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Abstract: With the increasing exploitation of mineral resources by humans, exploring non-traditional
areas for hidden resources such as deep earth and sediment-covered regions has become a significant
challenge in the field of mineral exploration. Geochemical data, as a crucial information carrier
of geological bodies, serves as one of the direct and effective sources for quantitative analysis of
regional geological evolution and mineralization prediction studies. It plays an indispensable role
in geographic information system (GIS)-based mineral exploration. Due to the neglect of spatial
distribution characteristics and the variability of statistical features with spatial metrics in traditional
statistical methods, this paper employs fractal/multifractal and the local singularity analysis to iden-
tify geochemical anomalies from background and characterize geochemical distributions associated
with porphyry Cu-Au mineralization in the Duolong mineral district, Tibet, China. A novel algorithm
for estimating the singularity index, which takes anisotropy into consideration, is proposed and
practically applied to the Duolong district. By comparing with the isotropic singularity index, this
new method objectively identifies anisotropic geochemical signatures and investigates non-linear
behaviors of ore-forming elements, making it more practical and effective in geo-anomaly extraction.
Furthermore, the current method is capable of indicating variations in geochemical distributions
at different scales through directional arrows marking analytical windows. The summed-up direc-
tion of these multi-scale vectors effectively demonstrates migration trends of ore materials at each
location within the study area. The new method can pinpoint the location of ore-forming element
accumulation and migration directions, unlocking valuable insights from complex datasets. This
promises to revolutionize our understanding of how minerals are formed and distributed within the
Earth’s crust.

Keywords: geochemical distribution; nonlinear process; singularity; fractal/multifractal; anisotropy

1. Introduction

Mineral resources are crucial material foundations for maintaining economic and so-
cial development and have long been a major concern. However, over the past two decades,
as governments and industries continue to invest in mineral exploitation, it has become
increasingly difficult to discover new resources that are preserved at alike depths [1]. The
practical challenge of discovering new resources in non-traditional exploration territories,
such as deep earth and covered areas, is a topic that garners attention from both academia
and industry in the field of mineral resource exploration [2–4]. With the rapid development
of computer-based information technology, geographic information systems (GIS) have
become extensively utilized for data management and information processing in geolog-
ical and mineral exploration [5–7]. The capability to identify anomalies associated with
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mineralization preserved in depth has been greatly improved, and GIS-based prospectivity
modeling is now considered a routine operation in mineral exploration [5,8–10].

Hydrothermal mineralization is a typical cascade process that involves the migration
of hydrothermal fluids bearing minerals through the Earth’s crust, their filling, or metaso-
matism of fluid and surrounding rock under specific physical and chemical conditions. It
ultimately results in the precipitation of minerals within various favorable structures and
rocks, as well as the accumulation of certain elements or metals [8,11]. These processes
are often accompanied by irregular geological, geochemical, and geophysical signatures
known as geo-anomalies [8,12–14]. Geochemical signatures associated with mineraliza-
tion, preserved in exploratory data, often reflect different types of mineralization from
their surroundings. As an important geological information carrier in support of mineral
exploration, geochemical data that record multi-element concentrations across space can
provide a relatively direct indication of the mineral endowment. In the past few decades,
various statistical models such as principal component analysis (PCA), multiple regression,
and factor analysis [15] have been used to process geochemical exploratory data. These
models have made significant contributions in characterizing geochemical patterns and
identifying correlations among elemental distributions, which has greatly enhanced our
understanding of elemental dispersion processes. According to Tobler’s First Law of Ge-
ography [16], geochemical exploratory data are often assumed to have spatial correlation.
Based on this assumption, certain methods utilizing space technology such as inverse
distance weighting (IDW) [17] have been proposed and effectively utilized in analyzing
geochemical data. However, they may be limited in some special cases, such as when there
is substantial overlap between background and outliers or weak outliers are hidden within
the strong variance of the background [8]. Consequently, it is important to find and/or
develop appropriate analytical methods to extract and separate anomalies from complex
background fields and practically apply them in the geochemical data processing [18].

Ever since Mandelbrot introduced the idea of fractals to the world back in 1967 [19],
it has taken root and flourished throughout a wide range of disciplines. After decades
of rapid development, it has now become a crucial branch of nonlinear science. In the
field of Earth science, modeling techniques based on fractals/multifractals have been
widely discussed and frequently used to explore the nonlinearity of the Earth system.
Natural phenomena such as cloud formation [20], rainfall [21], floods [22], landslides [23],
and earthquakes [24] can be effectively characterized using fractal/multifractal methods.
Magmatic hydrothermal activities in the Earth’s crust, which exhibit nonlinearity [25],
can lead to the formation of deposits. This often results in anomalous energy release or
accumulation of ore materials within narrow spatial and temporal intervals. Nonlinear
methods are therefore suitable for investigating mineralization and its related controlling
factors, in order to identify areas with highly concentrated ore materials by characterizing
their inherent fractal or multifractal properties [8,26–30]. For example, the grade-tonnage
model and the size-frequency distribution of giant deposits are typical fractal methods
applied [31].

The advancements in computer science since the 21st century have greatly improved
geographic information systems (GIS), enabling more efficient analysis of analytical data
within the GIS platform [32]. Various geological exploratory data, such as geological map-
ping, geochemical analysis, geophysical surveys, and remote sensing information, can be
effectively organized and managed within GIS-based geo-databases, and fractal/multifractal
methods in support of mineral prospectivity modeling are benefited and more extensively
promoted [33–36]. Starting from the viewpoints of generalized self-similarity and scale in-
variance, various fractal/multifractal models were proposed and introduced in charactering
geo-anomalies informative of mineralization, e.g., concentration-area (C-A) model [6], the
spectral-area (S-A) model [37], and local singularity analysis (LSA) [27]. The LSA was pro-
posed by Cheng (2007) [27] and has been applied to characterize mineralization-related
geochemical anomalies. Its high efficiency in enhancing and identifying weak anomalies from
a high variance of background is due to its good characterization of singular geological events
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and/or processes. The LSA is a nonlinear method embraced in the GIS environment, which
explores singularity by analyzing spatial neighborhood windows. The LSA avoids the prob-
lem of assuming globally optimal thresholds that apply to every location, which is a limitation
of traditional statistical methods. It has been widely used in geosciences for identifying weak
anomalies and enhancing GIS data in various geological conditions [38–40]. As previously
mentioned, the discovery of mineralization at shallow depths has been widespread and excit-
ing. However, there is a growing expectation for new resources to be found in non-traditional
exploration territories. While traditional geo-anomalies can still be effective in locating mineral
resources, it is becoming increasingly important to innovate both deep exploration technology
and descriptive pattern recognition techniques in order to uncover deeply buried mineral
systems. Therefore, in addition to identifying ore material accumulation, fractal/multifractal
methods have recently been further developed and focused more on detecting patterns that
describe or provide information about deeply buried mineralization.

In this context, the field of fractal/multifractal models has made significant advance-
ments in recent years, due to continuous efforts dedicated to improving these algorithms.
By upgrading models and fusing algorithms, there has been progressive improvement in
understanding the complexity and precision of mineralization preserved in these mathemat-
ical structures [41–45]. Using anisotropy as an example, it represents variations of properties
measured along different directions. Anisotropic patterns identified or characterized from
various geo-anomalies will be of great benefit to the inversion of mineralization-related
knowledge, e.g., fluid migration and ore-controlling structure. In other words, the analyti-
cal outputs of fractal/multifractal models aim not only to locate areas with ore material
accumulation but also to express the anisotropic nature of geo-anomalies.

In previous studies, the original algorithm of LSA was jointly developed with many
other spatial analysis methods. The primary focus of discussion in LSA is the analytical
window, which has been integrated with buffer analysis and defined as a series of square
windows oriented towards fault segments. A fault-oriented singularity algorithm was
proposed to investigate anisotropic geochemical anomalies, based on which new fault
properties were derived from the geochemical variation around fault segments [12,46]. The
idea of the directional window in LSA was discussed [47,48]. The directions of analytical
windows were utilized as a practical representation of anisotropy conducive to pattern
interpretation. Furthermore, the original analytical square window was also updated
according to intergrade with the algorithm of U statistics. Results derived from new LSA
not only well characterize the spatial variation of geo-anomalies but also provide patterns
indicative of anisotropy [49–51]. Due to the crucial information represented by anisotropic
characteristics, this study proposes a new algorithm for detecting anisotropic singularities
as a successor to our previous studies [12,48,50,51], which will provide more representation
of anisotropic geo-anomalies. A case study in the Duolong mineral district, Tibet, China is
demonstrated to characterize Cu and Au geochemical anomalies and informative patterns
in support of new discoveries of Cu-Au deposits.

2. Study Area and Datasets

The Duolong copper–gold mineral district located in the Ali district of northwest Tibet,
China, about 100 km away from the northwest of Gerze County lies in the western part of the
Bangongco–Nujiang suture zone (BNSZ), and the Mesozoic tectonic magmatic arc lies at the
southern margin of the southern Qiangtang terrane (Figure 1a). Preliminary conclusions can
be inferred from previous studies that the formation of the BNSZ is attributed to the northward
subduction of the Bangongco–Nujiang Tethyan Ocean [52–54]. The BNSZ spans over 2000 km
across the central Tibetan Plateau extending from Bangong Lake in the west to the Nujiang
River in the east. This region is primarily composed of a large-scale ophiolite and melange
belt, accompanied by near EW folding structures and Yanshanian basic and intermediate-felsic
rocks. This area represents the remnants of the Bangongco–Nujiang Tethyan Ocean [55]. The
ages of ophiolites and radiolarians in this region suggest the existence of the Bangongco–
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Nujiang ocean from the Carboniferous to Early Cretaceous [56–59] which likely underwent
closure at approximately 100 Ma [60–62].

The Duolong mineral district extends in an east–west direction, spanning approxi-
mately 30 km in length and 10 km in width from north to south. It hosts several large
and ultra-large porphyry Cu-Au, high-sulfidation epithermal Cu-Au, and gold placer
deposits, including the Tegelongnan, Duobuza, Bolong, and Naruo deposits (Figure 1b).
The cumulative proven copper reserves in the area exceed 20 million tons, with associated
gold resources exceeding 420 tons, indicating a world-class ultra-large copper and gold
deposit [63].
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suture zone; BNSZ: Bangong–Nujiang suture zone; IYZSZ: Indus–Yalung Zangbo suture zone.

The Duolong mineral district is primarily composed of Mesozoic marine sedimentary
rock strata, with partially exposed Cenozoic strata. These belong to a set of generally
disordered and locally ordered non-Smith strata [66]. The Upper Triassic Riganpeicuo
Formation (T3r) only appears as a broken block outcrop on the northeast side of the mine
area, representing a set of land shelf shallow marine carbonate constructions. The main
lithology consists of tuff for the oldest outcrop unit in the Duolong mineral district. It
is overlain by the Lower Jurassic Quse Formation (J1q) and the Middle Jurassic Seva
Formation (J2s), which constitute the primary stratigraphic framework of the mine area,
serving as the main ore-bearing enclosing rocks in this region. For instance, the Sena and
Naruo deposits have been identified as potential sources of mineral resources. However,
due to the limited scale and deep-seated nature of ore bodies in the Sena deposit, it
poses a significant challenge for exploration efforts [67]. The Quse Formation, occurring
predominantly in the central and southwestern regions of the mineralization, represents
a subaqueous shelf-basin slope complex composed of clastic lithologies [68], primarily
comprising interbedded sandstones, siltstones, and cherts. The Middle Jurassic Seva
Formation is generally spreading in the northeastward direction. It consists of a sub-deep-
sea shelf-basin slope complex with a clastic-marble-like structure, primarily composed of
interbedded sandstones and siltstones. Both Quse and Sewa Formations have undergone
low-grade metamorphism from 121 Ma to 115 Ma [69], resulting in the transformation of
some siltstone into slate. The Lower Cretaceous Meiriqiecuo Formation (K1m), which is
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distributed in a linear and punctiform manner within the mineralization area, is a suite of
terrestrial calc-alkaline volcanic strata that underwent multiple rotations and eruptions [70].
Its unconformity overlies the Quse and Sewa Formations Jurassic strata and is of great
significance to the preservation of the Tiegelongnan deposit after mineralization [71]. The
Upper Cretaceous Abushan Formation (K2a) is extensively distributed in the northwest
and northeast regions of the mining area. It represents a terrestrial millerite sedimentary
assemblage, primarily composed of sandstone, conglomerate, sandstone, and mudstone. It
represents a tectonic uplift event on the southern margin of the Qiangtang Massif during
the Late Cretaceous, signifying an intracontinental evolutionary stage of crustal thickening
in the South Qiangtang Basin during the Late Cretaceous-Paleocene period [70,72,73].

The faults within the Duolong mineral district are well-developed and exhibit char-
acteristics of multiple stages, primarily manifesting in three groups oriented towards the
northeast (NE), northwest (NW), and nearly east–west (EW) directions. These faults have
effectively segmented the Duolong mineral district into a “diamond” tectonic framework.
According to the sequence of fault activity, it can be inferred that the NE and NW faults
were formed prior to the EW faults. The EW reverse fault was generated subsequent to the
mineralization stage and exerted a destructive influence on the ore body [74].

The magmatic activity in the Duolong ore concentration area is characterized by multi-
stage porphyry, gabbro, and diorite intrusions, which are integral to the evolution process
of the Bannu Ocean basin. The gabbro is primarily located in the central mining area and
extends east-westward in vein-like outcrops. The diorites occur as rock strains within the
mine area but have a limited overall distribution. The porphyry body is intimately associated
with mineralization in this region and predominantly occurs along NE and NW reverse faults
within the Quse or Sewa Formation, with a diagenetic ages range of 116–120 Ma [75]. Volcanic
rocks such as basalt, andesite, and basaltic andesite are widely distributed in the Duolong
mineral district. These volcanic rocks are unconformably overlying the Jurassic strata, which
is of significant importance for the preservation of mineralized ore bodies.

Exploratory datasets, which include geological and geochemical data at a scale of
1:50,000, are currently being utilized. The geochemical data collected from stream sedimen-
tary sampling consist of 3358 samples with a sampling density of 4 samples per square
kilometer. Concentration values for 15 trace elements (Cu, Pb, Zn, Cr, Ni, Mn, Ag, Sn,
W, Mo, As, Sb, Bi, Hg, Au) were measured. More detailed descriptions of these datasets
can be found in Wang et al. [76]. In this study, only the concentrations of the two primary
ore elements Cu and Au were analyzed to characterize mineralization anomalies and to
demonstrate the application of the proposed method. Table 1 presents a comprehensive
compilation of essential statistical parameters derived from the current analysis of Cu and
Au geochemical data. The results indicate that the distribution of Cu and Au elements is
positively skewed, as evidenced by their median values being less than the corresponding
mean values. Raw geochemical data with a skewness greater than zero indicate a non-
normal distribution. Furthermore, large coefficients of variation (CV) suggest significant
tectonic activity in the study area. In order to investigate the spatial distribution charac-
teristics of Cu and Au elements, four samples were collected in a 1 km area (i.e., one at
0.25 km2). The geochemical data were initially analyzed at a spatial resolution of 0.5 km
using the inverse distance weighting method to ensure that only one sample was present
in a 0.5 × 0.5 km area.

Table 1. Descriptive statistics of Duolong data.

Max Min Mean Standard Deviation CV Median Skewness

Cu (in ppm) 854.00 6.20 38.51 51.99 1.35 26.84 8.67
Au (in ppb) 1058.50 0.40 4.76 25.00 5.25 2.15 29.58
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3. Methods
3.1. Fractal/Multifractal Theory

Fractal/multifractal models serve as effective tools for characterizing the complex na-
ture of physical processes. The power–law relationship, which follows scale invariance and
generalized self-similarity, can be utilized to investigate intricate processes, as evidenced
by the end products of singular processes [77,78]. Assuming that there is an object or
pattern with irregular shapes, fractal dimension is the parameter effective in characterizing
the fractal structure and attribute properties of the object. In general, it can be estimated
through the box-counting (BC) method [79]. During the estimation, a series of windows
with different scales (εi) are firstly defined. For each window series with scales εi, the
number of windows that fully cover the object can be determined as N(εi). A power–law
relationship between εi and N(εi) can be expressed as:

N(εi) ∝ cε−D
i (1)

where ∝ represents proportionality, c is a constant, and D is the fractal dimension estimated
by the box-counting method. The Koch curve, first introduced by Koch in 1904, is a
prototypical fractal curve. It is divided into squares as shown in Figure 2. Using the BC
method (Table 2), the fractal dimension can be calculated as D = 1.2. Objects with irregular
and complex geometry generally exhibit a non-integer (fractal) dimension [80]. Essentially,
this means that the intricacy of an object directly correlates with its fractal dimension. In
simpler terms, the more intricate and complex an object appears to be, the higher its fractal
dimension will be.
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Table 2. Box size and box numbers of Koch curve.

Box Size εi 1 2 4 8

Box Count N(εi) 221 93 42 18

As a natural extension of the self-similarity measure defined in space by fractal geomet-
ric points [81], multifractals can be regarded as fractals where successive fractal dimensional
spectra are intertwined in space [82]. The multifractal spectra are frequently employed to
characterize multifractals, similar to the use of fractal dimension for characterizing fractals.
Different sets of self-similar fractals defined on the same complex pattern can be interrelated
by means of the multifractal theory.

Without loss of generality, the modeling is carried out in two dimensions as an example.
Assume that in the two-dimensional plane, the i-th box of the mineralizing element with
edge length ε has measure µi(ε), and the measure µi(ε) is the total content of that element
within the box. Thus, the total content of a local element can be represented by the measure
on the i-th box of size. The measure of the grid in space with length ε is µi(ε). Let ε be
the length of the i-th box containing a mineralizing element with measure µi(ε), which
represents the total content of that element within the box. Therefore, the measure on each
i-th box with size ε can represent the total content of a local element. The measure of the
space grid with length ε is also µi(ε), and a power–law relation can be expressed as follows.

µi(ε) ∝ εαi (2)

where αi is called the Coarse Holder exponent (also known as singularity index) [81]. After
determining the number of boxes with identical values on the fractal as Nα(ε), a power–law
relationship can be observed with respect to the given value of α.

Nα(ε) ∝ ε− f (α) (3)

The function f (α) is referred to as the multifractal spectra function, which corresponds
to the box dimension with the same α in fractals. Different subsets of α values have different
fractal dimensions represented by f (α).

Since the introduction of the first-dimensional spectral function by Halscy et al. [83],
a series of methods have been developed for the calculation of the spectral function, e.g.,
the methods of the partition function, the fractal interpolation, the multifractal trended
fluctuation analysis, the empirical mode decomposition, and the wavelet transform modu-
lus maxima [84–86]. Among these progresses, the moment method is the one frequently
discussed. In order to clarify the distribution characters of f (α), the allocation function χq(ε)
needs to be firstly constructed.

χq(ε) =
N(ε)

∑
i=1

µ
q
i (ε) (4)

where q is an arbitrary real number representing µi(ε) statistical moment order. Negative q
serves as an amplifier for smaller content boxes, while positive q accentuates the significance
of larger content boxes. If the measure µi(ε) exhibits multifractal properties, then χq(ε) and
ε follow a power–law relationship for all values of q.

χq(ε) ∝ ετ(q) (5)

where τ(q) denotes the mass exponent, a convex function about q, and reaches the maximum
curvature at q = 1. It can reveal whether or not multifractality is present. Furthermore,
the relationship between the singularity index α and the multifractal spectra f (α) can be
obtained through the Legendre transform as

α(q) = dτ(q)/d(q) (6)
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f (α) = α(q)q − τ(q) (7)

A convex function that resembles a parabola will be shown on the graph by plotting
α and f (α), referred to as the multifractal spectra of measures. From the spectra, there are
generally four parameters for geological knowledge interpretation [87]. The first parameter
is the value of Holder exponent α(q) at q = 0 where f (α) attains its maximum, denoted as α0.
The second is the asymmetry index defined as R = α(0)−αmin

αmax−α(0) . R > 1 indicates a left-skewed
multifractal spectra, implying local enrichment of ore-forming materials. Conversely, R < 1
represents a right-skewed spectrum and corresponds to the local depletion of ore-forming
materials. The case of R = 1 indicates a completely symmetric multifractal spectrum. The
third is the spectra width denoted as ∆α = αmax − αmin. The wider the curve of f (α), the more
heterogeneously distributed the measurements are in space, and vice versa, as indicated
by a higher value of ∆α. The fourth parameter is the height of the multifractal spectra,
which is denoted as ∆f = f (αmin) − f (αmax). This parameter mainly reflects the difference in
proportion between the maximum and minimum subsets of measurements under various
scales (ε). When ∆f > 0, the multifractal spectra exhibit a left-skewed shape. It means that
as the scale changes, the rate of change in the number of subsets corresponding to the
minimum singularity index αmin is slower than that of the maximum singularity index αmax.
It indicates an enrichment region at a small scale. When ∆f < 0, the multifractal spectra
exhibit a shape. It indicates the rate of change in the number of subsets corresponding to
the minimum singularity αmin being faster than that of the maximum singularity index
αmax as the scale increases. It results in relatively large areas of enrichment. When ∆f ≈ 0,
the multifractal spectra exhibit a symmetrical shape. As the scale changes, the number
of subsets corresponding to both the minimum singularity index αmin and maximum
singularity index αmax change at a similar rate, indicating that there are regional enrichment
and/or deficit at the same scale.

3.2. Local Singularity Analysis

As per the detailed explanation provided by Cheng [8], the LSA is a novel approach
to analyzing complex mineralization systems that exhibit singular behavior at certain
points or regions. Choosing the two-dimensional geochemical data as an example, the
key parameters and singularity index in the local singularity analysis can be derived from
the power–law relationship between the total amount of metal substance µ(A) and its
concentration c(A).

µ(A) = c(A)α/2 (8)

C(A) = c(A)
α
2 −1 (9)

where A represents the 2D, and c is a constant. α is the singularity index, the value
of which can be used to characterize irregular and complex geochemical distribution
associated with non-linear mineralization. When α = 2, representing a linear distribution,
the concentrations of elements are uniform. A value of α < 2 indicates a gradual decrease in
element concentrations from the center to its surroundings, while a positive singularity (α)
denotes an enrichment of elements. Conversely, when α > 2, there is a gradual increase in
element concentration from the center to its periphery, and this negative singularity implies
the depletion of elements.

In practice, the most commonly utilized approach for estimating the singularity in-
dex is the square window-based algorithm proposed by Cheng and Agterberg (1996)
(Figure 3) [28]. Initially, a series of square windows with varying sizes (Ai = εi

2) is defined
as centered on a specific location. By plotting the window sizes εi and their corresponding
concentrations C[A(εi)] on a log–log graph, one can estimate the singularity index based
on the slope (k = α − 2) of the linear relation between εi and C[A(εi)]. By implementing
these steps throughout the area, it is possible to delineate the spatial distribution of sin-
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gularity indices and characterize qualitative and quantitative variations in geochemical
distributions.
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3.3. Anisotropic Singularity Algorithm

As previously discussed, the analytical window is a square shape that exhibits isotropic
properties rather than anisotropic. While it remains effective in identifying target areas with
ore material accumulation, it may not be suitable for more delicate investigations. Therefore,
building upon our previous research, the current study presents a novel anisotropic singu-
larity index estimation algorithm based on practical application in the Duolong mineral
district, Tibet, China. A general estimation process (Figure 4) includes the following:
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(1) Select a representative sample as the centroid and designate the initial rectangular
window as A1 (A = ε1 × ε1, where ε1 can be any length depending on scales of ana-
lyzed exploratory data). Subsequently, generate a sequence of rectangular windows
extending northward from the original window with sizes of ε1 × εi (where εi can be
defined by practical application scenarios);

(2) At each scale εi, firstly orient the rectangular window in the north direction (0◦), and
then rotate the azimuth at an interval. The interval (0◦–360◦) is predefined depending
on the scales of analyzed data as well. Calculate average elemental concentrations
within each directional windows C[A(εi)].
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(3) As geochemical behaviors such as accumulation and depletion cannot be predetermined
prior to analysis, both the maximum and minimum element concentrations within their
corresponding rotation window and azimuths at each scale are selected. This results in
two (i.e., maximum and minimum) sets of determined element concentrations.

(4) At each scale, plot the concentrations C[A(εi)] and window sizes εi corresponding to
the sets of maximum and minimum on a log–log plot, respectively. The slopes k on
the log–log graph can be estimated by the least squares method. Among the slopes at
all scales, the one with the largest absolute value is chosen to estimate the anisotropic
singularity index, k = α − 1.

(5) In contrast to the isotropic singularity estimation algorithm, the new method repre-
sents the azimuths of selected windows at each scale as vectors with arrows (from low
to high concentration), effectively illustrating multi-scale migration trends of elements.
Additionally, these vectors at each scale can be summed to comprehensively depict
anisotropic geochemical behaviors of geochemical distributions.

(6) Similar to the square window-based algorithm, the aforementioned steps are executed
for every location within the entire study area, thereby generating a spatial distribution
of the singularity index across the space.

4. A Case Study in the Duolong Mineral District
4.1. Geochemical Distributions of Ore Elements

The geochemical data for Cu and Au elements were initially interpreted as grid maps
using the inverse distance weighted method (IDW). The resulting geochemical distribu-
tions effectively demonstrated that most of the geochemical anomalies are consistent with
occurrences of discovered deposits such as Duobuza, Naruo, etc. However, there are still
some deposits located in areas with weak anomalies. After reviewing the distribution
maps of Cu and Au (Figure 5), several observations can be made. Firstly, the Cu anomalies
align roughly along the NE trend and distributed in close proximity to the NE trending
faults within the mineralization area. This is consistent with the extent of porphyry bodies
exposed in this region, indicating that intrusion and fracture tectonics play important roles
in influencing mineralization. The distribution of Au anomalies is sporadic and lacks
significant enrichment on a large scale, indicating weak overall mineralization potential
compared to Cu. Quaternary sediments to the south of the district exhibit high levels of Au
enrichment, likely influenced by weathered and transported flood deposits. Enrichment in
both Cu and Au in the Naruo and other zones suggests that this area represents a deposit
associated with both metals.
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4.2. Multifractal Analysis

The analysis of multifractals typically involves selecting a range of moments q cen-
tered on zero, which serve as weighting factors to amplify the distinct contributions of
singularities. In this study, the moment range is defined from −10 to 10. Building upon the
aforementioned introduction, the multifractal spectra for Cu and Au elements in the study
area can be obtained (Figure 6).
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The complexity of the multifractal spectra can be represented as a four-component
vector (α(0), R, ∆α, and ∆f (α)) (Table 3) [88]. The spatial distribution of Cu and Au elements
in the study area exhibits multifractality. They all exhibit asymmetrically up-convex curves,
indicating varying degrees of local superposition in the geochemical distributions of ore
metals. The α(0) values of these two elements exhibit only minor fluctuations around the
Euclidean dimension 2 of the plane, indicating their similarity. The other three parameters,
R, ∆α, and ∆f (α), are further investigated to interpret the geochemical distributions of ore
elements and their associations. There are two parameter characteristics that may indicate
the presence of various geological processes leading to local patterns of enrichment or
deficit. Geochemists are primarily interested in multifractal spectra that exhibit significant
left-skewed deviations and large widths. The values of R for both Au and Cu elements
exceed 1, indicating an asymmetric pattern of the multifractal spectra with a left-skewed
distribution for both elements. The values of Cu elements are significantly higher than
those of Au elements, with the latter exhibiting a more pronounced left-skewness. This
suggests that Cu is preferentially enriched in this region while Au is predominantly present
in weakly enriched zones. These findings are consistent with the observed distribution
patterns of Cu and Au concentrations within this area. Compared to Cu, Au exhibits a
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broader multifractal spectra width ∆α and a positive ∆f value, indicating a higher likelihood
of being enriched with a relatively narrow range. Joint interpretation of the aforementioned
three parameters suggests that Cu is only enriched over a large area, while Au exhibits
significant super-enrichment in a localized region.

Table 3. Characteristic parameters of multifractal spectra of Cu and Au distributions for symmetrical
moment range (−10 ≤ q ≤ 10).

αmin α(0) αmax ∆α R f (αmin) f (αmax) ∆f

Cu 1.39 2.02 2.18 0.79 3.94 0.24 0.87 −0.63
Au 0.96 2.02 2.68 1.72 1.61 0.07 −1.22 1.29

4.3. Anisotropic Singularity

As previously mentioned, the implementation of the currently proposed anisotropic
singularity algorithm in the study area encompasses the following:

(1) By selecting a geochemical sampling location, the initial rectangular window is des-
ignated as A1 (A = ε1 × ε1, ε1 = 1 km). Subsequently, a series of northward trending
rectangular windows are defined with dimensions of ε1 × εi (εi = 1 km, 2 km, 3 km,
4 km, 5 km, and 6 km) (where εi ranges from 1 to 6 km);

(2) At each scale εi, a window rotation interval of 10◦ is defined to count the average
elemental concentrations within directional windows C[A(εi)];

(3) The maximum and minimum sets of element concentrations can be determined from
all directional windows;

(4) The anisotropic singularity index can be estimated in a similar manner as the afore-
mentioned steps;

(5) Vectors with arrows are used to mark all azimuths of selected windows at each scale,
which are then summed up to represent the anisotropic migration and/or distributions
of ore elements;

(6) By implementing these steps at all sampling locations, the anisotropic nature of ore
elements can be depicted in both grid and vector forms, revealing spatial variations.

The anisotropic singularity index interpolation maps exhibit greater continuity and
aggregation compared to the isotropic singularity index map which displays dispersion
and point-like shapes (Figures 7 and 8). Additionally, it demonstrates improved predictive
accuracy with a significant number of positive singularity indices in the northwestern
region of mineralization concentration, indicating the higher potential for mineralization in
this area.
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method.

The anisotropic singularity not only provides stronger ideation but also enhances the
overall quality of analysis. Each sampling location is assigned an anisotropic direction,
which indicates the final migration direction of ore materials. This direction is determined
by fitting the window’s direction selected at different scales using the vector summed-up
method (Figure 4b), as previously mentioned. If the singularity index α is less than 1
(α < 1) at a given sample location, it indicates enrichment of ore elements in the local area,
with changing behavior from high to low as one moves towards the sample location from
outside (Figure 9). Conversely, if α is greater than 1 (α > 1), there is a loss of elements at that
location, and the variation in ore element behavior changes from low to high as one moves
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away from the sample location. The novel approach emphasizes the impact of fracture
tectonics and magmatic rocks on the geochemical behavior of ore elements by considering
the anisotropic nature of mineralization. For the low-temperature copper element, both
forward and backward arrows effectively demonstrate that mineralization is primarily
controlled by NE trending faults. Additionally, enrichment patterns (indicated by red
arrows) are located at fault intersections. The NW trending faults predominantly intersect
the depletion patterns (indicated by blue arrows), indicating their post-mineralization
origin and dominance in the fracturing and/or reconstruction of ore deposits within this
region. That provides compelling evidence for the significance of the proposed anisotropic
singularity estimation method in delineating mineralization-related geochemical fields
and elucidating elemental transport pathways. The locations with Cu-Au mineralization
potentials in the Duolong mineral district are delineated by enrichment patterns of ore
elements, which spatially match discovered deposits and outcropped porphyries at the
intersection of NE and NW trending faults. This coincidence supports previous geological
knowledge that mineralization in this district is highly associated with a mesh-like fault
system with a rhombus shape. It is also predicted that the southern and northwestern of the
district may have similar potentials for mineralization. Most of discovered mineral deposits
including Duobuza, Nadun, Dibao, and Garqin are located in areas with positive singularity
values while the Tiegelongnan and Sena are situated in areas of negative ones. The presence
of volcanic strata, specifically the Meiriqiecuo formation, not only aids in the preservation
of the Tiegelongnan deposit but also obstructs positive geochemical anomalies [71]. Due to
the small scale and deep burial of ore bodies in the Sena deposit [67], the current analysis of
geochemical data collected from secondary media may not effectively identify its affected
areas. Therefore, while the current algorithm is effective in narrowing down the target area,
limitations in the analyzed data (i.e., geo-information carrier) are also evident.
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4.4. Results and Discussion

The anisotropic nature of ore-forming materials has been characterized based on
the presented isotropic and anisotropic singularity patterns. To further demonstrate the
superiority of this new algorithm, four sampling locations are currently selected for demon-
stration (Figure 8a). As illustrated in these four multi-scale anisotropic windows and arrows
(Figure 10), the dominant migration pathways of ore metals at various scales can be visually
delineated. Within smaller analytical windows, the arrows indicating the migration of
ore materials exhibit greater irregularity and complexity (Figure 11). Conversely, larger
analytical windows with higher εi values yield more stable arrow trends and interpretable
migration patterns, indicative of regional factors dominating and influencing migration
at higher scales. In other words, arrow patterns at higher scales are more appropriate for
representing and indicating the migration of ore materials associated with mineralization
in the district.
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As the current exploratory geochemical data are derived from sediment samples, it
is theoretically founded that geochemical halos can record and preserve variations of ore
materials caused by mineralization. However, these halos should be regarded as a projection
of buried geological information onto the surface, and the geochemical samples are often
subjected to weathering and leaching. In essence, the ore-forming elements within the
orebodies were redistributed and infiltrated into soils, stream sediments, and other third-party
media. As a result, the preserved geo-information associated with mineralization is often
weakened and difficult to identify without advanced geochemical anomaly extraction methods.
It is crucial to bear in mind that such data offer indirect indications that may be subject to
external influences, such as the correlation between negative singularity indices and the
Tiegelongnan and Sena deposits (Figure 11). Therefore, it is noteworthy that lithogeochemical
data can accurately depict the factual variations of ore elements through primary halos. Future
research could consider sampling media containing faults, joints, and fractures to facilitate the
migration and precipitation of hydrothermal fluids bearing ores.

5. Summary and Conclusions

This paper explores the distribution of ore-forming elements and their interrelation-
ships through multifractal analysis. During the lengthy geological evolution, geochemical
fields have inevitably undergone various degrees of multi-stage and multi-phase geological
processes or other natural modification processes that result in inherent fractal and/or
multifractal natures. As a powerful tool for characterizing variations in geochemical distri-
butions, the multifractal spectra play a crucial role in revealing the statistical properties
across different scales and investigating the spatial patterns of geochemical distributions.
The asymmetry index of R plays a crucial role in assessing the mineralization potential of an
area. When R > 1, the left-hand side opening is larger than the right-hand side, indicating
that the high-content value fraction exhibits greater variation in mean density than the
low-content fraction across different sub-regions, thereby promoting enrichment mineral-
ization. The value range of multifractal spectra can assess the potential of mineralization.
The higher value indicates a more dispersed distribution of elements that is favorable for
mineralization. Both geochemical distributions of Cu and Au in the Duolong mineral dis-
trict exhibit mineralization-favored patterns. Further interpretation of parameters through
multifractal analysis reveals that Cu elements are weakly enriched at a regional scale, while
Au elements are highly enriched at a local scale.

A novel singularity index estimation algorithm that accounts for anisotropy is proposed
in this paper and practically applied to characterize spatial variations of ore-forming elements
in the Duolong mineral district, Tibet, China. It not only enhances the identification of weak
anomalies, but also characterizes changes in geochemical distributions. By summing up the
directions with the most significant variation at different scales, it is possible to determine the
migration direction of ore-forming elements. The results indicate that NE trending faults are
the main controlling structures for mineralization in the study area, and intersections between
NE and NW faults are favorable locations for mineralization. The new anisotropic singularity
method serves as a reliable indicator for tracking the source of ore materials and predicting
mineralization potential. Ultimately, these methods can pinpoint the location of ore-forming
element accumulation and migration directions, unlocking valuable insights from complex
datasets. This promises to revolutionize our understanding of how mineral resources are
formed and distributed within the Earth’s crust.
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