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Abstract: Adakites are magmatic rocks with specific geochemical characteristics and specific dynam-
ics that provide important clues to understanding the magmatic-tectonic evolution of orogenic belts.
We studied the Early Triassic Nanpo adakitic pluton of the Luang Prabang-Loei tectonic belt in the
Eastern Tethys domain (Laos Sarakan) using detailed petrological, zircon U-Pb chronological, whole-
rock geochemical, and zircon Lu-Hf isotope studies to constrain their petrogenesis. The rocks are
predominantly diorites and granodiorites with Early Triassic zircon U-Pb emplacement ages ranging
from 247.9 ± 1.0 to 249.0 ± 2.4 Ma. Moderate SiO2 (56.26–65.95 wt%) and Na2O (3.24–5.00 wt%)
contents, with Na2O/K2O values between 1.76 and 2.51 and A/CNK values between 0.81 and 0.94,
indicate that the rocks belong to the metaluminous calc-alkaline rock series. The high Sr content
(590–918 ppm), low Y (6.30–11.89 ppm) and Yb (1.99–3.44 ppm) contents, intermediate Mg# (42–50)
values, and high Sr/Y and (La/Yb) N ratios (Sr/Y = 24–41, (La/Yb) N = 6.84–13.8) are typical for
adakites. Zircon Hf isotope analysis shows a significant variation in the εHf(t) values (6.7–12.0), with
a mean value of 9.4 and a TDM2 of 512–845 Ma. Geochemical evidence indicates that the Nanpo
adakitic rock was formed by the partial melting of the thickened lower crust in the plate-breaking
environment and has an important contribution to the underplated mantle-derived magma. We
propose that the Early Triassic adakites in the Luang Prabang-Loei tectonic belt formed during the
transition from subduction to a continental collision, and the mixing of crust- and mantle-derived
magmas is the main mechanism for the growth of continental crust in the Paleo-Tethys orogenic belt
of southeastern Asia.

Keywords: adakite; magmatism; tectonic evolution; Paleo-Tethys; Luang Prabang-Loei structural belt

1. Introduction

The Indochina Massif is a major component of the East Tethys domain and records
multiple phases of convergence between the Tethys and Asia [1–4]. Therefore, the massif
is an ideal laboratory for studying the dynamics of subduction-extinction of the Tethys
Ocean [5,6]. The Luang Prabang-Loei tectonic belt is located at the northwestern margin of
the Indochina massif and represents a southward extension of the Sanjiang Tethys tectonic
domain in southwestern China. The belt comprises a large number of Permian-Triassic
intermediate volcanic rocks, volcanoclastic rocks, and other co-magmatic rocks that were

Minerals 2023, 13, 821. https://doi.org/10.3390/min13060821 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13060821
https://doi.org/10.3390/min13060821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-1881-9175
https://doi.org/10.3390/min13060821
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13060821?type=check_update&version=1


Minerals 2023, 13, 821 2 of 18

formed during the evolution of the ancient Tethys Ocean, thus constituting a huge magmatic
arc belt [7–10]. The Luang Prabang-Loei magmatic arc belt not only records the subduction
of the Paleo-Tethys oceanic crust and the subsequent co-collisional and post-collisional
extension processes but also enables us to reveal the crustal growth of the Paleo-Tethys
orogenic belt, thus providing insight into orogenic processes in southeastern Asia [11–13].
However, the lack of detailed geological studies has led to an ongoing controversy about
the tectonic-magmatic evolution of this orogenic belt [14–17]. For instance, Late Permian
island-arc magmatism recognized within the Luang Prabang-Loei tectonic belt has been
attributed to the subduction of the Sibumasu massif to the Indochina plate during the
closure of the Southeast Asian Paleo-Tethys Ocean in the Middle Triassic [18,19]. In other
models, the subduction of the Southeast Asian Paleo-Tethys Ocean continued until the
Late Triassic or Late Cenozoic [20,21]. In most studies, it is proposed that the Paleo-Tethys
Ocean in Southeast Asia was closed in the late Permian and that the Late Permian-Triassic
granitoids were formed in a post-collisional setting [22–25].

Adakites or adakitic rocks are igneous rocks that form in volcanic arc environments
by the melting of young (≤25 Ma) subducted oceanic crust [26]. In recent years, the
understanding of adakites has made major progress [27,28]. Based on the geochemical
characteristics of plutonic adakitic rocks and the inferred crystallization conditions, it
is recognized that their formation is related to the growth of the continental crust [28].
Moreover, adiakites may provide information on the lithospheric structure and magmatic
evolution of subduction zones [29,30]. Adakite can be formed by the partial melting of the
subducted oceanic plate [26,31], the partial melting of the thickened lower crust of a basaltic
composition [32–34], the partial melting of the delaminated lower crust [17], or the crystal-
lization and differentiation of basaltic magma or mixing with acidic magma [35]. Therefore,
identifying the genetic types of adakitic rocks, in combination with the detection of their
emplacement age and the tectonic environment that prevailed during the emplacement,
is the key to revealing the tectonic evolution and crustal growth mechanism of orogenic
belts [26,36].

Because of the high closure temperature (>900 ◦C) of the zircon Lu-Hf isotopic system
and the fact that the Lu-Hf isotopic system, in contrast to the Sm-Nd isotopic system,
is almost unaffected by mineral inclusions [37], zircon can maintain the original Hf iso-
topic composition of the source region, even in cases of later high-grade metamorphic
overprint [38]. Therefore, Hf isotope studies have been conducted to constrain various
geological processes, including rock genesis and source area identification, mantle com-
position and evolution, regional tectonic evolution, magmatism, and metamorphism [39].
We conducted systematic petrological, zircon U-Pb chronological, whole-rock geochemical,
and zircon Lu-Hf isotopic analyses on the Triassic adakites of the Luang Prabang-Loei
tectonic belt (northwestern Laos) to reconstruct the tectono-magmatic evolution of the
Southeast Asian Paleo-Tethys orogenic belt.

Previous studies have mainly focused on the Late Permian–Middle Triassic island
arc magmatism or individual ore deposits of the region [40]. The presence of adakites
in northwestern Laos has not been reported so far. Therefore, the petrogenesis and tec-
tonic setting of the Early Triassic adakites in the Luang Prabang-Loei tectonic belt were
uncertain [41]. The results of our study provide new insight into the understanding of
the tectono–magmatic interaction during the evolution of the Paleo-Tethys in Southeast
Asia. Thus, the adakites provide new data for the Paleo-Tethys orogeny and crustal growth
processes at the northwestern margin of the Indochina Massif.

2. Regional Geological Background

The Luang Prabang-Loei tectonic belt is located in the northern part of the Southeast
Asia region [42]. The belt spreads in a north-east to south-west direction, with a north-south
length of about 800 km and an east-west width of about 200 km (Figure 1). The Dien Bien
Phu-Loei suture zone and the Nam-Uttaradit suture zone mark the eastern and western
boundaries of the belt, respectively, and represent remnants of the Paleo-Tethys Ocean [11].
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The Simao Block of Sanjiang in southwest China constitutes the northern boundary, and the
Meiping Fault is the southern limit [11–13]. The Luang Prabang-Loei tectonic belt is divided
by the Pak Lay deep major fault into the Simao-Phitsanulok basin and the Mojiang-Loei
volcanic arc belt. The Luang Prabang-Loei tectonic belt is part of the eastern section of
the Paleo-Tethys tectonic domain and is linked with the western Pacific tectonic domain
to the south [43]. Although the Luang Prabang-Loei tectonic belt has undergone many
phases of magmatic activity and also records multiple tectonic-magmatic stages, earlier
research has found only scant evidence of magmatic activity connected to the closing of the
Paleo-Tethys Ocean [44]. Therefore, the understanding of the tectono-magmatic evolution
associated with this process is poor. A large number of Late Permian-Triassic magmatic
rocks and numerous polymetallic deposits, including shallow-formed hydrothermal gold,
porphyry copper-gold, and siliciclastic copper-gold ores, developed during the Paleo-
Tethys orogeny [24,25], making the Luang Prabang-Loei tectonic belt one of the most
important polymetallic resources in Southeast Asia. Therefore, studying the petrogenesis
of the Early Triassic igneous rocks not only contributes to a better understanding of the
tectono-magmatic evolution but also helps in deciphering the metallogenic background of
the study area.
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Suture, DLS—Dien Bien Phu-Loei Suture, MPF—Meiping Fault, CMCS—Changning-Menglian-
Chiengmai Suture, SPB—Simao-Phitsanulok Basin, MLV—Mojiang-Loei Volcanic, PLF—Pak Lay 
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Figure 1. Division of tectonic units in Southeast Asia (a); Geological map of Luang Prabang-Loei
metallogenic belt (b) (modified from [11–13]); Geological map of Nanpo adakite rock mass (c). RRF—
Red River Fault, DBPF—Dien Bien Phu Fault, NUS—Nan Uttaradit Suture, MJSZ—Majiang Suture,
DLS—Dien Bien Phu-Loei Suture, MPF—Meiping Fault, CMCS—Changning-Menglian-Chiengmai
Suture, SPB—Simao-Phitsanulok Basin, MLV—Mojiang-Loei Volcanic, PLF—Pak Lay Fault.
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3. Sample and Petrographic Characteristics

The Nanpo Complex is an intrusive magmatic body composed of intermediate
plutonic rocks that is located in the south-central section of the Luang Prabang-Loei
tectonic belt, close to the Sarakan area of northwestern Laos. The magmatic complex
is mainly composed of diorite and intrudes into the Upper Carboniferous Mengnan
County Formation (C2m). The body can be subdivided into three gradual transitional
lithologic zones: diorite in the marginal zone, monzodiorite in the transitional zone, and
granodiorite in the central zone (Figure 2).
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Figure 2. Hand specimens and photomicrographs of the Nanpo magmatic rocks: (a,d) diorite;
(b,e) monzodiorite; (c,f) granodiorite. Abbreviations: Hbl, Hornblende; Pl, plagioclase; Or, orthoclase;
Qtz, quartz; Srt, sericite.

The fine- to medium-grained and massive diorites show a dark brown weathering
surface, whereas the fresh surface is gray. The mineral composition is dominated by
plagioclase (65%), minor hornblende (15%) and quartz (5%), orthoclase (5%), biotite (3%),
diopside (3%), as well as zircon, apatite, sphene, and other accessory minerals. The
medium-grained and massive monzodiorites show a black–brown weathering surface,
whereas the fresh surface is gray–white to light gray. The mineral composition is dominated
by plagioclase (55%), orthoclase (15%), quartz (10%), hornblende (10%), and moderate
amounts of biotite (4%), diopside (3%), and accessory zircon, apatite, and titanite. The
fine- to medium-grained and massive granodiorites exhibit yellowish-brown weathering
surfaces and grayish-white to light gray fresh surfaces. They are composed of plagioclase
(45%), quartz (20%), and orthoclase (15%), with minor biotite (5%), hornblende (10%), and
accessory zircon and apatite.

A total of 15 representative rock samples were collected for geochemical studies; three
samples, i.e., the diorite (sample NP01-2), monzodiorite (sample NP13-5), and granodiorite
(sample NP23-1), were selected for zircon U-Pb and Lu-Hf isotope analysis. Zircons show
clean surfaces and are commonly colorless and transparent. Most grains form euhedral to
semi-euhedral elongated columns. A few zircons are spherical grains. The sizes mostly
range between 100 and 200 µm. The length of some individual crystals reaches 230 µm.
The aspect ratios vary between 1.5 and 2.5. CL images reveal oscillatory zoning (Figure 3),
which is typical for magmatic zircons.



Minerals 2023, 13, 821 5 of 18Minerals 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 
Minerals 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/minerals 

 
Figure 3. CL images of zircons from the Nanpo diorite pluton. 

4. Analytical Methods 
4.1. Whole-Rock Geochemistry 

The whole-rock major, trace, and rare earth elements were analyzed at Chengdu 
Pupu Testing Technology Co. The rock samples were coarsely crushed to the centimeter 
level, and fresh sample material without alteration and vein penetration was selected. The 
material was washed with purified water, dried, and crushed to a powder below 200 mesh 
for further analysis. For the major element analysis, the powdered samples were weighed, 
mixed with Li2B4O7 (1:8), and heated to 1150 °C to obtain a glass sheet in a platinum cru-
cible. Subsequently, the fused glasses were analyzed using an inductively coupled plasma 
emission spectrometer (ICP-OES, PE 5300V). The analytical errors are <1%. For the trace 
element analysis, the weighed powdered samples were placed in a polytetrafluoroeth-
ylene (PTFE) pot, with the volume mixed acids of HNO3 + HClO4 + HF (1 + 1 + 2). After-
wards, the mixture was heated on a temperature-controlled electric hot plate, evaporated 
to dryness, and diluted to a constant volume. Finally, the samples were analyzed using an 
inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7700). The US Geological 
Survey standards (AGV-2, BHVO-2, BCR-2, RGM2) showed that the error of most trace 
elements was less than 5%, and the error of the analysis of some volatile elements and 
very-low-content elements was less than 10%. The specific sample digestion procedure 
and ICP-MS determination method were referred to in [45]. 

4.2. Zircon U-Pb Dating 
The samples were crushed to 100 mesh. Representative zircon grains were hand-

picked under binoculars and prepared into epoxy resin sample targets. The zircons were 
photographed using a polarization optical microscope with transmitted and reflected light 
and then carbon-coated. Cathodoluminescence (CL) photography was performed on the 
coated sample targets using scanning electron microscopy. Zircon documentation was 
performed at YuHeng Rock and Mineral Technology Service Co. in Hebei Province 
(China). LA-ICP-MS U-Pb zircon dating was performed in the Tianjin Geological Survey 
Center of the China Geological Survey. The instrument used was an Agilent 7900 coupled 
with a RESOlution LR 193 nm ArF excimer laser system. Helium was applied as a carrier 

Figure 3. CL images of zircons from the Nanpo diorite pluton.

4. Analytical Methods
4.1. Whole-Rock Geochemistry

The whole-rock major, trace, and rare earth elements were analyzed at Chengdu
Pupu Testing Technology Co. The rock samples were coarsely crushed to the centimeter
level, and fresh sample material without alteration and vein penetration was selected.
The material was washed with purified water, dried, and crushed to a powder below
200 mesh for further analysis. For the major element analysis, the powdered samples were
weighed, mixed with Li2B4O7 (1:8), and heated to 1150 ◦C to obtain a glass sheet in a
platinum crucible. Subsequently, the fused glasses were analyzed using an inductively
coupled plasma emission spectrometer (ICP-OES, PE 5300V). The analytical errors are
<1%. For the trace element analysis, the weighed powdered samples were placed in a
polytetrafluoroethylene (PTFE) pot, with the volume mixed acids of HNO3 + HClO4 + HF
(1 + 1 + 2). Afterwards, the mixture was heated on a temperature-controlled electric hot
plate, evaporated to dryness, and diluted to a constant volume. Finally, the samples were
analyzed using an inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7700).
The US Geological Survey standards (AGV-2, BHVO-2, BCR-2, RGM2) showed that the
error of most trace elements was less than 5%, and the error of the analysis of some volatile
elements and very-low-content elements was less than 10%. The specific sample digestion
procedure and ICP-MS determination method were referred to in [45].

4.2. Zircon U-Pb Dating

The samples were crushed to 100 mesh. Representative zircon grains were hand-
picked under binoculars and prepared into epoxy resin sample targets. The zircons were
photographed using a polarization optical microscope with transmitted and reflected light
and then carbon-coated. Cathodoluminescence (CL) photography was performed on the
coated sample targets using scanning electron microscopy. Zircon documentation was
performed at YuHeng Rock and Mineral Technology Service Co. in Hebei Province (China).
LA-ICP-MS U-Pb zircon dating was performed in the Tianjin Geological Survey Center
of the China Geological Survey. The instrument used was an Agilent 7900 coupled with
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a RESOlution LR 193 nm ArF excimer laser system. Helium was applied as a carrier gas,
and Ar was used as the make-up gas and mixed with the carrier gas via a T-connector
before entering the ICP source. Nitrogen was added to the central-gas flow (Ar + He) of
the Ar plasma to lower the detection limits and improve precision. The size of the laser
ablation spot was 29 µm, the ablation frequency was 7 Hz, and the laser energy density was
3 J/cm2. The detailed operating conditions for the laser system and ICP-MS instrument are
as described in [46]. For U-Pb isotope dating and trace element analysis, zircon 91500 and
silicate glass NIST SRM 610 were used as external standards for the fractionation correction
of the isotopes and trace elements. The Plesovice zircon was used as a standard sample to
monitor the data quality. During the test, each measurement involved a 15 s blank signal
and 50 s sample signal, and the raw data reduction was carried out using ICP MS Data Cal
software [47]. The U-Pb age diagram and the calculation of the weighted average of the
obtained ages were computed using Isoplot [48].

4.3. Zircon Lu-Hf Isotopes

In situ LA-ICP-MS zircon Lu-Hf isotope analysis was accompanied by the zircon U-Pb
isotope dating, where the Lu-Hf and U-Pb isotope ablation craters are located adjacent to
each other in the same zircon grain and/or on the same growth zone. In situ zircon Hf
isotope analysis was performed using a laser ablation inductively coupled plasma mass
spectrometer (LA-ICP-MS) (NEPTUNE, Thermo Fisher, Waltham, MA, USA) and an argon
fluoride excimer laser (NEW WAVE 193 nm FX, ESI, USA) in the experimental test room of
the Tianjin Geological Survey Center of the China Geological Survey. In this test, helium
was used as the carrier gas to transport the ablated sample from the ablation chamber to
the ICP MS torch. The laser beam spot size was 50 µm, the laser ablation time was 26 s, and
the laser pulse frequency was 10 Hz. Zircon 91500, GJ-1, Mud Tank, and Temora were used
as reference standards. The specific test steps and calibration methods are listed [49].

5. Results
5.1. Whole-Rock Geochemistry

The geochemical analyses of the Nanpo intrusive rocks are summarized in Supple-
mentary Table S1. The SiO2 contents of the diorite samples range between 60.72 wt%
and 63.03 wt%. In the TAS diagram and QAP diagram (Figure 4a,b), the samples plot
in the diorite area. The samples have high Al2O3 (15.97–18.87 wt%), intermediate K2O
(1.54–2.01 wt%), and high CaO contents (5.88–6.39 wt%). The total alkali (Na2O + K2O)
contents range between 5.29 and 5.84 wt%, the Na2O/K2O value is 2.21–2.51, and the rock
is relatively rich in sodium (3.34–4.51 wt%).

Due to the lower SiO2 contents (56.26–57.60 wt%), the monzodiorite samples plot
in the monzodiorite fields of the TAS and QAP diagrams (Figure 4a,b). The samples
have the highest Al2O3 (17.62–18.87 wt%) and K2O contents (1.75–2.37 wt%) among the
three studied rock types. The granodiorites have the highest SiO2 (63.22–65.95 wt%), the
lowest Al2O3 (15.97–16.82 wt%), and intermediate K2O (1.53–1.84 wt%) contents. The
TiO2 (0.40–0.53 wt%), P2O5 (0.14–0.18 wt%), and TFe2O3 (3.45–4.38 wt%) contents are
low, and the samples plotted in the granodiorite fields in the TAS and QAP diagrams
(Figure 4a,b). In general, the plutonic rock types (diorite, monzodiorite, and granodiorite)
of the three lithological zones of the Nanpo diorite intrusive rocks have moderate SiO2
(56.26–65.60 wt%), high Al2O3 (15.97–18.97 wt%), and high Na2O (3.24–5.00 wt%) contents,
and all show intermediate Mg# values (42–50). In addition, the samples’ Rittmann indexes
σ are low (1.12–3.73), and they generally exhibit the properties of medium–high potassium
metaluminous series calc-alkaline rocks (Figure 4c,d).
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The trace and rare earth element characteristics of the Nanpo diorite intrusive rocks
are remarkably similar. All rock types show low total rare earth element contents, with
ΣREE ranging from 101 to 174 ppm (with a mean value of 140 ppm (n = 15)), δEu val-
ues of 0.74–1.24 (with a mean value of 0.91 (n = 15)), and a weak Eu negative anomaly.
LREE/HREE ratios of 6.14–11.01 (mean value of 7.88 (n = 15)) indicate enrichment in
light rare earth elements (LREEs) and depletion in heavy rare earth elements (HREEs,
Figure 5a). The values of (La/Yb) N range from 6.96 to 13.80, with the average value of 8.6
(n = 15), showing the fractionation of light and heavy rare earth elements. The (La/Sm) N
values of 2.97–7.61 indicate the strong fractionation of light rare earth elements, whereas
(Gd/Yb) N ratios of 1.20–1.69 record the weak fractionation of heavy rare earth elements.
The standardized spidergram normalized to the primitive mantle (Figure 5b) documents
the enrichment of the large ionic lithophile elements, including Rb, Ba, Th, K, and Sr, and
the significant depletion of the high field strength elements, such as Nb, P, and Ti. The
geochemical characteristics are diagnostic of plutonic rocks from island arcs [53,54].
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5.2. Zircon U-Pb Dating

A total of 27 spot analyses on zircon from the diorite sample NP01-2 show 206Pb/238U
ages between 189 ± 2 Ma and 259 ± 3 Ma in Supplementary Table S2. The 16 analytical
points that are concentrated on and near the Concordia yield a weighted average age
of 249.0 ± 2.4 Ma (Figure 6a,b). The 24 spot analyses of zircon from the monzodiorite
sample NP13-5 yield ages between 240 ± 2 and 256 ± 3 Ma in Supplementary Table S2.
All analyses are concentrated on and near Concordia. The concordant analyses define a
weighted average age of 247.0 ± 2 Ma (Figure 6c). A total of 24 spot analyses of zircon
grains of granodiorite (NP 23-1) range between the ages of 240 ± 2 and 256 ± 3 Ma in
Supplementary Table S2. All analyses are concordant. The concordant analyses yield a
weighted average age of 247.9 ± 1.0 Ma (Figure 6d). The U content ranged between 127 and
1406 ppm, with a mean value of 468 ppm. Therefore, the U-Pb age determined in our study
is not affected by high U contents (2500 ppm) [55].

Minerals 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 
Minerals 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/minerals 

5.2. Zircon U-Pb Dating 
A total of 27 spot analyses on zircon from the diorite sample NP01-2 show 206Pb/238U 

ages between 189 ± 2 Ma and 259 ± 3 Ma in Supplementary Table S2. The 16 analytical 
points that are concentrated on and near the Concordia yield a weighted average age of 
249.0 ± 2.4 Ma (Figure 6a,b). The 24 spot analyses of zircon from the monzodiorite sample 
NP13-5 yield ages between 240 ± 2 and 256 ± 3 Ma in Supplementary Table S2. All analyses 
are concentrated on and near Concordia. The concordant analyses define a weighted av-
erage age of 247.0 ± 2 Ma (Figure 6c). A total of 24 spot analyses of zircon grains of gran-
odiorite (NP 23-1) range between the ages of 240 ± 2 and 256 ± 3 Ma in Supplementary 
Table S2. All analyses are concordant. The concordant analyses yield a weighted average 
age of 247.9 ± 1.0 Ma (Figure 6d). The U content ranged between 127 and 1406 ppm, with 
a mean value of 468 ppm. Therefore, the U-Pb age determined in our study is not affected 
by high U contents (2500 ppm) [55]. 

  

  

Figure 6. Zircon U-Pb age Concordia diagram and weighted average diagram of the Nanpo diorite 
pluton. (a,b) NP01-2 diorite; (c) NP13-5 monzogranite; (d) NP 23-1 granodiorite. 

5.3. Zircon Lu-Hf Isotopes 
Zircon Lu-Hf isotopic analyses of the Nanpo diorite intrusive rocks are shown in 

Supplementary Table S3. Twenty-seven spots were analyzed for the sample NP01-2, and 
all the analyses have similar initial 176Hf/177Hf values between 0.000974 and 0.002768. The 
εHf (t) values are between + 8.3 ~ + 12, and the corresponding Hf isotope crustal model 
ages (TDM2) range from 513 to 726 Ma (Figure 7a,b). The 176Hf/177Hf values of 24 spots of 
monzodiorite (sample NP13-5) are 0.000718~0.001593, the εHf (t) values are between + 6.7 
and + 10.9, and the corresponding Hf isotope crustal model ages (TDM2) range from 573 Ma 
to 845 Ma (Figure 7c,d). The granodiorite (sample NP23-1) has 176Hf/177Hf values ranging 
from 0.000718 to 0.001593 and εHf(t) values between +6.7 and +11.9 for 24 spots, corre-
sponding to Hf isotopic crustal model ages (TDM2) ranging from 512 Ma to 843 Ma (Figure 
7e,f). 

Figure 6. Zircon U-Pb age Concordia diagram and weighted average diagram of the Nanpo diorite
pluton. (a,b) NP01-2 diorite; (c) NP13-5 monzogranite; (d) NP 23-1 granodiorite.

5.3. Zircon Lu-Hf Isotopes

Zircon Lu-Hf isotopic analyses of the Nanpo diorite intrusive rocks are shown in
Supplementary Table S3. Twenty-seven spots were analyzed for the sample NP01-2, and
all the analyses have similar initial 176Hf/177Hf values between 0.000974 and 0.002768. The
εHf (t) values are between + 8.3 ~ + 12, and the corresponding Hf isotope crustal model
ages (TDM2) range from 513 to 726 Ma (Figure 7a,b). The 176Hf/177Hf values of 24 spots
of monzodiorite (sample NP13-5) are 0.000718~0.001593, the εHf (t) values are between
+ 6.7 and + 10.9, and the corresponding Hf isotope crustal model ages (TDM2) range from
573 Ma to 845 Ma (Figure 7c,d). The granodiorite (sample NP23-1) has 176Hf/177Hf values
ranging from 0.000718 to 0.001593 and εHf(t) values between +6.7 and +11.9 for 24 spots,
corresponding to Hf isotopic crustal model ages (TDM2) ranging from 512 Ma to 843 Ma
(Figure 7e,f).
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6. Discussion
6.1. Petrogenesis

Adakitic rocks were originally discovered by Defant and Drummond [26] in the Adak
Island arc of the Cenozoic Aleutian Islands (USA) and are volcanic or intrusive rocks
with specific geochemical characteristics. The formation of these rocks is related to the
subduction of relatively young (≤25 Ma) oceanic crust [26]. Plutonic adakites generally
exhibit moderate SiO2 (≥56 wt%), high Al2O3 (≥15 wt%), low MgO (<3 wt%), and high Sr
(>400 ppm) contents. In addition, they have low heavy rare earth contents and high Sr/Y
and La/Yb ratios, with no or weakly negative Eu anomalies, which are usually considered
to be related to the source area of the magma [28].

The petrogenesis of the adakites has become a research hotspot in recent years. Several
models are currently discussed: (1) partial melting of the demineralized lower crust, (2) slab
dehydration/partial melting during the subduction of oceanic crust, (3) partial melting
of thickened basaltic lower crust, (4) high–pressure fractional crystallization (involving
garnet) of mafic magmas, (5) mixing of basaltic and feldspathic magma, and (6) assimilation-
fractional crystallization (AFC) processes and differentiation of basaltic magma [56–60].
Therefore, identifying the genetic types of adakites is the key to revealing the tectonic
magmatic evolution history and crustal growth mechanism of the ancient orogenic belt.

Petrological characteristics, similar geochemical characteristics, and almost identical
zircon U-Pb ages indicate that the three recognized lithological zones in the Nanpo intrusive
body are contemporaneous products of the in situ differentiation of an everyday parental



Minerals 2023, 13, 821 10 of 18

melt. This study found that Nanpo diorite intrusive rock has adakite affinity, including inter-
mediate SiO2 (56.26–65.60 wt%), high Al2O3 (15.97–18.97 wt%), high Na2O (3.24–5.00 wt%),
and high Sr (590–918 ppm) content, low Y (6.30–11.89 ppm) and Yb (1.99–3.44 ppm) con-
tents, and high Sr/Y and La/Yb ratios, resembling the composition of adakitic rocks [26].
In the (La/Yb) N—(Yb) N and Sr/Y-Y diagrams (Figure 8a,b), all of the studied samples
were plotted in the field of adakite rock, which corroborates this interpretation.
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Whether it is the delamination of the lower crust or the melting of the subducted
oceanic crust plate itself, the adakite itself will interact with the overlying mantle peridotite,
which will inevitably lead to the increase in MgO (or Mg# value > 60) and incompatible
elements such as Co, Cr, and Ni [36]. The Nanpo diorite rocks have moderate Mg# values
(42–50), low MgO values (1.28–2.63 wt%), and low–moderate contents of incompatible
elements, such as Co (3.98–20.30 ppm), Cr (24.50–47.83 ppm), and Ni (3.76–10.44 ppm). The
data indicate that the magma forming the rock mass is not derived from the partial melting
of the delaminated lower crust or subducted oceanic crust plate. The Nanpo adakitic diorite
rock is not likely to have formed via basaltic slab melting since the examined adakitic rocks
exhibit weak juvenile zircon Hf isotopes (Hf(t) = 1.80–4.03), which are substantially lower
than the Paleo-Tethyan MORB (Hf(t) = 15–20) [36]. Additionally, experimental studies
and phase equilibrium modeling show that the melting of either pristine or changed
oceanic basaltic slab typically results in the production of high-SiO2 and strongly sodic
adakitic melts [27]. The examined Nanpo adakitic rocks, however, have low levels of
Al2O3 (15.97%–18.97% wt%) and moderate contents of SiO2 (56.26%–65.60% wt%) and
MgO (1.28–2.63 wt%), in contrast to the melts, which are typically rich in SiO2 (>68 wt%)
and Al2O3 (>18 wt%) but poor in MgO (<0.2 wt%).

In general, adakite magmas derived from the partial melting of the thickened basaltic
lower crust without crust–mantle interaction have a relatively low MgO content and Mg#
values. These melts typically have low Mg# values (<40), regardless of the degree of
melting [31]. However, the Nanpo adakitic diorite rocks have a moderate MgO content
and moderate Mg# values (MgO = 1.28–2.63 wt%; Mg# = 42–50), which are different from
the adakitic rocks formed by the partial melting of the thickened basaltic lower crust.
Adakites formed by the high-pressure segregation crystallization of Mg-Fe magmas usually
have relatively high (Gd/Yb) N ratios (>5.8) [62]. However, the Nanpo adakites exhibit
significantly lower (Gd/Yb) N values (1.20–1.69). As the Nanpo adakites show a partial
melting trend rather than a partial crystallization trend (Figure 9a), their formation through
the fractional crystallization of basaltic magma is excluded. This is because the Nanjing
adakite is distinct from the typical adakite produced by the fractional crystallization of
basalt magma, which typically has a low SiO2 content [62,63]. In addition, considering
that high-pressure fractional crystallization involving garnet usually leads to a decrease
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in HREE and Y contents, the Sr/Y ratio in the residual magma should increase with the
increase in the MgO content [63,64]. However, in the Sr/Y and MgO diagrams, the Nanpo
adakites do not show this trend (Figure 9b). In addition, adakitic rocks produced by
basaltic magma assimilation and fractional crystallization (AFC process) usually require
large volumes of basalt-dacite rocks [63,64]. Therefore, the lack of co-magmatic mafic
rocks, mixed structures, and mafic enclaves in the study area excludes the formation of the
adakites through AFC processes from basaltic magma.
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diagrams are from [66,67]. HPFC = high-pressure fractional crystallization.

The adakites of Nanpo have ancient zircon Hf isotopic model ages (512–845 Ma).
Their low Na2O/K2O ratios (1.75–2.51) and calc-alkaline affinity (Figure 4d) are similar
to the composition of felsic rocks formed by the partial melting of the ancient lower crust
in the Paleo-Tethys tectonic domain [44]. The Nanpo rocks belong to the metaluminous
series, with a striking negative P and Ti anomaly, suggesting that their source area is
dominated by crust-derived material, which is also supported by SiO2-Ni and SiO2-MgO
diagrams (Figure 9c,d). We propose that magma mixing between mantle-derived basaltic
melt and crust-derived felsic magma is the most likely mechanism for the formation of
Nanpo adakites. Their moderate SiO2 contents (56.26–65.60 wt%), intermediate Mg#
values (42–50), and low Hf isotope values support the crust–mantle interaction model.
In the zircon age-εHf (t) correlation diagram (Figure 10), all the measuring points of the
diorite intrusive rock are projected below the depleted mantle evolution line and above the
chondrite evolution line and are closer to the depleted mantle evolution line, indicating the
important contribution of mantle-derived magma. In addition, these samples are enriched
in light rare earth elements and large ion lithophile elements, such as Rb, Ba, Th, K, and Sr,
and are depleted in high-field-strength elements, such as Nb, P, and Ti. Ratios of specific
high-field-strength elements also support the crust–mantle mixing model. For example,
their Ce/Pb ratios (4.89–13.09) and Rb/Sr ratios (0.1–0.34) are between the upper mantle
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average (Ce/Pb = 25 ± 5; Rb/Sr = 0.034) and the crustal average (Ce/Pb = 4; Rb/Sr = 0.35).
Moreover, the zircon Hf isotope compositions show a wide variation in the εHf (t) values
(6.7–12.0), also suggesting a mantle component. In addition, the relatively high Th/Yb
ratio (2.01–8.0) > 2 and the relatively low Nb/La ratio (0.22–0.50) < 1 are additional striking
indicators for a mixed crust–mantle source.
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6.2. Tectonic Background and Geological Significance

The tectonic evolution of the Paleo-Tethys orogenic belt in Southeast Asia from the
late Paleozoic to early Mesozoic is still controversial [68]. Previous studies have shown that
the Southeast Asian region was the hinterland of back-arc basins and continental arcs in the
late Carboniferous and late Triassic, respectively [2,21]. However, the timing of the tectonic
transformation from oceanic plate subduction to continental collision in Southeast Asia
and the physical and chemical response of the deep crust in the northwestern margin of
the Indochina Block during the early collision phase have not been solved. Because of the
striking coupling between the formation mechanism of adakite rocks and different tectonic
settings [30], detailed petrogenetic studies can help to understand the tectonic evolution of
the Late Paleozoic-Mesozoic Paleo-Tethys orogenic belt in Southeast Asia. Our discussion
on their possible petrogenesis indicates that the adakitic melt in Nanpo is mainly derived
from crust–mantle magma mixing and suggests that the early Triassic adakitic magma in
the Luang Prabang-Loei tectonic belt comprises major contributions of mantle material. In
addition, previous studies have documented at least four episodes of magmatic activity in
the conversion process of the Luang Prabang-Loei tectonic belt from the Carboniferous back-
arc basin to the Triassic continental arc setting. They were accompanied by multiple gold-
silver-copper polymetallic mineralization [44]. The Middle-Late Permian–Early Triassic
is the main metallogenic stage of porphyry/skarn-type Au-Ag deposits (e.g., PangKuam
Au-Ag deposit and Phu Hin Lek Fai Cu-Au deposit) and epithermal Au-Ag deposits
(e.g., Chatree Au-Ag deposit), indicating that Luang Prabang-Loei was in a special tectonic
setting during this period [4,9,69].

The data document that the magmatic rocks of the Nanpo magmatic body intruded
between 247 and 249 Ma, showing an average age of 248 Ma. The Nanpo intrusive body
was formed as a result of early Triassic magmatic activity, as shown by the very small
range of variation and the emplacement date of around 248 Ma. In addition, a 189 ± 2 Ma
old zircon in the diorite (NP01-2) suggests that the magmatism in the study area may
have extended from the early Triassic to the early Jurassic. Based on our geochemical
analysis of the Nanpo intrusive rocks, we propose that crust–mantle magma mixing is the
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main formation mechanism of the Early Triassic adakite rocks in the Luang Prabang-Loei
tectonic belt. Therefore, revealing the source of the Early Triassic mantle-derived magma
is the key to understanding the tectonic setting of the Early Triassic adakite magmatism.
Previous studies have shown that tectonic processes, such as mid-ocean ridge subduction,
plate breakup, plate folding, and lithospheric destruction and sinking, may have induced
the bottom intrusion of mantle-derived magma. This process can not only cause the
vertical accretion of the crust (resulting in increased crustal thickness) but can also keep
the lower crust in a high heat flow state. This, in turn, can induce subsequent partial
melting of the crust and magma mixing, creating favorable conditions for the formation of
adakites [17,70,71].

At present, no Triassic basaltic rocks with N-MORB affinity, intra-oceanic island arc
magnesian-iron-rich lavas, or Permian-Triassic magmatic events with obvious temporal
migration trends have been identified or reported in the Luang Prabang-Loei tectonic
belt. Therefore, the model of mid-ocean ridge subduction and plate refolding has been
excluded [3,11]. In addition, the associated magma formed by lithospheric disintegration
would have interacted with mantle wedge peridotite to form adakitic magma with high
Ni and Cr contents [2,27], inconsistent with the low Cr and Ni contents of the Nanpo
adakites. The Nanpo adakites show a relative enrichment in LREE and large ion lithophile
elements (Rb, Ba, K) and are deficient in high-field-strength elements (Nb, Ta, Ti). This is
characteristic of subduction zone-related island arc magmatism. In addition, the high Zr
contents (69–147 ppm) and La/Nb ratios (2.0–4.5) also reflect active continental margin arc
magmatism. All samples plot in the field of a collisional setting in the tectonic discrimina-
tion diagram (Figure 11a). The majority of samples fall into the pre-plate collisional setting
in the R1-R2 factor discrimination diagram (Figure 11b), and they thereafter transition
to the post-plate collisional uplift setting. The results indicate that the Nanpo adakites
were formed in island–arc to land–land collision transition or co-collision. The adiakites
formed from the melting of an ancient sedimentary source in the deep crust, thus reflecting
the closure of the Paleo-Tethys Ocean Basin in the Luang Prabang-Loei area in the Late
Permian–Early Triassic.
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According to Villeneuve et al.’s [74] analysis of the Triassic sedimentary environment
in Northern Vietnam’s eastern Song Da and Sam Nua basins near the Indosinian Song
Ma suture, the Paleo-Tethys branch of the Songma oceanic basin started subducting in
the Permian and closed in the Middle Triassic. The study of bimodal volcanic rocks in
the Jinshajiang-Ailaoshan-Song Ma orogenic belt also reveals that the Paleo-Tethys Ocean
in Southeast Asia closed in the early Triassic and entered the post-collisional extensional
environment in the middle-late Triassic [75].Therefore, we propose that the closure of the
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Paleo-Tethys Ocean Basin was accompanied by a plate fracture in the Luang Prabang-Loei
tectonic zone during the Early Triassic, which led to the subduction of mantle-derived
magnesian-iron-rich magma and facilitated the melting and subsequent magma mixing of
the thickened crust (Figure 12). The plate fracture model also matches the linear distribution
of the Late Paleozoic–Early Mesozoic island arc magmatism along the Paleo-Tethys suture
zone in Southeast Asia. In addition, the intrusion of mantle-derived basaltic magma in the
plate fracture model provides not only the heat but also mobilized valuable elements, such
as Au-Ag-Cu, and may be the key factor for the formation of the Triassic mineralization in
the Luang Prabang-Loei tectonic zone [76,77]. The Late Permian–Early Triassic terrestrial
volcanic and sedimentary rocks (clastic and volcanic rocks) are overlying the marine and
terrestrial strata (carbonate) in an angular unconformity, which also documents that the
Luang Prabang-Loei tectonic belt entered a post-subduction collisional or extensional
tectonic regime during this period [11].
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tectonic belt.

In recent years, different models for the generation of continental crust during the
subduction, ablation, and collision of the Paleo-Tethys Ocean have been proposed. Some
researchers have demonstrated that one key mechanism for the growth and evolution of
the continental crust in the orogenic belt is the remelting of the ancient continental crust
that was predominately composed of lithospheric mantle material and the addition of a
small amount of mantle material [27,28]. Another key reason for the genesis of the orogenic
belt, according to some researchers who have researched the early Mesozoic granites in
the Central Asian orogenic belt, is the partial melting of the Paleo-Tethys oceanic crust or
continental deposits during subduction [43].

The isotopic composition of the Triassic adakite in the Luang Prabang-Loei tectonic
belt resembles rocks from the East Kunlun orogenic belt—the reworking of a dominantly
ancient continental crust with a certain addition of lithospheric mantle materials. This
conformity suggests that the Luang Prabang-Loei tectonic belt and the East Kunlun tectonic
belt share the same crustal evolution. Based on our petrogenetic model from the adakitic
rocks in Nanpo, we propose that the Triassic adakitic magma in the Luang Prabang-Loei
tectonic belt mainly originated from the remelting of ancient crustal materials. Melting was
associated with striking crust–mantle magma mixing, possibly a common process for the
origin of Triassic adakitic magma and the formation of continental crust in Southeast Asia.
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7. Conclusions

(1) LA-ICP-MS zircon U-Pb geochronology documents the Early Triassic formation age
(247–249 Ma) of the Nanpo adakites in Laos. Their composition is characterized by
high Si, Al, Na, and Sr contents, low K, Mg, and Y contents, and intermediate Mg#
values (42–50) that are typical for adakitic rocks.

(2) Petrology, geochemistry, and zircon Lu-Hf isotopes indicate that the parental melts
of the Nanpo adakites were derived from the partial melting of the thickened lower
crust in the plate fault environment, and the mantle-derived magma participated in
the magmatic evolution process.

(3) Our study shows that the generation of Early Triassic adakite magmatism in the
Luang Prabang-Loei tectonic belt may have been a response to the tectonic transition
from oceanic subduction to post-subduction extension. The transformation of the
ancient continental crust and the subsequent crust–mantle magma mixing are the
main mechanisms for the growth of continental crust in the Paleo-Tethys orogenic
belt in Southeast Asia.

(4) The Luang Prabang-Loei Paleo-Tethys ocean basin closed in the Late Permian–Early
Triassic, and then the Sibumasu block collided with the Indochina block in the Middle-
Late Triassic.
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