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Abstract: Potassium sulfide KFeS2 (hanswilkeite) has been identified in polymineralic inclusions in a
diamond from the Udachnaya kimberlite pipe (Siberian craton, Yakutia). This is the second occurrence
of hanswilkeite in nature and the first one in mantle-derived samples. Sulfide KFeS2 is monoclinic, the
space group—C 2/c. Its crystal structure consists of chains with K in the interstices. The tetrahedra are
centered by iron ions and linked by edges, thus forming chains of [FeS2] frameworks. The strongest
lines of the electron diffraction powder pattern are 7.05 Å—(200); 5.34 Å (020); and 3.05 Å (220), and
the angles between directions are <220/020>—60◦ and <220/200>—30◦. KFeS2 has been found as a
discrete phase within polymineralic inclusions consisting of apatite, ilmenite, chondrodite, phlogopite,
dolomite, and a fluid phase. The data obtained from the composition of the hanswilkeite (KFeS2)
inclusion and other rare minerals (chondrodite, Mg-apatite, Cr-ilmenite) in primary inclusions in a
diamond from the Udachnaya kimberlite testify to the important role of metasomatic processes in
diamond formation.

Keywords: diamond; potassium sulfide; inclusion; kimberlite; mantle; craton

1. Introduction

Sulfides are widespread mineral inclusions in diamonds [1–4]. They provide signifi-
cant information about Earth’s mantle and have been the subject of intensive studies during
many years [1–7]. The abundance of sulfide as inclusions in diamonds and their inter-
growth with syn-/protogenetic mantle silicates (olivine, orthopyroxene, clinopyroxene, and
pyrope) in diamonds suggest that inclusions of sulfide are also syn-/protogenetic. Sulfides
in diamond inclusions are represented by pyrrhotite, pentlandite, troilite, chalcopyrite,
pyrite, djerfisherite, and monosulfide solid solutions [8]. Similar to silicate assemblages
in diamonds, sulfide inclusions also belong to two types of mantle paragenesis: eclogitic
(Ni-poor, 0–12 wt% Ni) and peridotitic (Ni-rich, 22–36 wt% Ni) [1,4]. Thus, sulfides are
thought to be present in growth environments of diamonds.

Sulfides have also been described in nanometer-sized (submicron) polymineral inclu-
sions in fibrous diamonds [9,10]. These inclusions represent well-preserved samples of
diamond-forming media and appear to represent originally homogeneous phases (melts or
high-density fluids) entrapped by the growth of the fibrous diamonds at depths > 4 GPa.
Subsequently, these trapped melts or fluids crystallized into a range of daughter minerals
and fluid phase(s). Sulfides in such inclusions are represented by chalcopyrite CuFeS2,
pentlandite (Fe,Ni)9S8, heazlewoodite Ni3S2, pyrrhotite Fe1-xS, and troilite FeS, as well as
unidentified sulfides of Cu and Ni. Moreover, energy-dispersive spectra of some Fe-rich
sulfide phases in nanometer-sized polymineralic inclusions showed a stable presence of
potassium [9]. However, K-containing sulfides were not reliably identified.
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Currently, five potassium-bearing sulfides are approved as mineral species by the In-
ternational Mineralogical Association (IMA): murunskite K2(Cu,Fe)4S4, rasvumite KFe2S3,
djerfisherite K6(Fe,Cu,Ni)25S26Cl, bartonite K6Fe20S26S, chlorbartonite K6Fe24S26Cl, and
hanswilkeite KFeS2 [11–19]. KFeS2 has been known since 1869. Crystals of KFeS2 were
obtained from the reaction of a mixture of potassium carbonate, iron, and sulfur, followed
by extracting the solidified melt with water. The structure was first determined in 1942
by Boon and MacGillavry [20,21]. KFeS2 is not oxidized in air and it is resistant to water,
and thus it is a stable phase in laboratory experiments [22]; however, until recently, it has
not been known as a naturally occurring mineral. In 2022, KFeS2 was recognized by the
IMA as a new mineral—hanswilkeite (IMA no. 2022-041) [19]. Hanswilkeite was found in
fine-grained tilleite–calcite marble, often intergrown with rasvumite, in association with
pyrite and oldgamite [S.N. Britvin, personal communication]. The size of its discharge is
up to 1 mm.

In this paper, we, for the first time, identified potassium sulfide KFeS2 (potassium
thioferrite) in nanometer-sized polymineralic inclusions in a diamond from the Udachnaya
kimberlite pipe (Siberian craton, Yakutia).

2. Materials and Methods

The studied diamond (sample no. Ud-45) is a cubic crystal with a fibrous inner
structure and dark cloud of numerous nanometer-sized polymineralic inclusions in its
central part (Figure 1a).
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Figure 1. Optical micrograph of the cubic diamond Ud-45 from Udachnaya kimberlite pipe (a); TEM
bright field image of nanometer-sized inclusions in diamond (b). The numbers indicate the location
of the studied inclusions.

Microstructures and compositional features of phases in polymineralic inclusions in
diamond Ud-45 were identified with the transmission electron microscope (TEM) Tecnai
G2 F20 X-Twin operated at 200 kV with a Schottky emitter as an electron source (FEG) at
GeoForschungsZentrum (GFZ), Potsdam, Germany. The diamond crystal was polished
parallel to (110) on both sides to make a 1 mm thick plate (Figure 1a). Electron-transparent
foils with typical dimensions of 15 µm × 8 µm × 0.15 µm were prepared, applying focused
ion beam (FIB) sample preparation. Details of the foil preparation are given in [23,24]. The
TEM was equipped with an EDAX X-ray analyzer with an ultra-thin window, a Fishione
high-angle annular dark-field (HAADF) detector, and a Gatan imaging filter (Tridiem,
Richmond, VA, USA) for electron energy-loss spectroscopy and energy filtered imaging.
HAADF images were collected with a camera length of 330 mm displaying a diffraction
contrast plus a Z-contrast or with a camera length of 75 mm, which shows a Z-contrast only.
Nanophases were identified by acquiring high-resolution lattice fringe images with a short
acquisition time (0.6 s) to avoid decomposition during exposure to the electron beam [24].
The calculated diffraction patterns (using the Fast Fourier Transform (TEM)) from high-
resolution images were used to measure d-spacing and angles between the adjacent lattice
planes. A comparison of the observed data with calculated data from known phases
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(literature data) allowed for identifying the phases present. The chemical composition of
the phases was always measured in the scanning transmission mode (STEM), thus avoiding
a significant mass loss during data acquisition. The acquisition time was 60 or 120 s.

3. Results and Discussion

Twelve separate polymineralic inclusions ranging from 100 to 700 nm in size were
studied in the diamond Ud-45 (Figure 2). The inclusions show negative crystal shapes with
parallel facets (Figure 3). They are not related to any healed cracks. Therefore, they may be
considered as primary/fluid inclusions (i.e., those that form while crystals are growing).
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Figure 2. TEM images of nanometer-sized polymineralic inclusions in diamond Ud-45 (a–f): Ap—
apatite, Ilm—ilmenite, Chn—chondrodite, Dol—dolomite, Phl—phlogopite; (g,h)—EDX spectra of
dolomite and apatite (Cu intensity comes from the copper grid).

The daughter phase assemblages are represented by silicate, carbonate, phosphate,
oxide, and chloride minerals. There are voids inside inclusions that likely are filled by the
fluid phase. The main minerals are dolomite, chondrodite (a member of the humite group:
(Mg, Fe2+)5(SiO4)2(F,OH)2)), phlogopite, Mg-rich apatite, Cr-bearing ilmenite, magnetite,
K-Fe-sulfide, and KCl (Figures 2 and 3). Dolomite was recognized as the dominant phase
in the inclusions. The next most common phases are silicates: phlogopite and chondrodite.

Chondrodite has not yet been reported as an inclusion in a diamond. This silicate
was identified using diffraction patterns. All measured hkl values of the studied chon-
drodite were compared with the calculated ones for interplanar distances of the reference
Mg5(SiO4)2(F,OH)2 (Table 1). The chondrodite phases within polymineralic inclusions are
characterized by Ti impurity (Figure 3A,E).
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Figure 3. Energy filtered lattice fringe images and diffraction patterns (FFT) from the framed
area of two nanometric phases in polymineral inclusion #6 (see Figure 1b) from the diamond
Ud-45: (A,B)—chondrodite; (C,D)—ilmenite. (E,F) X-ray intensity spectrum of nanometric phases:
(E) chondrodite and (F) ilmenite. Cu intensity comes from the copper grid.

Table 1. Interplanar distances and angles between planes with electron diffraction of nanometer-sized
phases of chondrodite and KFeS2 in diamond Ud-45.

hkl dhkl Observed, Å dhkl Calculated, Å ϕ * ϕobserved,
Degrees

ϕcalculated,
Degrees

Chondrodite

100 7.37 7.432

011 4.18 4.251

111 3.58 3.481

<111/011> 28.5 27

<111/100> 57 54.1

KFeS2

200 (100) 7.05 (3.535) 7.022 (3.511)

020 5.34 5.644

220 3.05 2.816

<220/020> 60 61

<220/200> 30 30
Note: * ϕ—angle between planes.
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The porous microstructure of the polymineralic inclusions requires the presence of a
fluid phase during the formation of the inclusion, which has been partly released during
FIB sample preparation (Figure 2). For simplicity, these decrepitated fluid inclusions are
labeled “fluid” in the figures.

A total of 21 phases in 12 individual polymineralic nanoinclusions were analyzed. For
the smallest phases after imaging with high-resolution electron microscopy (HREM), the
compositional measurements were carried out using a defocused beam. It turned out to
be extremely important to defocus the beam (the size of the focusing spot is about 0.1 nm)
in order to avoid a mass loss during the measurement. This was achieved by expanding
the beam to the diameter of nanocrystals (about 20–30 nm). Crystal structure data of
the minerals within nanoinclusions were derived from selected area diffraction patterns
(Figure 3) and from Fast Fourier Transforms (FFT), which were calculated from energy-
filtered high-resolution images using the Gatan Digital Micrograph software package
version 3.5. The main emphasis was placed on the study of the FeKS2 phase.

The largest sulfide grain of a potassium iron sulfide was found in inclusion #6 that
abuts a void, formerly filed by a fluid phase (Figure 4). Its diameter is about 50 nm.
The nanoinclusion of sulfide is mainly composed of potassium, iron, and sulfur. It was
identified by EDX spectra with a very intense peak of K, Fe, and S (Figure 4E). The weak
X-ray intensities of Cu–Kα in the spectrum are due to the copper grid.
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Figure 4. TEM bright field image of nanometer-sized inclusion #6 (see Figure 1b) from the dia-
mond Ud-45 (A): Ap—apatite, Ilm—ilmenite, Chn—chondrodite, Dol—dolomite, Sf—sulfide KFeS2;
(B)—energy filtered high-resolution (HREM) lattice fringe image of sulfide KFeS2. (C) Diffraction
pattern (FFT) from framed area in KfeS2. The spacing between the fringes is used for phase identifi-
cation. (D)—Enlarged fragment of TEM image of sulfide inclusion KFeS2. (E)—Energy-dispersive
X-ray (EDX) spectra of sulfide KFeS2. Cu intensity comes from the copper grid.

Further identification of the K-Fe-sulfide was performed with diffraction measure-
ments (Figure 4B,C). The dhkl values obtained for the studied K-Fe-sulfide match well with
those of the synthetic reference KFeS2 [20,21].

According to [21], the crystal structure of the synthetic phase KFeS2 is monoclinic with the
cell parameters ao = 7.05 Å; bo = 11.28 Å; and co = 5.39 Å. The space group of KFeS2 is C 2/c.
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All measured dhkl distances obtained from the HREM images and from the electron
diffraction patterns of the selected areas, compared with the synthetic FeKS2 data, are
presented in Table 1. This table also lists data on the silicate phase of chondrodite, which is
present in these polymineralic inclusions.

The first column lists the Miller indices (hkl), which are used to label the planes. The
second column displays the dhkl values observed from the electron diffraction pattern. The
third column shows the data dhkl calculated from HREM results. The lattice parameters are
very close. All calculations of distances and angles between planes (ϕ) were carried out
using the Desktop Microscopy software package version 2.1. [21].

The angles between the planes, indicated in Table 1, in the case of KFeS2 were also
recalculated one by one, applying the program “Single Crystal” using the zone axis [002]
derived from the diffraction pattern. The angles are the same.

The diffraction data and the cell constants of the KFeS2 obtained are shown on the
projection of the crystal lattice along the z-axis (Figure 5).
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Figure 5. Projection of the crystal lattice of KFeS2 along the z-axis.

The crystal structure of the KFeS2 phase in the inclusions was plotted using the Crystal
Maker 2.7.3 program and is shown in Figure 6. It consists of chains with K in the interstices.
Iron occupies the centers of the tetrahedra and is surrounded by S. These tetrahedra are
centered by iron ions and linked by edges, thus forming chains of L[FeS2] (Figure 6). Such
an arrangement fits the symmetry conditions of the space group C 2/c very well. Placing
the eight S atoms in general positions, we can calculate the parameter values, which lead to
the arrangement illustrated in Figure 6.

Submicron polymineralic inclusions in fibrous diamonds (including cuboid, coated,
and cloudy varieties) are snapshots of (metasomatic) fluids or melts from which the dia-
monds grew [9,10,25,26]. The described multiphase assemblage of such inclusions repre-
sents a set of daughter phases of an originally homogenous liquid phase called high-density
fluid (HDF), which is similar to supercritical fluids or melts enriched with volatile com-
ponents [26]. The bulk compositions of submicron inclusions in fibrous diamonds widely
vary between three general end-members: (i) a silicic end-member rich in Si, Al, water,
and alkalis; (ii) a saline end-member rich in Cl, water, and alkalis; and (iii) a carbonatitic
end-member rich in CO2, Mg, Ca, and alkalis [26–33]. The daughter phase assemblage of
the inclusions in the diamond Ud-45 is dolomite > chondrodite and phlogopite > Mg-rich
apatite, Cr-bearing ilmenite, magnetite, K-Fe-sulfide (KFeS2) and sylvite. This indicates that
a melt/fluid entrapped in the studied diamond Ud-45 is carbonatitic or silicate–carbonate
in composition with high potassium and volatile contents.
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Figure 6. Crystal structure of mineral phase KFeS2 in the diamond Ud-45. Projection is along the [010]
direction. Interatomic distances: K-S—3.38–3.45 Å (eight-fold coordination) and Fe-S—2.18–2.19 Å
(tetrahedral coordination).

The KFeS2 compound has previously been reported as a naturally occurring mineral
at low pressures. KFeS2 reported here as an inclusion in a diamond is the first discovery
in high-pressure natural materials. Experimental studies of a complex K-Fe-S system are
limited by 300–600 ◦C and ambient pressure [34]. This study predicted that the formation
of KFeS2 in nature is possible, but it requires either extremely high potassium activity or
high sulfur fugacity (Figure 7) [34]. Such conditions could be realized inside the inclusions
in the studied diamond Ud-45 during the freezing of the melt/fluid.
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of KFeS2 in nature is possible, but it requires either extremely high potassium activity or 
high sulfur fugacity (Figure 7) [34]. Such conditions could be realized inside the inclusions 
in the studied diamond Ud-45 during the freezing of the melt/fluid. 

 
Figure 7. K–Fe–S–Cl phase diagram presented by Osadchii et al. (2018) [34]. Black color shows the 
phase relations experimentally obtained in the K–Fe–S system at 300–600 °C [34]. Blue color shows 
the phase relations including chlorbartonite and djerfisherite. Py—pyrite, Po—pyrrhotite, Ras—
rasvumite, Mur—murunskite, Ch-Bt—chlorbartonite, Dj—djerfisherite. 

4. Conclusions 
(1) The daughter phase assemblage of the polymineralic inclusions (i.e., the crystallized 

mantle melt/fluid) in the cubic fibrous diamond Ud-45 from the Udachnaya kimber-
lite pipe is represented by dolomite, chondrodite, phlogopite, Mg-rich apatite, Cr-
bearing ilmenite, magnetite, hanswikeite (KFeS2), KCl, and fluid. The melt/fluid is 
likely carbonatitic or silicate–carbonate in composition with high potassium and vol-
atile contents. 

(2) For the first time, potassium sulfide hanswikeite KFeS2 and chondrodite have been 
found in a diamond as a mineral reflecting mantle substrates. 
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Figure 7. K–Fe–S–Cl phase diagram presented by Osadchii et al. (2018) [34]. Black color shows
the phase relations experimentally obtained in the K–Fe–S system at 300–600 ◦C [34]. Blue color
shows the phase relations including chlorbartonite and djerfisherite. Py—pyrite, Po—pyrrhotite,
Ras—rasvumite, Mur—murunskite, Ch-Bt—chlorbartonite, Dj—djerfisherite.
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4. Conclusions

(1) The daughter phase assemblage of the polymineralic inclusions (i.e., the crystallized mantle
melt/fluid) in the cubic fibrous diamond Ud-45 from the Udachnaya kimberlite pipe is
represented by dolomite, chondrodite, phlogopite, Mg-rich apatite, Cr-bearing ilmenite,
magnetite, hanswilkeite (KFeS2), KCl, and fluid. The melt/fluid is likely carbonatitic or
silicate–carbonate in composition with high potassium and volatile contents.

(2) For the first time, potassium sulfide hanswilkeite KFeS2 and chondrodite have been
found in a diamond as a mineral reflecting mantle substrates.
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