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Abstract: Previously, proof-of-concept studies have demonstrated that rare-earth elements (REEs) can
be preferentially extracted from coal fly ash (CFA) solids using a recyclable ionic liquid (IL), betainium
bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]). When the suspension of aqueous solution—IL-
CFA—is heated above 65 ◦C, the majority of REEs will separate from the bulk elements in the solids
and partition to the IL phase. Acid stripping of the IL removes REEs and regenerates the IL for
reuse in additional extraction cycles. The objective of this study is to showcase the applicability and
effectiveness of the optimized method to recover REEs from various CFAs. Six CFA samples with
different characteristics (feed coal basins, coal beds, and ash collecting points) and classifications
(Class C and Class F) were examined. The process performance was evaluated for a broad range of
elements (33 total), including 15 REEs, two actinides, six bulk elements, and 10 trace metals. Results
confirmed good recovery of total REEs (ranging from 44% to 66% among the CFA samples) and the
recovery process’ high selectivity of REEs over other bulk and trace elements. Sc, Y, Nd, Sm, Gd,
Dy, and Yb consistently showed high leaching and partitioning into the IL phase, with an average
recovery efficiency ranging from 53.8% to 66.2%, while the other REEs showed greater variability
among the different CFA samples. Some amounts of Al and Th were co-extracted into the IL phase,
while Fe co-extraction was successfully limited by chloride complexation and ascorbic acid reduction.
These results indicated that the IL-based REE-CFA recovery method can maintain a high REE recovery
efficiency across various types of CFA, therefore providing a promising sustainable REE recovery
strategy for various coal ash wastes.

Keywords: rare-earth elements; ionic liquids; coal combustion residuals; resource recovery; sustainability

1. Introduction

The rare-earth elements (REEs) are a group of 17 elements, including 15 lanthanides,
yttrium, and scandium [1–7]. Due to their nature of electronic configuration and a typically
stable +3 oxidation state, REEs have valuable properties that are crucial to a wide range of
modern technologies in the fields of catalysts, magnets, batteries, metallurgy and alloys,
polishing, ceramics and glass, medical applications, and military defense [2–10]. With
emerging clean energy technologies, the global market for REEs will continue to expand in
the coming decades. By far, few artificial alternatives to REEs have been found, and substi-
tutes compromise efficiency or product quality [2,4]. Therefore, a steady supply is essential
to support the growing demand in the long term. The majority of the current world’s REE
production comes from mining, such as the Bayan Obo deposit in Inner Mongolia, Mount
Weld in Australia, and Mountain Pass in the U.S. [3–5,8,10–12]. REEs have an average
concentration of 150 to 220 ppm in the earth’s crust, where the concentrations of the widely
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used copper and zinc are 55 ppm and 70 ppm, respectively [4,8]. However, REEs often occur
with other elements in the ore deposits, and the economically extractable concentrations
of REEs stated by the U.S. Department of Energy’s (DOE) National Energy Technology
Laboratory are 300 ppm [3–5]. As a result, REE mining requires complex procedures,
generates considerable waste, including radioactive thorium and uranium contaminants,
and may have a negative impact on the environment and human health [3,4,10,13,14]. To
ensure more sustainable REE availability, the European Commission categorized REEs as
critical materials in 2010. In the same year, the U.S. DOE also emphasized the importance
of recycling REEs from REE-rich wastes [2,5,6].

Coal fly ash (CFA), a fine powder waste from coal combustion, has recently been
considered a potential source for REE recovery. In 2021, the U.S. generated approximately
28 Mt of CFA, of which about 67% were reused and the rest were stored in landfills or
impoundments [15]. Compared to rare earth mines, most CFAs have higher total REE
contents and a full range of REEs. Seredin et al. [16] indicated that the average REE contents
for the world CFA were 483 ppm. The REE contents of CFA are highly determined by the
characteristics of the feed coal. U.S. coal mainly comes from three basins: the Appalachian
basin (App), the Illinois basin (IL), and the Powder River basin (PRB). Taggart et al. [17]
studied 35 CFA samples burning feed coals from those basins and found that CFA from
the App basin had the highest total REE contents (591 ppm) compared to CFA from
IL basin (403 ppm) and PRB (337 ppm) basins. Specifically, CFA from burning eastern
Kentucky’s Fire Clay coal was found to have high REE concentrations ranging from 1200 to
1670 ppm [17–19]. Another factor affecting REE contents is the ash collection location
in the utility [18,20]. The CFA in the flue gases from the boiler is usually captured at
electrostatic precipitator (ESP) hoppers. Studies showed that the REE contents of collected
CFA slightly decreased as the temperature dropped from the first through the following
rows of ESP [18,20]. Besides high REE contents, CFA contains significant amounts of toxic
heavy metals, such as As, Cr, and Pb, that can be leached together with REEs [21–25]. Most
current REE-CFA recovery methods use strong acids, such as concentrated HCl, HNO3,
and H2SO4 solutions, to treat CFA solids or generate CFA leachate [17,26–28]. Direct acid
extraction on solids resulted in low REE recovery and, therefore, was combined with
alkaline roasting or hydrothermal pretreatment to improve recovery efficiency [26,29].
Such methods have low selectivity between REEs and bulk elements and require high
chemical consumption and intense operational conditions, including high temperature,
high pressure, and highly corrosive solutions. A sustainable recovery method should
effectively extract and separate REEs from the bulk material with minimal chemical and
energy costs, reduced waste generation, and simplified downstream processing.

In previous publications, we developed a novel recovery method by using a recyclable
ionic liquid (IL), betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N], Figure 1), to
preferentially extract REEs from CFA [30]. ILs are molten salts that have become promising
extraction solvents in the past decades due to favorable properties, for example, high
tuneability, low melting points (below 100 ◦C), negligible vapor pressure, low flammability,
and high thermal stability [31,32]. Nockemann et al. [32] demonstrated that [Hbet][Tf2N]
exhibited a thermomorphic behavior with water, that is, a 50 wt% [Hbet][Tf2N] mixture with
water formed a homogeneous phase when heated above 55 ◦C, and the mixture returned
to two phases after cooling to ambient temperature. When [Hbet][Tf2N] is miscible with
water, the mixture has a lower viscosity, thereby accelerating the mass transfer of REEs from
CFA solids to the solution. The leaching mechanism relies on exchanging three protons on
the carboxylic group of the IL cations with each REE ion (Equation (1)):

REE3+ + 3[Hbet][Tf2N]→ [REE(bet)3][(Tf2N)3] + 3H+ (1)
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The extracted REEs were removed from the IL phase as dissolved salts through a mild
acid stripping process, and the regenerated [Hbet][Tf2N] was reused for more extraction
processes [32–34].

Our previous study applied [Hbet][Tf2N] to three representative types of CFA and
achieved high REE leaching efficiencies (approaching 100%). The recalcitrant Class F ashes
were pretreated with an alkaline solution to promote extraction and separation behavior,
and no significant loss of REEs was found during the pretreatment. Adding excess betaine
to the aqueous phase further shifted the distribution of REEs toward the IL phase [30].
Optimizations of iron removal were developed by chloride complexation and ascorbic
acid reduction. The combination of alkaline pretreatment, additional betaine, chloride
complexation, and ascorbic acid reduction generated a mildly acidic REE-rich solution
with limited iron coextraction (approximately 68.6 wt% REEs recovered and approximately
2.7 wt% Fe coextracted from CFA) [35]). The recyclable IL was successfully applied for
multiple cycles without a significant decrease in leaching efficiency or partitioning [30]. Our
most recent study expanded the elemental survey from seven REEs and four bulk elements
(11 total) to eleven REEs, two actinides, six bulk elements, and ten trace elements (29 total)
and confirmed the preference of [Hbet][Tf2N] for REEs over other elements. Optimizations
of operational conditions found that a pH range of 2–7 had no impact on the extraction
behaviors of elements studied, and the optimal leaching temperature and duration were
75−85 ◦C and 3 h of the studied 45−85 ◦C and 0.5−12 h range, respectively [36].

In this study, we investigated four additional REEs (Pr, Gd, Ho, and Er) and applied
the optimized IL-based recovery method to six types of CFA. The study objectives were to
first determine the leaching and partitioning behaviors of all elements in CFAs and, second,
explore the impact of different CFA properties on process efficiency.

2. Materials and Methods
2.1. Chemicals, Materials, and Characterization

All chemicals used are described in Supporting Information Text S1. [Hbet][Tf2N]
was synthesized following the steps from previous work (Text S2) [30,32]. Six CFAs were
examined (Table 1): four fly ashes derived from Appalachian coals, one from the Illinois
basin, and one from the Powder River basin. Fly ash 93927 was derived from a power plant
burning Class C PRB coals [17,37]. Fly ash sample 92801 was collected from a 220-MW
power plant utility that exclusively burned single-seam Dean (a correlative of the Fire
Clay) coal from a mine in Knox County, eastern Kentucky [20]. Fly ash 93932 was sampled
from a 633-MW boiler burning Fire Clay-dominated coal from southern Leslie County,
eastern Kentucky [38,39]. Fly ash 93951 was collected from a fly ash storage silo at a
130-MW boiler [40]. The unit burned Fire Clay coal from eastern Kentucky, but to the
north-northwest of the coal source of sample 93932 [38]. Fly ash 93964 was collected from a
Kentucky power plant burning Illinois basin coals [41,42]. Sample 94012 was from the same
utility as fly ash 93951, but was derived from a mix of Central Appalachian coals [41,42].
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Table 1. CFA characteristics.

Sample ID Power Plant ID
(Location) CCP Type Feed Coal Basin

(Coal Bed) Reference

93927 Plant LA
(Missouri) Fly ash PRB [17,37]

92801 Plant I, unit 2
(Kentucky) ESP fly ash App

(Fire Clay coal) [20]

93932 Plant W
(South Carolina) ESP fly ash App

(Fire Clay coal) [38,39]

93951 Plant I, unit 1
(Kentucky) Silo fly ash App

(Fire Clay coal) [38,40]

93964 Plant H, unit 3
(Kentucky) ESP fly ash ILB [41,42]

94012 Plant I, unit 1
(Kentucky) ESP fly ash App [41,42]

Note: CCP: Coal Combustion Products; ESP: electrostatic precipitator; App: Appalachian; ILB: Illinois basin;
PRB: Powder River basin.

Information on the REE contents and compositions of major and trace elements in
these ashes was provided by related literature and compiled in Tables 2 and 3. A total of
33 elements were investigated in this study: 15 REEs, two actinides that were commonly
found in CFA, six bulk elements, and 10 trace elements of concern. Elemental composition
will be discussed in detail in Section 3.1.

Table 2. REEs, Th, and U concentrations (ppm) of CFAs in this study.

Element 93927 92801 93932 93951 93964 94012

Sc 22.13 60.2 - - 34.65 28
Y 31.52 253 110 124 81.8 61
La 46.72 237 108 141 75.01 84
Ce 91.09 496 224 304 158.97 180
Pr 9.4 58.1 79 66 19.13 20
Nd 33.65 204 111 121 77.3 81
Sm 6.52 48.3 28 34 16.42 17
Eu 2.52 4.7 7 5 3.52 3.4
Gd 6.75 26.9 15 29 19.02 17
Tb 0.97 6.3 12 8 2.62 2.5
Dy 5.52 41.3 20 24 14.66 16
Ho 1.11 8.5 15 5 2.96 3.1
Er 3.15 26.2 22 14 8.32 8.7
Yb 2.81 23.3 11 15 7.43 8
Lu 0.43 - 6 5 1.14 1.1

ΣREE 264 1494 768 895 523 531

U 21.35 52.6 - - 16.46 -
Th 6.6 101 - - 24.05 -

Note: a “-” indicated the original mass concentration of the element was unknown for the CFA.

2.2. CFA Alkaline Pretreatment

Alkaline pretreatment was performed for the five Class F CFAs following procedures
as described in previous work [30]. In general, a 5.0 M NaOH solution was added to Class
F CFA samples in a 10:1 mL/g ratio, and the mixture was heated to 85 ◦C and magnetically
stirred at 300 rpm for five hours. After the mixture was cooled to room temperature, the
supernatant was removed for inductively coupled plasma-optical emission spectrometry
(ICP-OES) analysis to quantify elemental losses from the solids by the pretreatment. The
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CFA solids were rinsed with DI water, filtered, and dried at approximately 80 ◦C in an oven
overnight before the leaching and stripping processes.

Table 3. Composition of major and trace elements of CFAs in this study.

Element 93927 92801 93932 93951 93964 94012

Major Oxides
(wt %)

Mg 6.98 0.95 1.07 0.82 0.99 1.16
Al 16.56 29.5 28.43 29.91 23.08 29.89
Si 29.49 50.1 54.21 53.47 48.51 52.64
Ca 31.1 2.3 4.01 1.5 1.89 2.04
Ti 1.12 2 1.6 1.72 1.22 1.59
Fe 4.8 9.9 7.6 8.46 22.22 8.41

Trace Elements
(ppm)

V 192 359 486 516 401 496
Cr 26 254 156 168 165 182
Mn 80 134 223 114 280 149
Ni 39 209 137 110 152 142
Cu 181 254 181 204 134 190
Zn 96 250 177 113 174 206
As 2 549 73 124 83 320
Se - 239 - - - -
Cd 2 2 1 <1 4 <1
Pb 63 186 81 100 69 183

Note: a “-” indicated the original mass concentration of the element was unknown for the CFA.

2.3. Leaching and Stripping Experiments

The leaching and stripping experiments followed optimized conditions selected from
prior studies [30,35] and are depicted in Figure 2.
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2.3.1. Leaching

Dry pre-treated CFA, water-saturated IL, and 1.0 M NaCl aqueous solution (AQ) were
added to a vial to achieve a liquid-liquid (IL:AQ) mass ratio of 1:1 and a solid-total liquid
ratio of 15:1 (mg/g). The vial was heated in an oil bath at 85 ◦C with magnetic stirring
at 300 rpm for three hours. After the vial was cooled to room temperature, the solid and
liquid phases were separated through vacuum filtration. The filtered CFA was rinsed with
DI water, dried at approximately 80 ◦C in an oven overnight, and stored. The liquid (AQ
and IL phases) was collected in a new vial, and concentrated betaine monohydrate and
ascorbic acid (AA) solutions were added to the liquid, resulting in 10 mg betaine/g AQ
phase and 25 mM AA in the AQ phase. The new IL-AQ mixture was heated under the
same conditions for 1.5 h, cooled to room temperature, and kept at 4 ◦C overnight. Then,
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the AQ phase was removed and prepared for ICP-OES analysis. The IL phase was saved
for the stripping process.

2.3.2. Stripping

HCl solution (1.5 M) was added to the vial from the leaching process, containing the
IL phase and a magnetic stir bar, to achieve a liquid-liquid (IL:HCl) mass ratio of 1:1. The
vial was heated in an oil bath at 85 ◦C with stirring at 300 rpm for 1.5 h. After cooling to
room temperature, the vial was kept at 4 ◦C overnight. Then, the HCl phase was removed
and prepared for ICP-OES analysis.

2.4. Quantification of Extraction and Separation

Elements leached from the CFA are distributed by mass (M) among three phases: the
alkaline pretreatment phase (MPT), the AQ phase (MAQ), and the IL phase (MIL). MIL was
determined by ICP-OES analysis on the HCl phase after stripping. Three parameters were
calculated based on the mass of leached elements to quantify the extraction and separation
of elements from CFA: the leaching efficiency (L), the distribution coefficient (D), and the
recovery efficiency (R).

L represents the amounts of total leached element from the three phases compared to
the total mass concentration of the element (MTotal) in the untreated CFA.

L(%) =
MPT + MAQ + MIL

MTotal
(2)

D reflects the preference of an element for the IL phase over the AQ phase using
Equation (3):

D =
MIL

MAQ
(3)

R represents the amounts of an element recovered from the IL phase by acid stripping
as a percentage of the total concentration.

R(%) =
MIL

MTotal
(4)

A high R value implied that the element was strongly leached from the solids and
preferred the IL phase.

All pretreatment, leaching, and stripping experiments were performed in duplicate.
D, L, and R were calculated for elements in each experimental trial, and the averages were
presented. A zero value implied that the elemental concentration was below the detection
limit of ICP-OES.

3. Results
3.1. Elemental Compositions

As given in Table 2, CFA derived from the Fire Clay coals (92801, 93951, and 93932)
showed high total REE contents (1494 ppm, 895 ppm, and 768 ppm, respectively), with
sample 92801 being remarkably high due to the exclusive burn of a single Fire Clay coal
from a single mine [20]. Fly ash 93927 obtained from burning Powder River coals had
the lowest REE contents of 264 ppm. CFA samples from the Illinois (93964) and Central
Appalachian basins (94012) showed similar total REE content (523 ppm and 531 ppm,
respectively). Among all the samples, Y, La, Ce, and Nd were the most abundant elements,
comprising over 70% of the total REE contents. Notably, Y and Nd are listed as critical
REEs that are vital in technology development [43,44].

For the six major oxides shown in Table 3, the four Appalachian fly ashes (92801,
93951, 93932, and 94012), regardless of the coal source, had high Al2O3 and SiO2 contents
(29.4 wt % and 52.6 wt % on average, respectively). The Illinois ash 93964 had a high Fe2O3
content of 22.2 wt % compared to an average of 7.8 wt % for the other five fly ashes. The
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Powder River sample 93927 had a significantly higher CaO content of 31.1 wt % and a
relatively high MgO content of 7.0 wt % compared to an average of 2.3 wt % and 1.0 wt %
from the rest, respectively. Most of the investigated trace metals, except Cd, had an average
concentration exceeding 100 ppm, and the average concentration of vanadium was the
highest (408.3 ppm). High As and Se concentrations of fly ash 92801 were discussed in the
original publication [20]. Fly ash 92801 also showed high concentrations of radioactive U
and Th that could present risks for waste disposal [13,14,45–47].

3.2. Elemental Behaviors

The leaching and partitioning behaviors of each group of elements (REEs, actinides,
trace elements, and bulk elements) during the processes of alkaline pretreatment, IL leach-
ing, and acid stripping were studied based on the three quantification parameters, L (%), D,
and R (%), and the mass distribution of an element detected in the alkaline solution after
pretreatment (PT%), in the NaCl AQ solution after leaching (AQ%), in the HCl solution
after stripping (IL%), and in the residual solids (residual%). Residual% was determined by
subtracting the PT%, AQ%, and IL% from a total of 100%, assuming complete stripping of
leached elements from IL to HCl [34,48].

3.2.1. REEs

The overall leaching behavior was measured by L. In Figure 3A, six REEs (Y, Nd, Sm,
Gd, and Yb) exhibited high L values, with the average of six samples greater than 91.9%
(Table S2). All the remaining REEs, except Tb, had a moderate average L ranging from
62.6% to 80.6%. It should be noted that the L values of fly ash 93927 were zero for Pr, Tb,
and Ho, indicating negligible amounts of such elements were leached from the CFA solids
during any process. Potential reasons for the zero values are the low elemental contents
and entrapment in the CFA matrix. Terbium had the lowest average L of 27.0%, but sample
92801 showed a moderate L of 63.9%.

Since the L value only implied the overall leaching efficiency, the mass distribution
was introduced to visualize each component of L. In Figure 4, no PT% was presented for
the Class C ash 93927 because the alkaline pretreatment was only performed for recalcitrant
Class F ashes. The calcium oxide-rich Class C ashes would leach abundant Ca and Si
in alkaline solutions and form calcium silicates that could hinder the upcoming REE
extraction [28]. Our previous study confirmed a lower average leaching efficiency of REEs
for Class C ash samples after alkaline pretreatment [30]. For REEs, the alkaline pretreatment
resulted in negligible losses in Sc, Y, La, Ce, and Dy (average PT% < 2%, Table S2). A minor
elemental loss with an average PT% ranging from 2% to 12.7% was found in 8 REEs
(Pr, Nd, Sm, Eu, Gd, Tb, Er, and Yb). For Ho and Lu, the average PT% was 19.6% and
20.0%, respectively. The individual PT% of Ho and Lu for samples 93964 and 94012 was
relatively high (30.6–37.8%), which could be attributed to their low initial concentrations
(1.1–3.1 ppm). In general, the REE mass distribution demonstrated that PT% was not the
dominant component of L, and a high L indicated that the leaching process effectively
extracted REEs from CFA solids into the IL/AQ mixture. A low L value, such as Tb, could
be correlated to a high residual percentage in the mass distribution.

The D coefficient specifies the partitioning behavior of an element by identifying the
distribution between the IL and AQ phases during the leaching process. In Figure 5A, most
REEs among the six CFAs displayed a preference for the IL phase with D greater than one.
Exceptions from sample 93927 included: DPr, DTb, and DHo were zero as no amount was
detected in either the AQ or IL phases; DGd equaling 0.8 (Table S3) suggested a higher
partitioning into the AQ phase. Possible explanations could be that the 93927 ashes had the
lowest initial Gd concentration (6.75 ppm compared to an average of 18.9 ppm), and the
total concentrations detected in the AQ and IL phases exceeded 100%. On an average basis,
extremely high D values were observed for Sc and Tb.
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because of alkaline pretreatment.
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Figure 4. Mass distribution of detected REEs following alkaline pretreatment and IL leach-
ing/stripping processes of six CFA samples (from left to right correspond to samples 93927, 92801,
93932, 93951, 93964, and 94012). A 5 indicated that the total mass concentration of the element
was unknown for the CFA sample. Note: a total distribution >100% may be the result of low initial
concentrations in solids or potential enrichment in the CFA because of alkaline pretreatment.
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Figure 5. Average distribution, D, of REEs and two actinides (A) and bulk/trace elements (B) after
the IL extraction process for six different CFA samples. Error bars represent the standard deviation of
duplicate samples. A † indicated an extremely large D value because no elements were found in the
AQ phase. A × indicated that the element was not detected in the AQ phase but had minor amounts
in the IL phase. Note: Selenium was not presented because only sample 92801 had a known original
concentration and DSe = 0.

R depends on the L and D of an element and determines the eventual amounts
recovered from the entire procedure. In Figure 6A, four REEs (Sc, Nd, Sm, and Gd)
showed a high average R (>61.0%, Table S4). RSc and LSc were the same for all the CFAs
with provided Sc contents and in accordance with the results of mass distribution and D,
indicating a negligible Sc loss in the alkaline pretreatment and a high preference for the
IL phase in the leaching process. Six REEs (Y, La, Ce, Pr, Dy, and Yb) showed a medium
average R (47.6% to 58.1%). Similar to the results of L and D, RPr, RTb, and RHo were zero
for sample 93927. The average RTb was at its lowest of 18.8%, but fly ash 92801 showed a
medium recovery of 51.6%.

3.2.2. Actinides and Trace Elements

The two actinides in this study exhibited different leaching and partitioning behaviors.
LU, DU, and RU were zero for all the CFAs and confirmed with each other that U remained
in the ash solids. The main reason could be that uranium typically exists in anionic forms,
but the carboxylic acid group of [Hbet][Tf2N] needs to complex with cations for metal
extraction [49]. In contrast, Th was detected in three phases: PT%, AQ%, and IL% (Figure 7).
The average DTh of 3.2 (Table S3) was comparable to the values for most REEs, indicating
Th’s strong tendency to partition into the IL phase.
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Figure 6. Average recovery efficiency, R, of REEs and two actinides (A) and bulk/trace elements
(B) after the IL extraction process for six CFA samples. Error bars represent the standard deviation of
duplicate samples. A5 indicated that the total mass concentration of the element was unknown for
the CFA sample. Columns marked with * indicate that R exceeded the scale of 100%. Note: Selenium
was not presented because only sample 92801 had a known original concentration and RSe = 0%.

For the 10 trace elements investigated, five (Mn, Ni, Cu, Zn, and As) showed an
average L greater than 52.0%, and the remaining had a low overall leaching from 10.1%
to 39.7% on average (Figure 3B and Table S5). Regarding the five trace metals with high
L values, all of them showed a strong preference for the AQ phase (D ≤ 0.5, Figure 5B
and Table S7); Cu, Zn, and As had a major portion leached during alkaline pretreatment
(average PT% = 55.0%, 33.8%, and 62.4%, respectively, Figure 7 and Table S6). Combining
the L with the D and mass distribution, the average R of each trace element was low
(≤30.8%, Figure 6B and Table S8) compared to the fact that most REEs had a R greater than
50%. Chromium had the highest R and showed a consistent preference for the IL phase over
different CFAs, but Figure 7 revealed that for all the samples other than 93927, the residual
solids preserved the highest amounts of Cr. Arsenic, Se, and Cd showed R = 0% and were
not detected in the AQ or IL phases, so all the leached amounts were from the pretreatment.

3.2.3. Bulk Elements

Magnesium and Ca displayed a high average L (90.2% and 91.0%, respectively,
Figure 3B and Table S5). Previous studies found that Mg was slightly soluble in acidic
solutions, and the amounts of leachable Mg increased as more dissolved Ca was leached
from the solids [22]. As given in Figure 5B and Table S7, Mg, Si, Ca, and Fe had a strong
preference for the AQ phase (D≤ 0.5), Al distributed evenly between the AQ and IL phases
with a slight preference for the IL phase (average D = 1.5), and Ti displayed a strong prefer-
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ence for the IL phase (average D = 6.1). However, Ti had poor overall leaching (average
L = 4.5%), and Figure 8 revealed that more than 95% of Ti was in the CFA residuals. Similar
to the behaviors of trace elements, the average R of each bulk element was low (≤25.9%,
Figure 6B and Table S8) compared to that of most REEs.
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Figure 7. Mass distribution of detected trace elements and actinides following alkaline pretreatment
and IL leaching/stripping processes of six CFA samples (from left to right correspond to samples
93927, 92801, 93932, 93951, 93964, and 94012). A5 indicated that the total mass concentration of the
element was unknown for the CFA sample. Note: a total distribution >100% may be the result of low
initial concentrations in solids or potential enrichment in the CFA because of alkaline pretreatment.
Arsenic, Se, Cd, and U were not presented because they were not detected in the AQ or IL phases.
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93932, 93951, 93964, and 94012). Note: a total distribution >100% may be the result of low initial
concentrations in solids or potential enrichment in the CFA because of alkaline pretreatment.
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4. Discussion
4.1. Class F vs. Class C CFAs

As previously mentioned, the Class C CFA from Powder River basin (93927) contained
the lowest REE concentration compared to the other five Class F CFA samples. The sum of
overall REE leaching, LΣREE, for the Class F CFAs had an average of 89.1%, but the Class
C sample had a LΣREE equal to 59.6% (Table S1). The main reason was that no Pr, Tb, or
Ho were leached from the 93927 ash during any process. Our previous study analyzed
seven REEs (Sc, Y, La, Ce, Nd, Eu, and Dy), and the Class C CFA in that study was found
to have comparable L to the other two Class-F ashes [30]. Regarding the seven REEs, the
Class C 93927 ashes showed an even lower LΣREE (57.2%) than the Class F ashes (91.6%
on average). Meanwhile, the RΣREE of sample 93927 (48.5%, Table S4) wa close to that of
the average of Class F ashes (54.0%) and higher than Class F sample 93951 (44.6%). This
observation provided another explanation for the low LΣREE of Class C ashes; that is, the
leached REEs in the PT and AQ contributed to the high L values of Class F ashes. Figure 5A
also reflected that, for most REEs, the Class C ashes showed a higher D than the Class F
ashes, so REEs leached to the IL phase and accounted for the major portion of L. In addition,
sample 93927 displayed extremely high D values for La and Dy (D >> 1000), while DLa
and DDy for the rest of the samples were slightly greater than one. The increased DREEs
in the Class C ashes may be caused by the abundance of soluble Ca minerals, which will
dissolve during the acidic IL leaching and consequently release more REEs available for
complexation [17,28,30].

The leaching behaviors for most non-REEs were similar between Class C and Class F
ashes. For fly ash 93927, Cu, Zn, and As were not leached to the AQ or IL phases (L = 0), but
LV (71.4%), LCr (137.9%), and LMn (144.4%) were significantly higher than the average of
Class F ashes (33.4%, 15.0% and 65.6%, correspondingly). Along with high DREEs, the Class
C ashes showed a higher D for most bulk and trace elements compared to the Class F ashes,
likely for the same reason for higher DREEs. D = 0 was observed for Si, Cu, and Zn only in
the 93927 fly ashes. Combining the effects of L and D, the Class C ashes exhibited notably
high R values for Al, V, Cr, and Mn, which resulted in higher RΣbulk and RΣtrace (22.1% and
28.3%, respectively) compared to the average of Class F ashes (8.2% and 7.3%, respectively).

4.2. Effect of Fire Clay Coals

Within the three Class F CFAs derived from Fire Clay coals, fly ash 92801 displayed the
highest LΣREE (85.6%) and RΣREE (51.2%), fly ash 93932 displayed medium LΣREE (81.8%)
and RΣREE (50.4%), and fly ash 93951 displayed the lowest for both (LΣREE = 76.7% and
RΣREE = 44.6%). The L and R values of Pr and Tb were distinctively high in sample 92801.
No significant difference in other REEs was found. For bulk elements, fly ash 93932, 92801,
and 93951 displayed the highest to lowest LΣbulk (43.4%, 38.8%, and 30.0%, respectively)
and RΣbulk (11.9%, 8.2%, and 6.8%, respectively). The same trend was found for trace
elements (LΣtrace = 81.3%, 71.8%, and 41.4%, respectively; RΣtrace = 13.0%, 5.9%, and 5.1%,
respectively). The distinctively high leaching behavior of Ni in sample 93932 (L = 157.5%)
contributed to the overall high leaching and recovery efficiency of trace elements. A desir-
able REE recovery process is expected to have high REE contents with limited contaminants.
Therefore, fly ash 92801, with a high REE recovery and a relatively low bulk and trace
element extraction, demonstrated a promising performance among the three Fire Clay
coal-derived ashes. Overall, while there were some variabilities, the performance in L, D,
and R of elements did not vary greatly among these Class F ashes, possibly because of their
related properties.

For the other two Class F ashes, both 93964 and 94012 samples showed higher LΣREE
(110.7% and 90.8%, respectively) and RΣREE (66.3% and 57.7%, respectively) than all the
Fire Clay coal-derived CFAs. It should be noted that the majority of REEs detected in the
93964 ashes and more than half of REEs detected in the 94012 ashes exceeded L = 100%.
One possible explanation is that the actual REE contents of the samples may be higher than
what had been determined by HF digestion. For bulk and trace elements, 93964 ashes were
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higher in all L and R than 94012 ashes (LΣbulk = 36.3% and 20.3%, RΣbulk = 9.1% and 4.9%,
LΣtrace = 54.2% and 32.1%, RΣtrace = 9.4% and 3.2%, respectively). For all the Class F CFAs,
sample 94012, derived from a power plant burning App feed coals, showed a high REE
recovery and the lowest bulk and trace element coextraction.

4.3. Evaluation of Scandium and Critical REEs

As noted above, for the four CFA samples with given Sc contents, RSc was the same
as LSc, and 93964 and 94012 ashes had high RSc (73.9% and 78.4%, respectively, Table S4).
Figure 9A showed that RSc and LSc were linearly correlated, and all the fly ashes had RSc
similar to or higher than RΣREE in spite of lower LSc values. Onghena and Binnemans [50]
also found that [Hbet][Tf2N] had higher selectivity for Sc compared to Y and other trivalent
lanthanide ions appearing in red mud. One main reason is that Sc has a smaller ionic radius
and forms more stable complexes with the carboxylic group than the rest of the REEs [50].
Considering other observations that Sc loss during the alkaline pretreatment was negligible
and Sc had a strong preference for the IL phase during the leaching process, this method
holds promising potential for preferential Sc recovery.
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Figure 9. (A) The leaching efficiency, L, in comparison with the recovery efficiency, R, of scandium,
total REEs, and critical REEs. (B) The outlook coefficient, Koutl, in comparison with the percentage of
critical REYs in total REY contents, REYdef, for six CFA samples in this study.

Seredin [43] classified the lanthanides and yttrium (REY) as critical (Y, Nd, Eu, Tb, Dy,
and Er), uncritical (La, Pr, Sm, and Gd), and excessive (Ce, Ho, Tm, Yb, and Lu) elements
according to the forecasted relationship between global demand and supply of each element.
A new criterion, the outlook coefficient (Koutl), was introduced to evaluate the potential of
coal ash as an REY raw material. Koutl was calculated as the ratio of the relative amounts of
critical REYs in total REY contents to the relative amounts of excessive REYs:

Koutl =
Y + Nd + Eu + Tb + Dy + Er/ΣREY

Ce + Ho + Tm + Tb + Lu/ΣREY
(5)

A REYdef–Koutl graph (Figure 9B) was plotted, where REYdef was the percentage of
critical REYs in total REY contents. The cluster of six CFA samples in this study was located
at 32% ≤ REYdef ≤ 38% and 0.8 ≤ Koutl ≤ 1.1 and was considered promising for REY
recovery [16,43].

In terms of overall leaching behavior, five critical REEs (Y, Nd, Eu, Dy, and Er) exhibited
a moderate to high average L (>69%). All the Class-F ashes had a high LΣcritical (>91%,
Table S1), and fly ash 93927 has a moderate LΣcritical of 76.0% due to LTb = 0. The average
L of Tb was low (23.0%), but fly ash 92801 showed a relatively high LTb of 63.9%. The
combined leaching and partitioning behavior, in terms of R, followed the same tendency as
L: Y, Nd, Eu, Dy, and Er exhibited a medium to high average R ranging from 40% to 66.2%.
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Similarly, the average R of Tb was low (18.8%), but fly ash 92801 showed a relatively high
LTb of 51.6%. Figure 9A indicated that RΣcritical for all the investigated CFAs (ranging from
52.1% to 67.6%, Table S4) was higher than the corresponding RΣREE (ranging from 44.6%
to 66.3%).

5. Conclusions

This IL-based REE-CFA recovery method combined the extraction of REEs from CFA
solids and the separation of REEs from bulk and trace elements into one step. [Hbet][Tf2N]
had a high solubility of metal oxides and preferred to form complexes with trivalent REE
cations during the leaching process. In general, REEs performed high leaching and strong
partitioning into the IL phase among different types of CFA. Uranium, bulk, and the trace
elements exhibited minor or poor leaching and preferred the AQ phase. The trace and bulk
elements that remained in the AQ phase after IL leaching should be investigated further for
treatment and purification, aiming to improve water recycling and process sustainability.
The co-extraction of some Al and Th with REEs was the issue of most concern. The Illinois
basin CFA 93964 and the Appalachian CFA 94012 demonstrated the highest recovery
efficiency of total REEs and critical REEs. The Appalachian CFA 92801 contained the
highest REE contents and had the highest REE recovery within the Fire Clay coals. For the
Class C ashes, most elements, regardless of REEs or non-REEs, tended to have a higher D
than the Class F ashes. The specific mechanisms of metal complexation and separation need
to be studied in detail to understand the different elemental behaviors between various
CFAs. Further work will be conducted to improve the purity of the recovered REE solution
and to extract individual REE from the existing REE-enriched mixture.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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ing efficiency, L (%), of REEs, Th, and U; Table S2: Mass distribution of REEs, Th, and U in the alkaline
solution after pretreatment (PT%); Table S3: Distribution coefficient, D, of REEs, Th, and U; Table S4: Re-
covery efficiency, R (%), of REEs, Th, and U; Table S5: Leaching efficiency, L (%), of major oxides and
trace elements; Table S6: Mass distribution of major oxides and trace elements in the alkaline solution
after pre-treatment (PT%); Table S7: Distribution coefficient, D, of major oxides and trace elements;
Table S8: Recovery efficiency, R (%), of major oxides and trace elements.
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