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Abstract: Accurate measurement of bubble size is critical for assessing flotation performance. How-
ever, the 3D nature of bubbles, in contrast to the 2D nature of photographs obtained using a bubble
viewer apparatus, may lead to distortions related to stereological assumptions. This study aimed to
quantify the impact of these stereological effects on bubble size measurements in frother characterisa-
tions. Our results showed that different assumptions regarding bubble shape and volume resulted
in variations in bubble size calculations of up to 10%. Furthermore, these stereological effects were
propagated to the calculation of the critical coalescence concentration, leading to uncertainties of up
to 14% depending on the type of frother. These findings emphasise the importance of considering
stereological effects and selecting an appropriate calculation method when measuring bubble size for
flotation and reagent assessments.

Keywords: bubble size measurement; stereological effect; equivalent diameter; 2D and 3D

1. Introduction

Froth flotation is the most widely used separation technique in mineral processing,
in which valuable minerals are separated from the gangue by attaching to air bubbles,
based on their hydrophobicity [1]. Bubble size measurement is critical in assessing flotation
performance, as bubble size directly affects the probabilities of collision, attachment, and
detachment with valuable particles [1–4]. However, accurate measurement of bubble size is
challenging due to the complex multiphase nature of the pulp, the turbulent fluid dynamic
environment within a flotation cell, and errors associated with different measurement
techniques.

Several methods have been proposed in the literature to quantify bubble size, most of
which have been summarised by Rodrigues and Rubio [5] and Junker [6]. Among these,
the most widely adopted measurement technique is the use of a bubble viewer apparatus
for image analysis. Several bubble viewer apparatuses have been described, including
the McGill Bubble Size Analyzer [7,8] and the Anglo Platinum Bubble Sizer (APBS) [9,10].
These apparatuses work under a common principle: the bubbles are sampled from the pulp
using a sampling tube and rise to a viewing chamber, where they are photographed to be
analysed using image analysis software [11,12].

Stereological effects arise due to the fact that bubbles are 3D objects, while the pho-
tographs obtained using a bubble viewer are 2D projections of those objects. This difference
in dimensions, as well as the multidisperse nature of bubbles, results in errors in the mea-
surement of bubble size [13]. Similar stereological effects have been discussed for particle
size measurement [14], where 90% of the particles measured using 2D techniques such
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as SEM and 2D-XMT appear smaller than they actually are. In the case of particle size,
this problem has been addressed by employing 3D measurement techniques such as 3D
X-ray micro-CT [14,15]. Although there exist some 3D techniques available for bubble size
measurement [16–19], these have not been widely adopted in froth flotation or mineral
processing due to the multiphase nature of flotation and the practical constraints of using
multiple cameras. Most practitioners and researchers continue to measure bubble size
using a 2D single-camera approach, and therefore it is critical to quantify the impact of
bubble size uncertainties on flotation and reagent assessments.

The uncertainty related to the stereological effects has led to different definitions
of bubble size, which is critical under low frother concentrations due to the presence of
ellipsoidal and deformed bubbles. Although most authors define bubble size in terms
of equivalent diameter, there is no consensus on its calculation, which has hindered the
characterisation of frothers. Some authors have used a 2D equivalent diameter (d2D),
calculated as the diameter of a circle with the same area (A) as that exposed in the image,
regardless of the shape of the bubble observed [11,20]. This calculation is expressed in
Equation (1). A geometric simplification used by some authors [21] has been to approximate
the bubble to the best-fitted ellipse, which results in Equation (2), where a and b represent
the maximum and minimum axes of the fitted ellipse, respectively.

No shape assumption : d2D =

√
4A
π

(1)

Ellipse assumption : d2D =
√

ab (2)

The calculation of a 3D equivalent diameter (d3D) seeks to determine the diameter
of the sphere with a volume equivalent to the observed bubble, as shown in Equation (3).
However, since the 2D images do not provide a direct measurement of the volume of each
bubble, certain geometric assumptions are required. The most widely used assumption
is to represent the bubble by an ellipsoid of axes a, b and c, as in Equation (4). Within
Equation (4), a and b represent the maximum and minimum axes of the fitted ellipse in 2D,
respectively, and c is the orthogonal axis. However, further assumptions regarding c are
required. For example, Sam et al. [22] fitted an ellipse to the 2D image using Equation (2)
and assumed that the third axis c of the ellipsoid is equal to the minimum axis b, which is
the equivalent of rotating the observed 2D ellipse around its major axis, yielding Equation
(4a). Similarly, Li et al. [23] obtained d3D as the geometric mean of the Feret diameters
dx, dy, and dz, assuming that dz is the arithmetic mean between dx and dy, as shown in
Equation (4b). Grau and Heiskanen [24], Quinn et al. [25], and Vinnett et al. [26], among
others, assumed that the unknown axis c is equal to the maximum axis a, resulting in
Equation (4c), which implies that bubbles rotate around their minor axis. This approach
follows the results reported by Raymond and Rosant [27], which illustrated the typical
trend towards oblate ellipsoids for large bubbles.

No shape assumption (known volume) : d3D =
3

√
6V
π

(3)

Ellipsoid assumption (requires an assumption on c ) : d3D =
3√abc (4)

c = b d3D =
3√ab2 (4a)

c =
a + b

2
d3D =

3

√
ab(a + b)

2
(4b)

c = a d3D =
3√a2b (4c)
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The lack of a standardised method for bubble size calculation and the prevalence of
in-house image analysis software [11,28] make it challenging to compare results across
different research groups. This short communication aims to investigate the differences
between 2D and 3D equivalent diameters and how these differences affect the calculation
of the critical coalescence concentration (CCC), a key parameter for frother assessment.
Different equivalent diameters have been used in the literature when determining CCC,
Equations (1) and (4c) being the most common approaches [29–32]. However, the implica-
tions of using different bubble size representations on CCC characterisations have not been
discussed in flotation literature. Thus, the findings from this study will contribute to the
ongoing efforts to establish more robust and reliable methodologies to assess and compare
frothers.

2. Materials and Methods
2.1. Experimental Procedure

Bubble size was measured in a laboratory-scale flotation cell with a 140× 140 cm cross-
section and a width of 15 cm, which simulated a section of an industrial machine [33,34].
Bubble sampling for photographs was carried out using a McGill bubble size analyser
(MBSA). The MBSA was filled with conditioned water with the same surfactant concentra-
tion as the flotation cell. A digital video camera (Teledyne Dalsa, Waterloo, ON, Canada)
was used to photograph the rising bubbles in a 2D plane at a sampling rate of one frame per
second. All measurements were performed for 3 min at a resolution of 0.056 mm/px [33].
A subset of images was randomly chosen to process at least 1500 bubbles per condition.

Three frother types were analysed for this study: AeroFroth® 70 (referred to as AF),
Flotanol® 9946 (FL) and OrePrep® F-507 (OP). AeroFroth® 70 contains MIBC and diisobutyl
ketone, OrePrep® F-507 contains glycol and other non-hazardous components, while
Flotanol® 9946 is composed of a 2-ethyl hexanol distillation bottom [35].

The experiments were conducted using frother concentrations of 0, 2, 4, 8, 16, and
32 ppm for all surfactants, with the superficial gas velocity (Jg) maintained at a constant
value of 0.4 cm/s for all tests. Each experiment was conducted five times.

2.2. Bubble Size Analysis

The photographs were analysed using a semi-automated application based on the
Image Processing Toolbox of MATLAB (version), as described by Vinnett et al. (2022) [26].
This application employs a semi-automated procedure for cluster segmentation to identify
individual bubbles and calculates equivalent diameters for each bubble.

Two different equivalent diameters were used in this study: a 2D equivalent diameter,
which corresponds to the diameter of the circle with the same area as an ellipse (as in
Equation (2)); and a 3D equivalent diameter, which was calculated as the diameter of the
sphere with the same volume as an oblate ellipsoid (as in Equation (4c)). It should be noted
that bubble photographs do not capture the depth of each bubble, so the third axis of the
ellipsoid is assumed to be equivalent to the largest of the other two.

The bubble size distribution (BSD) and the respective Sauter mean diameter (d32) were
calculated for the different frother types and concentrations using both equivalent-diameter
schemes. The 2D and 3D Sauter means were used to plot critical coalescence concentration
(CCC) curves and calculate the CCC95 [36,37] for each representation and experimental
condition. The 2D and 3D bubble size estimations of Equations (1) and (4c) were studied,
as they have commonly and arbitrarily been used to characterize CCC curves [29–32]. The
curves were fitted using the model for d32 as a function of frother concentration proposed
by Nesset et al. [36]:

d32(C) = DL + Bexp(−bC) (5)

where C is the frother concentration in ppm, DL represents the limiting bubble size (the
smallest d32 that can be achieved by varying frother concentration), B is the range of bubble
sizes (D0 − DL, with D0 being the d32 with no frother), and b is a fitting parameter that
defines the rate of decay of bubble size.
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The curves were fitted by weighted least squares (WLS), using the inverse of the
experimental variance as weights. The CCC95 was calculated as:

CCC95 =
ln(0.05)
−b

. (6)

2.3. Analysis of the Stereological Effect on the Critical Coalescence Concentration

The data analysis was performed to investigate the effect of using a 2D and 3D scheme
for the equivalent diameter. The study compared the d32 obtained for three different frothers
in each case. The CCC model of Equation (5) was utilised and the parameters, including
the limiting bubble size, bubble size at no frother, and CCC95, were calculated from both
diameter representations. The relative change for CCC95 from 2D to 3D estimations was
determined. The impact of frothers on the aspect ratio (AR) of bubbles was also discussed,
as the observed bubble shape can provide insights into stereological patterns. The findings
and implications of the data analysis are presented in Section 3.

3. Results and Discussion

Table 1 presents the Sauter mean diameter and its standard deviation for each frother
type and concentration, using the 2D and 3D equivalent diameter. The Sauter means and
standard deviations were used to fit the CCC model to the data using WLS, as described in
Equation (5). The experimental data and fitted models are shown in Figure 1, while Table 2
details the curve descriptors of the CCC models for each case.

Table 1. Sauter mean diameter and its standard deviation (mm) for each frother type and frother
concentration (C), using the 2D and 3D equivalent diameter.

AeroFroth® 70 Flotanol® 9946 OrePrep® F-507

2D 3D 2D 3D 2D 3D

C (ppm) Repeats d32 SD d32 SD d32 SD d32 SD d32 SD d32 SD

0 15 3.40 0.10 3.70 0.14 3.40 0.10 3.70 0.14 3.40 0.10 3.70 0.14
2 5 2.58 0.13 2.76 0.15 1.91 0.12 1.96 0.12 1.84 0.13 1.89 0.13
4 5 1.94 0.11 2.05 0.13 1.76 0.13 1.81 0.13 1.59 0.13 1.64 0.14
8 5 1.51 0.13 1.56 0.15 1.30 0.04 1.33 0.04 1.41 0.06 1.46 0.06

16 5 1.35 0.10 1.38 0.12 1.35 0.06 1.41 0.08 1.22 0.10 1.26 0.11
32 5 1.24 0.08 1.26 0.08 1.17 0.10 1.20 0.11 1.17 0.05 1.21 0.06

As shown in Figure 1 and Table 1, the effect of using a 2D or a 3D scheme for the
equivalent diameter seems to be negligible at high frother concentrations over the CCC.
High frother concentrations cause bubbles to become more spherical [37], which implies
a ≈ b. In fact, Table 2 shows that the limiting bubble size (DL) has differences under
5% between the evaluated estimations. However, at low frother concentrations, the d32
obtained from the 3D scheme were greater than those calculated from 2D equivalent
diameters. Table 2 indicates that at no frother, the 3D scheme led to D0 close to 10% greater
than those obtained from 2D estimations. This result can be explained by the impact of the
aspect ratio (AR) of bubbles, which is the ratio between the major and minor axes, on the
2D and 3D equivalent bubble diameters.

The 2D and 3D equivalent diameters can be expressed in terms of aspect ratio
(AR = a/b) by replacing b in Equations (2) and (4c), respectively. The effect of frother
on the aspect ratio is explored in Figure 2, showing the reciprocal of the median of AR at
different frother concentrations. From this result, not all frothers affect the shape of the
bubbles at the same rate. Flotanol® 9946 and OrePrep® F-507 quickly change the shape
of bubbles, reaching sphere-like bubbles with AR−1 ≥ 0.95 at 2 ppm, while a higher
AeroFroth® 70 dosage is required to make bubbles spherical, near 8 ppm.
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Figure 1. Critical coalescence concentration (CCC) curves for AeroFroth® 70 (AF), Flotanol® 9946 (FL)
and OrePrep® F-507 (OP), calculated with (a) the 2D equivalent diameters and (b) the 3D equivalent
diameters. The points represent experimental data, where the error bars represent the standard
deviation shown in Table 1. The lines correspond to the model in Equation (5), fitted using weighted
least squares with the inverse of the experimental variance.
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Table 2. Effect of using a 2D and a 3D equivalent diameter on the curve descriptors of the CCC model.
Change refers to the percentage difference from 2D to 3D.

Curve Descriptors from Model AeroFroth® 70 Flotanol® 9946 OrePrep® F-507

Limit bubble size, DL
(mm)

2D 1.26 1.29 1.25
3D 1.28 1.32 1.32

Change 1.6% 2.6% 5.4%

Bubble size without frother, D0
(mm)

2D 3.41 3.39 3.38
3D 3.71 3.68 3.68

Change 8.9% 8.6% 8.8%

CCC95
(ppm)

2D 11.1 5.6 5.7
3D 11.0 5.3 4.9

Change −0.7% −5.6% −13.9%

The relationship between d3D and d2D can be expressed in terms of AR by dividing
Equation (8) by (7), as shown in Equation (9).

d2D =
√

ab =

√
a2

AR
(7)

d3D =
3√a2b =

3

√
a3

AR
(8)

Equation (9), as well as Figure A1 (Appendix A), show that d3D is always larger than
d2D, except for perfectly spherical bubbles (AR = 1).

d3D
d2D

=
6√AR. (9)
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Figure 2. Change in the inverse of the aspect ratio of bubbles with frother addition in the experimen-
tal tests.

The impact of using either scheme on the CCC95 estimation differs depending on
the type of frother. From Table 2, AeroFroth® 70 presented non-significant differences in
the estimated CCC95 from both representations—under 1%. On the other hand, stronger
frothers, such as OrePrep® F-507 and Flotanol® 9946, had higher differences in CCC95
estimations, the former being close to 15%. From Equations (5) and (6) and accurate D0
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and DL estimations, CCC95 only depends on the exponential decay of d32 as a function of
the frother concentration. To analyse this decay, the experimental Sauter diameters were
normalised, such that D̂32 = (d32 − DL)/B = (d32 − DL)/(D0 − DL). Figure 3 shows the
normalised Sauter diameters for each type of frother and equivalent diameter scheme,
which fell within the range of 0 to 1. Although the D̂32 differences are not critical between
the evaluated schemes, these variations were sufficient to change the curvatures of the CCC
trends, especially before reaching DL. The subtle difference in curvature has implications
for the CCC95 estimations, as presented in Table 2. Thus, there exists an underexplored
relationship between the concepts of CCC95, i.e., the frother dose required to reduce bubble
size and the frother dose required to make bubbles spherical. As illustrated in Figure 3,
the normalised CCC curves varied between the 2D and the 3D schemes for OrePrep®

F-507 and Flotanol® 9946, but remained similar for AeroFroth® 70. From Equation (5) and
its normalisation to obtain D̂32, dD̂32/dC at 0 ppm corresponds to -b, which defines the
CCC95 value, as shown in Equation (6). An abrupt decay in d32 as a function of the frother
concentration, and consistently, an abrupt decrease in the aspect ratio, led to differences
in the normalised CCC curves, because similar (d32 − DL) values from the 2D and 3D
schemes are scaled by different (D0 − DL). This effect can be observed from Table 2, which
will be more critical when spherical regimes are reached before CCC95. This feature justifies
the differences in the normalised CCC curves and CCC95 estimations for OrePrep® F-507
and Flotanol® 9946 from the 2D and 3D schemes for the equivalent diameters.

The observed dependence on frother type of the extent of the stereological effect is
explained by the different rates at which frothers change the shape of bubbles, as shown
in Figure 2, and how that rate relates to the reduction of bubble size. For AeroFroth® 70,
the rate at which bubbles change their shape closely relates to the rate at which bubble
size is reduced. Thus, for this frother, both rates reach a plateau at approximately 10 ppm,
explaining why there is no apparent difference in calculating CCC95 for 2D and 3D schemes
in this case. In contrast, the other two frothers present considerably different rates at which
bubbles change their size and shape. Both Flotanol® 9946 and OrePrep® F-507 have CCC95
values between 5 and 6 ppm, but bubbles reach near sphericity much more quickly, at
around 2 ppm.
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The observation of two distinct phenomena associated with frother function, namely,
bubble size and bubble shape, aligns with that presented by Gomez et al. [38] in their CCC
model. Unlike the widely used CCC model presented in Equation (5), Gomez et al. [38]
defined the CCC curve as the sum of two exponential decays, where one of the decays
represents the change in the surface tension of the bubbles (which is linked to bubble
shape) and a second decay represents the coalescence control, with surface tension effects
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subtracted. The simplicity of the CCC model in Equation (5) precludes it from being
adapting to cases where bubble size and bubble shape change at significantly different
rates, which increases the uncertainties in the CCC estimations.

Future work needs to focus on the design of a new bubble analysis apparatus for froth
flotation, capable of measuring bubbles in 3D, thus avoiding stereological assumptions.
Recent advancements in image analysis based on deep learning and neural networks
have shown promise in reconstructing the 3D shape of bubbles using single-view 2D
images [39,40]. However, to effectively apply these methodologies, it will be necessary to
create extensive training databases of 3D bubble images for different frothers, operating
conditions and sampling equipment. It is observed from this work that as 2D single-view
images continue to be widely used in mineral processing research, there is a growing
necessity for new models to better estimate the CCC that account for the stereological errors
and the different phenomena related to frother addition.

4. Conclusions

This study investigated the impact of using 2D and 3D schemes for determining
the equivalent diameter of bubbles in flotation and the respective implications on frother
characterisations. The comparison of Sauter means obtained for the evaluated frothers
indicated that the 3D scheme produced up to 9% higher values, highlighting the importance
of considering the three-dimensional nature of bubbles at low frother content. The adjusted
CCC model provided insight into the limiting bubble size, bubble size without frother,
and CCC95 parameters, with percentage changes from 2D to 3D scheme being determined.
It was observed that the stereological assumptions generated differences in the CCC95
estimated at up to 14% for one of the frothers tested, evidencing that the stereological
patterns are frother-dependent. Furthermore, the observed bubble shape revealed the
impact of frothers on the aspect ratio of bubbles and demonstrated the importance of
considering geometric assumptions. Overall, this study provides valuable insights into the
importance of considering 3D representations in froth flotation and highlights the need for
further research into bubble size estimation and the impact of frothers on bubble shapes
and sizes.
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Appendix A

Figure A1 shows the impact of the aspect ratio (reciprocal) on the equivalent diameter
for the 2D and 3D representations. The 3D equivalent diameter of an ellipsoidal bubble is
greater than the 2D equivalent diameter, approaching the 2D diameter as AR ≈ 1.
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