silhouette score [63]. The Elbow method calculates the Within-Cluster Sum of Squares
(WCSS), which is the sum of the squared distances between each point and the centroid
within a cluster. The WCSS values are plotted on a graph against the number of clusters.
The optimal number of clusters is identified at the point where the steep slope of the curve
changes to a gentle slope, forming a characteristic ‘elbow shape’. The Caliński–Harabasz
score, also known as the variance ratio criterion, assesses the dispersion of data points
within their respective cluster and their separation from other clusters. It is calculated as
the ratio between the sum of intracluster variance and the sum of the intercluster variance.
A higher Caliński–Harabasz score indicates well-defined clusters within the data. The
Silhouette index measures the closeness of each data point to its own cluster compared to
the other clusters. It ranges from −1 to +1, where scores closer to +1 indicate well-defined
clusters within the dataset, and scores close to −1 indicate incorrect clustering. By con-
sidering the results from these three techniques, the optimal number of clusters can be
determined, ensuring the best representation of the underlying patterns in the data.

In this study, all three methods were computed across a cluster range of 2 to 14 to
determine the optimal cluster number. Figure 7a–c present the WCSS values obtained from
the Elbow method, the Caliński–Harabasz score, and the Silhouette score, respectively. The
graph plot of the Elbow method reveals a distinct Elbow pattern at cluster number 4, indi-
cating a potential optimal cluster number (Figure 7a). The Caliński–Harabasz score shows
the highest score at cluster number 4, followed by cluster numbers 3 and 5, suggesting
these as potential optimal cluster numbers (Figure 7b). In the Silhouette score analysis,
the highest score is observed at cluster number 3, followed by the second-highest score at
cluster number 4 (Figure 7c). Considering the results from the three mathematical criteria,
both the Elbow method and Caliński–Harabasz score suggest cluster number 4 as the op-
timal choice. In the Caliński–Harabasz score analysis, cluster numbers 3 and 5 appear to
be optimal choices. It is worth mentioning that determining the optimal cluster number
can depend on the specific method employed and the user’s experience, as suggested by
Wang et al. [5]. Although cluster number 4 was deemed optimal based on the three mathe-
matical criteria discussed earlier, it may not fully capture the complexity of the study area’s
geology. Therefore, it is important to acknowledge that capturing the intricate geology of
the study area requires a more nuanced and comprehensive approach. Therefore, cluster
number 5 was selected as the best compromise between mathematical criteria and the need
to accurately represent the geological information through FCM clustering analysis.
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cluster number for Bouguer gravity and aeromagnetic datasets. In panel (a), the dashed red lines specify
the steeper and gentler slopes on either side of the elbow, helping to identify the optimal cluster number.
In panel (b), the dashed red lines mark the higher performance scores of cluster numbers 3–5, contrasting
with the lower performance scores of cluster numbers 2 and 6–14. In panel (c), the dashed red lines
separate the higher performance scores of cluster numbers 3 and 4 from the lower performance scores of
cluster numbers 2 and 5–14, providing insights into the optimal cluster number.

4. Results and Interpretation

The feature engineered gravity and magnetic anomalies exhibit a normal distribution
with amplitudes ranging from −3.3 to 5.3 ft. for gravity and −3.1 to 2.9 ft. for magnetic
anomalies (Figure 5). The clusters obtained from the FCM clustering algorithm are dis-
played in the 2D cross-plot of the feature-engineered gravity and magnetic anomalies
(Figure 8). Additionally, to understand the characteristics of clusters, the mean, standard
deviation, and minimum/maximum values were calculated for each cluster. The results
of the statistical analysis are illustrated in Figure 9, with the horizontal axis representing
the cluster number and the vertical axis indicating the value range for each feature. It is
important to note that the relative characteristics (high/low) of the feature engineered
values are more significant in differentiating the geology rather than their absolute ampli-
tudes. Therefore, higher feature engineered values in a cluster indicate higher gravity and
magnetic anomaly values, while lower feature engineered values indicate lower gravity
and magnetic anomaly values.
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Table 1 displays the gravity and magnetic attributes of each cluster based on the
statistical comparison (Figure 9). It is evident that all clusters exhibit distinct gravity and
magnetic anomaly characteristics. Cluster 1 demonstrates the highest gravity and inter-
mediate magnetic characteristics (Figure 9 and Table 1). Conversely, cluster 5 exhibits the
highest magnetic attributes and intermediate gravity anomaly characteristics (Figure 9
and Table 1). Cluster 4 displays the lowest gravity and higher magnetic responses, while
cluster 3 is characterized by the lowest magnetic attributes and intermediate gravity anoma-
lies. Cluster 2 represents intermediate gravity and magnetic attributes. Additionally, it is
worth noting that the signature of cluster 2 overlaps with the gravity attributes of cluster 3
and the magnetic attributes of cluster 1 (Figure 9 and Table 1).

In order to assign the geological attributes to the five cluster zones obtained from FCM
clustering analysis, we overlaid the pre-existing surface geology details (Figure 1) onto
the cluster map (Figure 10). Cluster 1 appears at two distinct locations on the cluster map
(Figure 10). The first location is at the center of the cluster map, displaying an east-west
trend and exhibiting a strong correlation with the metabasic rocks of the Dalma Formation
(Figure 10 and Table 1). The second location is nearly circular and lies in the southwestern
portion of the cluster map. It shows a strong correlation with both the metabasic rocks of
the Dalma Formation and the phyllite rocks of the Chandil Formation.
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Table 1. Summary of the FCM clustering analysis based on ground Bouguer gravity and airborne
magnetic datasets and the corresponding geological attributes.

Cluster Gravity Attributes Magnetic Attributes Geological Association

Cluster 1 Highest Intermediate Metabasic and phyllite rocks

Cluster 2 Intermediate Intermediate
Granite gneiss, phyllite, acid-tuff,

quartz-mica schist with interbedded
phyllite (QMSIP), and mica schist rocks

Cluster 3 Intermediate Lowest Granite gneiss, phyllite, and QMSIP rocks

Cluster 4 Lowest Higher
Chlorite phyllite/sericite muscovite
schist (CP/SMS), granite gneiss, and

mica schist rocks

Cluster 5 Intermediate Highest Phyllite, mica schist, and QMSIP rocks
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Among all five clusters, cluster 2, which is characterized by intermediate gravity and
magnetic signatures (Table 1), does not correspond to any unique geological formation
and spreads irregularly across the study area as patches (Figure 10). In the northern part,
occurrences of cluster 2 are found over the granite gneiss rocks of the CGGC, phyllite, and
acid-tuff rocks of the Chandil Formation. In the southern part, occurrences of cluster 2
are found over the mica schist rocks of the Chaibasa Formation and QMSIP rocks of the
Chandil Formation.

Cluster 3 occurrences are predominantly associated with granite gneiss rocks of the
CGGC region (Figure 10 and Table 1). However, a few occurrences of cluster 3 appear
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over the central and northern portions of the Chandil Formation, which are associated
with the phyllite and QMSIP rocks. It is also observed that cluster 2 is surrounded by
cluster 3 in most areas due to minor differences in their gravity characteristics, indicating
that both clusters might represent similar rock types but may be under soil cover/associated
with different rock types (Figure 10 and Table 1). On the other hand, cluster 4 occurrences
primarily cover the southernmost portion of the Chaibasa Formation. The major rock types
in this region are mica schist and CP/SMS rocks, which align with the low gravity and
intermediate magnetic responses displayed by cluster 4. Additionally, the central portion
of the CGGC also appears as a prominent area for cluster 4, and it is associated with granite
gneiss rocks with a northeast–southwest trend. Similar to cluster 1, cluster 5 also displays
an east–west trend and shows predominant occurrences over the Chandil Formation and
Chaibasa Formation. More specifically, the mica schist rocks of the Chaibasa Formation
and QMSIP rocks of the Chandil Formation are represented by cluster 5, which exhibits
intermediate gravity and the highest magnetic characteristics (Figure 10 and Table 1).

Table 2 presents the conditional probabilities of the specific rock-type units within each
cluster, with rows representing the cluster number and columns specifying the various rock
types. In cluster 1, metabasic rocks display the highest probability of 0.66. Following this,
ultrabasic and phyllite rocks show higher probabilities of 0.23 and 0.22, respectively. In
cluster 2, acid-tuff, granite gneiss, and phyllite rocks are associated with relatively equal
probabilities of 0.42, 0.31, and 0.29, respectively. Similar probabilities are found for the
phyllite (0.42) and QMSIP (0.23) rocks in cluster 3. Cluster 4 exhibits the highest probability
of 0.7, corresponding to the CP/SMS, and following this, mica schist, ultrabasic, and acid-tuff
rocks show relatively higher probabilities of 0.36, 0.29, and 0.21, respectively. Subsequently,
cluster 5 displays the highest probability of 0.42, associated with mica schist. After this,
QMSIP and ultrabasic rocks demonstrate higher probabilities of 0.35 and 0.26, respectively.

Table 2. Shows the conditional probability of the various rock types within each cluster.

Rock Types

Granite
Gneiss

Quartz-Mica Schist
with Interbedded

Phyllite
Phyllite Acid-Tuff Metabasic Ultrabasic Mica

Schist

Chlorite
Phyllite/Sericite
Muscovite Schist

Clusters

C1 0.05 0.09 0.22 0.18 0.66 0.23 0.03 0
C2 0.31 0.2 0.29 0.42 0.08 0.17 0.16 0.11
C3 0.42 0.23 0.15 0.13 0.03 0.06 0.04 0.18
C4 0.18 0.13 0.18 0.21 0.06 0.29 0.36 0.7
C5 0.04 0.35 0.16 0.06 0.16 0.26 0.42 0.01

5. Discussion

On a broad scale, the five clusters obtained using FCM analysis of Bouguer gravity and
aeromagnetic anomalies demonstrate a significant correlation with the major geological
formations in the study area, suggesting that FCM can be a useful tool for initial geological
mapping. To quantitatively relate the geophysical signatures of each cluster with pre-
existing surface geology, the fuzzy membership scores were determined for each data point
in every cluster (Figure 11). A fuzzy membership score higher than 0.8 was considered
a reliable indicator for assigning the geological attributes to the cluster responses of geo-
physical data. For cluster 1, fuzzy membership scores > 0.8 were found for the metabasic
rocks of the Dalma Formation (Figure 11a). It is worth noting that the trustworthiness
responses (fuzzy score > 0.8) of cluster 2 appear to be scattered in nature, indicating a
less clear association with a specific geological formation (Figure 11b). The high fuzzy
membership scores (>0.8) of clusters 3 and 4 correspond to the granite gneiss rocks of the
CGGC (Figure 11c,d). Additionally, the high fuzzy membership scores (>0.8) of cluster 4 are
linked to the mica schist and CP/SMS rocks of the Chaibasa Formation (Figure 11d). The
mica-schist rocks of the Chaibasa Formation and QMSIP rocks of the Chandil Formation
exhibit a trustworthiness value (>0.8 fuzzy scores) in cluster 5 (Figure 11e).



Minerals 2023, 13, 1014 14 of 18Minerals 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 11. (a–e) Demonstrate the fuzzy membership scores of each cluster (1–5) generated by the 
FCM clustering algorithm. The remaining details displayed on all maps are the same as in Figure 3. 

Statistical analysis conducted in this study also indicates that few clusters exhibit 
overlapping signatures in specific features, suggesting that these clusters consist of similar 
rock types. For example, clusters 2 and 3 display identical gravity attributes but differ in 
magnetic characteristics (Figure 9). Similarly, clusters 1 and 2 demonstrate intermediate 
magnetic anomaly characteristics, indicating minimal variation in rock types between 
these clusters. However, they differ significantly in gravity, with cluster 1 having a higher 
mean vertical gravity gradient than cluster 2. This difference in gravity assists in mapping 
rock types beneath the sediment cover (Figure 9). Additionally, all five clusters represent 
the ultrabasic rocks of the Dalma Formation and the acid-tuff rocks of the Chandil For-
mation, suggesting the possibility of merging these regions with other rock types (Figure 
10). These findings suggest that relying solely on gravity and magnetic anomalies in clus-
tering analysis may not be sufficient to capture all the rock types present in the study area. 
It is worth mentioning that airborne magnetic and gravity responses are often associated 
with variations in mineral content, such as the presence of minerals like pyrrhotite or 
magnetite. The absence of elemental or mineralogical data makes it challenging to identify 
rock facies based solely on gravity and magnetic responses. Integrating geochemical and 
additional geophysical datasets relevant to the study, along with gravity and magnetic 
anomalies, can increase the number of clusters and provide more detailed information on 
the geology map. Furthermore, incorporating petrophysical information in the analysis 
would contribute to validating the geological attributes inferred from the FCM clustering 
algorithm using geophysical datasets. 

6. Conclusions 
This study utilized the FCM clustering algorithm to differentiate the various litho-

logical units in the western part of the NSMB region using ground-based Bouguer gravity 
and aeromagnetic datasets. The key findings of this study can be summarized as follows: 
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Nevertheless, the clustered zone map captures all the major geological formations
with high fuzzy scores (>0.8) on a broad scale. However, some inconsistencies are observed
when comparing the existing surface geology map at a more detailed level. Previous
studies [1,5,26] have also highlighted similar discrepancies between clustering results
and bedrock geology at a more refined scale. These inconsistencies are attributed to
the limitation of having a limited number of clusters, which may not be sufficient to
accurately map the geology of larger areas or more complex regions [1,5,26]. It is important
to note that the five-cluster zone map presented in this study represents the objective
integration of gravity and magnetic datasets, which have different penetration depths.
Magnetic anomalies capture source bodies up to Curie depth, while gravity anomalies
reflect anomalous density contrasts from all depths down to the surface. Therefore, the
integrated cluster map contains multi-depth information, making it challenging to establish
a direct correlation between the clustering results and pre-existing surface geology of the
study area.

Statistical analysis conducted in this study also indicates that few clusters exhibit
overlapping signatures in specific features, suggesting that these clusters consist of similar
rock types. For example, clusters 2 and 3 display identical gravity attributes but differ in
magnetic characteristics (Figure 9). Similarly, clusters 1 and 2 demonstrate intermediate
magnetic anomaly characteristics, indicating minimal variation in rock types between these
clusters. However, they differ significantly in gravity, with cluster 1 having a higher mean
vertical gravity gradient than cluster 2. This difference in gravity assists in mapping rock
types beneath the sediment cover (Figure 9). Additionally, all five clusters represent the
ultrabasic rocks of the Dalma Formation and the acid-tuff rocks of the Chandil Formation,
suggesting the possibility of merging these regions with other rock types (Figure 10).
These findings suggest that relying solely on gravity and magnetic anomalies in clustering
analysis may not be sufficient to capture all the rock types present in the study area. It is
worth mentioning that airborne magnetic and gravity responses are often associated with
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variations in mineral content, such as the presence of minerals like pyrrhotite or magnetite.
The absence of elemental or mineralogical data makes it challenging to identify rock facies
based solely on gravity and magnetic responses. Integrating geochemical and additional
geophysical datasets relevant to the study, along with gravity and magnetic anomalies, can
increase the number of clusters and provide more detailed information on the geology map.
Furthermore, incorporating petrophysical information in the analysis would contribute
to validating the geological attributes inferred from the FCM clustering algorithm using
geophysical datasets.

6. Conclusions

This study utilized the FCM clustering algorithm to differentiate the various lithologi-
cal units in the western part of the NSMB region using ground-based Bouguer gravity and
aeromagnetic datasets. The key findings of this study can be summarized as follows:

• The FCM clustering analysis identified five clusters with distinct geophysical signa-
tures, each corresponding to a specific rock type. Clusters associated with the highest
gravity responses are found in the metabasic rocks of the Dalma Formations, while
clusters with the highest magnetic signatures were associated with the mica schist
rocks of the Chaibasa Formations. Clusters displaying the lowest gravity and magnetic
characteristics were observed over the granite gneiss rocks of the Chotanagpur granite
gneiss complex.

• The fuzzy membership scores of most data points in each cluster exceed 0.8, indicating
a strong relationship between the geophysical attributes and existing lithological units.

• On a broad scale, the results of FCM clustering analysis demonstrated a strong spatial
correlation with the existing geological map. However, at a more detailed geological
scale, some inconsistencies were observed between the cluster responses and known
surface geological units. These inconsistencies could be attributed to the limited number
of clusters used in the FCM analysis. Therefore, integrating other relevant geophysical
information with the gravity and magnetic datasets can help increase the number
of clusters and address these inconsistencies. Overall, the FCM clustering analysis
provided valuable insights into the lithological differentiation in the study area and
demonstrated the potential of integrating geophysical data for geological mapping.
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