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Abstract: Observation images from hyperspectral (HS) sensors on satellites and aircraft can be used
to map minerals in greater detail than those from multispectral (MS) sensors. However, the coverage
of HS images is much less than that of MS images, so there are often cases where MS images cover
the entire area of interest while HS images cover only a part of it. In this study, we propose a new
method to more reasonably expand the mineral map of an HS image with an MS image in such cases.
The method uses various mineral indices from the MS image and MS sensor’s band values as the
input and HS image-based mineral classes as the output. Random forest (RF) two-class classification
is then applied iteratively to determine the distribution of each mineral in turn, starting with the
minerals that are most consistent with the HS image-based mineral map. The method also involves
the correction of misalignment between HS and MS images and the selection of input variables
by RF multiclass classification. The method was evaluated in comparison with other methods in
the Cuprite area, Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
Hyperspectral Imager Suite (HISUI) as HS sensors and the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) as MS sensors. As a result, all of the evaluated region-expansion
methods with an HS–MS image pair, including the proposed method, showed better performance
than the method using only an MS image. The proposed method had the highest performance, and
the inter-mineral averages of the F1-scores for the overlap and non-overlap areas were 85.98% and
46.46% for the AVIRIS–ASTER image pair and 82.78% and 42.60% for the HISUI–ASTER image pair,
respectively. Although the performance in the non-overlap region was lower than in the overlap
region, the method showed high precision and high accuracy for almost all minerals, including
minerals with only a few pixels. Misalignment between the HS–MS images is a factor that degrades
accuracy and requires precise alignment, but the misalignment correction in the proposed method
could suppress the effect of misalignment. Validation studies using different regions and different
sensors will be carried out in the future.

Keywords: remote sensing; hyperspectral image; multispectral image; mineral mapping; random
forest; classifier; mineral index; AVIRIS; HISUI; ASTER

1. Introduction

Optical remote sensing is a valuable tool for efficiently determining the wide-area
distribution of minerals. Multispectral (MS) sensors, which have multiple spectral bands
in the visible to thermal infrared region, have been a widely used sensor type for mineral
mapping [1,2], and typical examples include the Landsat sensors such as the Thematic
Mapper (TM) and Operational Land Imager (OLI) [3,4] as well as the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) [5] aboard the Terra satellite. In
particular, many minerals are known to have specific absorption characteristics in the
short-wavelength infrared (SWIR) range, and despite the relatively low spectral resolution
of MS sensors, there have been numerous reports of effective mineral identification through
analysis of SWIR images taken with these sensors. For example, Rowan et al. successfully
mapped resource-useful minerals such as muscovite and dolomite in Mountain Pass,
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California, USA, using band ratio analysis based on ASTER images [6]. Vural et al. also
mapped minerals via principal component analysis based on Landsat-7 and -8 images
using samples collected in northeastern Turkey [7]. Thus, MS sensors are widely used for
mineral mapping, but it has also been reported that some minerals are difficult to identify
due to limitations in the number of bands and wavelength resolution [8–10]. Mars et al.
compared ASTER image spectra from two alteration areas (e.g., Cuprite, Nevada, and
Mountain Pass, California, USA) with a spectral library and, based on the results of spectral
matching, identified some mineral groups, including argillic minerals (kaolinite, alunite,
and dickite), phyllic alteration minerals (sericite), propylitic minerals (calcite, epidote, and
chlorite), and other advanced mineral groups, that could be separated [11]. However, the
study also concluded that detailed mapping of kaolinite and alunite was impossible due to
the similarity of the minerals and the limited number of bands in the multispectral sensor.

On the other hand, hyperspectral (HS) sensors, which have significantly more bands
than MS sensors, as they typically range from fifty to several hundred spectral bands, enable
the detailed mapping of minerals. Typical HS sensors include the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) [12], Environmental Monitoring and Analysis Program
(EnMap) [13], PRecursore IperSpettrale della Missione Applicativa (PRISMA) [14], and
Hyperspectral Imager Suite (HISUI) [15]. In addition, the development of NASA’s Surface
Biology and Geology (SBG) [16], ESA’s Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME) [17], and other similar initiatives with planned launches in the late
2020s is indicative of the global attention directed towards advancing HS sensor technology.
However, fewer HS sensors have been operated than MS sensors, and they generally have
narrower swath widths, resulting in fewer available data archives and more unobserved
areas. For example, the HISUI, which was installed on the International Space Station (ISS)
in 2019, has a constrained orbit and does not have pointing capability; thus, it is assumed
that many unobserved areas will remain after the mission is over [15].

To address this problem, attempts have been made to expand the mineral mapping
area of the limited HS images by using MS images covering a wider ground surface area.
For example, Kruse and Perry [18] performed minimum noise factor (MNF) transforma-
tions [19] and pixel purity index (PPI) analysis [20] for atmospherically corrected HS images,
then extracted the endmember spectra necessary for identifying each mineral based on
n-dimensional scatter plots [20] and obtained endmember spectra from MS images by
multiplying the extracted spectra with the spectral response functions of the MS sensor’s
bands. These endmember spectra were applied to the atmospherically corrected MS im-
age, and then the spectral angle mapper (SAM) method [21] was applied to generate a
mineral map in the missing region of the HS image (hereinafter referred to as the KP
method). However, since the KP method is subject to mineral classification errors when
there are spectral inconsistencies between HS and MS images due to radiometric calibration
errors or atmospheric correction errors, Hirai and Tonooka [22,23] proposed a modified
method that is robust to these effects (hereinafter referred to as the “HT method”). The
HT method extracts endmember pixels of each mineral from the HS image in the overlap
region between the HS and MS images, using the same methods [18–20] as the KP method.
Then, MS-based endmember spectra are extracted from the pixels in the MS image at the
exact locations of the HS-based endmember pixels. This method cannot be affected by
spectral inconsistencies between HS and MS images. However, it also causes errors in
mineral identification if there is a misalignment between HS and MS images [22]. Therefore,
Nakayama and Tonooka [24] proposed an improved HT method that determines MS-based
endmember pixels from the neighborhood of the endmember pixels on the HS image and
also optimizes the mineral selection by the SAM method. The features of this improved
HT method are that it is robust to misalignment between HS and MS images and can
automatically set threshold values for each mineral.

These region expansion methods for HS-based mineral maps are intended to produce
a seamless mineral map of the entire region of interest more accurately than processing
MS images alone by utilizing information from partially available HS images when MS
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images cover the entire region of interest but HS images are partially missing. These
methods extract the endmember pixels of each mineral from the HS image obtained in a
portion of the region of interest, but the difference is that the KP method calculates the
MS-based endmember spectrum from the HS-based endmember spectrum, while the HT
and improved HT methods use the HS-based endmember location information. Based on
this background, the present study proposes a new method with the same objective but a
different approach from these region expansion methods. The proposed method builds a
machine learning model to obtain the best-fit mineral identification results from MS images
for those from HS images in the overlap region and applies it to the entire region of interest.
The method was validated at Cuprite, Nevada, USA, using AVIRIS and HISUI images as
HS images and ASTER images as MS images, and its effectiveness was demonstrated.

2. Materials and Methods
2.1. Proposed Method

The proposed method performs mineral identification by iteratively applying a ran-
dom forest (RF) two-class classification (that is, a two-class classification of the target
mineral or not) to the MS image to maximize the consistency between the mineral map of
the HS image and that of the MS image in the overlap region. The variables to be input into
the RF two-class classification were selected from the band values of the MS sensor, and
the major mineral indices were based on the band calculations through iterative multiclass
classification by RF. RF was chosen as the machine learning method in this study because
it has demonstrated superior performance compared to other classification methods in
multiclass classification tasks using remote sensing data [25].

The details of this method are described below, and the flow is shown in Figure 1.
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Figure 1. Processing flow of the proposed method.

2.1.1. Step 1: Preprocessing

As a preprocessing step, HS and MS images of the target area were prepared and
aligned. In addition, to improve the performance of mineral identification, the HS and MS
images used were atmospherically corrected.
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2.1.2. Step 2: Mineral Mapping from HS Images

Mineral classification maps were generated from HS images by the following general
procedures: (1) data compression of HS images by MNF transformation [19], (2) extraction
of pure pixels by PPI analysis of MNF-transformed images [20], (3) extraction of end-
member pixels using a multidimensional correlation diagram [20], (4) determination of
each endmember spectrum and corresponding mineral by comparison with a spectral
library [20], and (5) mineral identification of each pixel by the spectral angle mapper (SAM)
method [18,26]. Although the accuracy of the mineral map produced by this method
depends on the quality of the satellite imagery and the type of minerals present, some
have achieved 90% or better discrimination accuracy for certain minerals when using
ground-validated reference data [27]. In general, it can be expected that HS mineral maps,
while not necessarily true, are more reliable than MS mineral maps produced using the
same method.

2.1.3. Step 3: Misalignment Correction by RF Multiclass Classification

The proposed method assumes that there is no misalignment between HS and MS
images, and if this is not satisfied, the accuracy of mineral classification may be significantly
reduced. Therefore, the following process was used to correct misalignment between HS
and MS images.

First, based on the MS sensor used, some candidate mineral indices based on band
calculations were prepared. Then, in the HS–MS overlap region, an RF multiclass classifier
was trained with these mineral indices and the band values as input variables and the
mineral classes obtained in Step 2 as output variables, and the overall accuracy was
calculated. Then, the position of the HS image relative to the MS image was shifted within
the range where the amount of pixel shift in parallel is assumed (e.g., eight neighborhoods),
and the overall accuracy of the RF multiclass classifier was calculated for each shift value.
The shift value that shows the highest overall accuracy was then adopted, and the position
of the HS image was corrected.

Since the above misalignment correction is a method of shifting the entire image in
parallel based on the assumption that the amount of misalignment is uniform across the
entire image, the accuracy may be locally degraded if this assumption is not met.

2.1.4. Step 4: Selection of Input Variables by Iterative RF Multiclass Classification

In the RF multiclass classification of Step 3, all the prepared mineral indices and band
values were used. However, the ideal state of RF is one in which the correlation of groups
of decision trees is low among each other, and the presence of highly correlated decision
trees may reduce generalizability due to overfitting. Therefore, the following process was
performed in the overlapping regions to select the mineral indices and band values to be
used as input variables. First, the overall accuracy based on the shift value adopted in
Step 3 was used as the criterion. Then, one of the input variables was selected, and the RF
multiclass classifier was trained by removing that variable to calculate the overall accuracy.
If its value was higher than the criterion, the variable was removed. This process was
performed for all variables in turn. In this way, the final remaining variables were used as
the input variables to be given to the following RF two-class classifier.

2.1.5. Step 5: Mineral Identification by Iterative RF Two-Class Classification

In the overlap region, with the mineral indices and band values from Step 4 as input
variables and the mineral classes from Step 2 as output variables, the RF two-class classifier
was trained for each of the N target minerals, and its accuracy (F1-score) was calculated.
Then, the mineral with the highest accuracy (designated as Mineral 1) was selected, and
the model learned for that mineral was applied to the entire MS image, including the
non-overlapping area, to determine the Mineral 1 pixel. Next, for all remaining pixels
(unidentified pixels) in the overlap region, except for the pixels determined to be Mineral
1, the same two-class classification prediction process was performed for each target
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mineral except for Mineral 1, and the mineral with the highest accuracy (designated as
Mineral 2) was determined. The classifier was then applied to the unidentified pixels in the
MS image to determine the pixels belonging to Mineral 2, completing the identification of
Mineral 2. After that, the same process was applied iteratively to complete the identification
of all target minerals sequentially. In this case, the number of learning RF runs in Step 5
was N times for N target minerals, the number of predictions in the overlap region was
N(N + 1)/2 times, and the number of predictions in the region, including the MS extension
region, was N times.

2.2. Study Area and Data Used
2.2.1. Study Area

In this research, the study area was the Cuprite area in Nevada, USA, which is often
used for empirical studies in geological remote sensing [28,29]. The location of this area
is shown in Figure 2. It is known that minerals with characteristic absorption properties
in the SWIR region are well exposed in this area [30]. In addition, a surface reflectance
reference map of the hills known as the Cuprite hills and example spectra obtained from
them were reported in [31].  

 

 

 
Minerals 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/minerals 

 
 Figure 2. Cuprite area, Nevada, USA, used as the study area.

2.2.2. HS and MS Images Used

In this study, AVIRIS and HISUI images were used as HS images, and ASTER images
were used as MS images. Table 1 lists the images used.

Table 1. List of remote sensing images used.

Type Sensor Date and Time
(UTC)

Spatial Resolution
(m) Product ID

HS sensor
AVIRIS 20 September 2006 19:21 15.7 f060920t01p00r05
HISUI 5 April 2021 20:02 20 HSHL1G_N376W1172_20210405200234_20221208052533

MS sensor ASTER 15 August 2006 18:38
VNIR: 15
SWIR: 30
TIR: 90

AST_07XT_00308152006183834_20230424001733_7858
AST_L1T_00308152006183834_201

50515181406_80216
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AVIRIS is an airborne HS sensor developed by the NASA Jet Propulsion Laboratory
(JPL) and has been in operation since 1986 [5,32]. It has 224 spectral bands in the visible and
near-infrared (VNIR) and SWIR spectral regions (0.360–2.510 µm). The basic specifications
of AVIRIS are given in Table 2. The AVIRIS data used in this study include an image taken
on 20 September 2006 in the Cuprite area at a ground resolution of 15.7 m that was obtained
from the NASA AVIRIS Data Portal [33]. SWIR bands from 175 to 224 (wavelength range:
2.020–2.510 µm) were used for this analysis.

Table 2. Basic specifications of AVIRIS [32].

Subsystem Band Spectral Range
(µm)

Spatial
Resolution (m)

Signal Quantization
Levels (bits)

VNIR 1–96 0.360–1.259
4–20 12SWIR 97–224 1.260–2.510

HISUI is a Japanese HS sensor launched on 5 December 2019 that is attached to the
Japanese Experiment Module (JEM) of the ISS, with 185 bands in the VNIR and SWIR
spectral regions (0.405–2.475 µm) [34]. Table 3 shows the basic specifications of HISUI. The
HISUI data used in this study include an image taken in the Cuprite area on 5 April 2021,
and the ground resolution of the product is 20 m. SWIR bands from 147 to 185 (wavelength
range: 2.000–2.475 µm) were used for this analysis. Note that this HISUI image contains
a few clouds and their shadows. These contaminated areas were masked based on their
peculiar spectral characteristics and excluded from the validation.

Table 3. Basic specifications of HISUI [34].

Subsystem Band Spectral Range
(µm)

Spatial
Resolution (m)

Signal Quantization
Levels (bits)

VNIR 1–57 0.405–0.965
20–31 12SWIR 58–185 0.970–2.475

ASTER is an MS sensor developed by the Japanese Ministry of Economy, Trade, and
Industry (METI) onboard NASA’s Terra satellite, which was launched in December 1999
and is still in operation as of March 2023. It has VNIR, SWIR, and thermal infrared (TIR)
subsystems, with three bands for VNIR, six for SWIR, and five for TIR, and it has a ground
resolution of 15 m for VNIR, 30 m for SWIR, and 90 m for TIR. Table 4 shows the basic
specifications of ASTER. For the AVIRIS and HISUI images, only the SWIR bands were
used, but for ASTER images, all VNIR, SWIR, and TIR bands were used for this analysis.
In this study, two kinds of ASTER products, which were acquired on August 15 2006 over
the Cuprite area, were used: the ASTER/07XT Surface Reflectance VNIR and Crosstalk-
Corrected SWIR (AST_07XT) product [35] for VNIR and SWIR, and the ASTER/Level 1T
(L1T) ortho-rectified at-sensor radiance product for TIR. The ASTER/07XT is a product
that has been atmospherically corrected and converted to surface reflectance, where the
SWIR images in the product have been corrected for inter-band crosstalk that affects
spectral analysis [36]. For TIR, the ASTER L1T TIR images were first recalibrated [37]
and then corrected atmospherically by the water vapor scaling (WVS) method [38]. The
surface temperature and five-band surface emissivity images were acquired by the ASTER
temperature and emissivity separation (TES) algorithm [39] and used for analysis.
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Table 4. Basic specifications of ASTER [39].

Subsystem Band Spectral Range
(µm)

Spatial
Resolution (m)

Signal Quantization
Levels (bits)

VNIR
1 0.520–0.600

15

8

2 0.630–0.690
3N/3B 0.760–0.860

SWIR

4 1.600–1.700

30

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

TIR

10 8.125–8.475

90 12
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

2.3. Validation Method
2.3.1. Methods to Be Compared

In this study, the proposed method was validated by comparing two alternative
methods with some modifications of the proposed method, the improved HT method, and
an MS-based method without any HS images.

The first alternative method is to omit Section 2.1.5 and identify minerals with a
multiclass RF classifier using the input variables selected in Step 4. This method is more
straightforward than the proposed method and has the advantage of a shorter processing
time. Herein, this method will be referred to as method A.

The second alternative method is a method that performs multiclass classification by
RF instead of two-class classification by RF in Section 2.1.5. The input variables in the RF
classifier in Step 5 were the same as in the proposed method, but the output values were
all mineral classes obtained in Step 2. Then, only the mineral with the highest prediction
F1-score (which is designated as Mineral 1) in the overlap region was considered to have
completed identification. Then, using only the unidentified pixels in the MS image, the RF
multiclass classifier for minerals other than Mineral 1 was trained again to determine the
mineral with the highest prediction F1-score (Mineral 2); the identification of Mineral 2
was completed based on this. In the same manner, after that, all minerals were identified
sequentially. In this case, the number of training and predicting RF runs in Step 5 is N times
for N minerals. Herein, this method will be referred to as method B.

The improved HT method selects the best MS-based endmember pixel from around
the MS pixel at the exact location as the HS-based endmember pixel in the overlap region be-
tween the HS and MS images to obtain the MS endmember spectrum [24]. Then, the mineral
of each pixel is identified by the SAM method given the obtained MS endmember spectra.

The MS-based method does not use HS images but applies the procedure of Section 2.1.2
to the ASTER band images (surface reflectance for VNIR and SWIR and surface emissivity
for TIR) to create mineral maps. This method was compared to evaluate the effective-
ness of the region expansion of the HS-based mineral map, which is the objective of
the other methods.

2.3.2. Application of the Methods

In Section 2.1.1, initial geocoding of the AVIRIS, HISUI, and ASTER images was
performed based on the location information attached to each product. For the AVIRIS and
HISUI images, observed radiance values were atmospherically corrected by the atmospheric
correction module FLAASH [39–42] of the ENVI 5.6 software and converted to surface
reflectance, where the atmospheric model was US Standard, the aerosol model was Rural,
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and the date and time data and geometric conditions were given based on the attribute
information of each image.

Step 2 was processed by the ENVI 5.6 software, and the threshold of the SAM method
was set to the default value (=0.1).

In Step 3, considering that the sensor used in this study was ASTER, the 32 mineral
(or mineral class) indices for ASTER [5,6,43–52] shown in Table 5, 14 band values (9
surface reflectance values for VNIR and SWIR and 5 surface emissivity values for TIR), and
1 surface temperature value were used as input variables. In Step 4, these 47 input variables
(32 mineral indices + 14 band values + 1 temperature value) were used as candidates,
and the mineral numbers on the HS-based mineral map were used as output variables to
remove unnecessary variables.

Table 5. ASTER-based mineral indices were prepared as input variables for Step 3 and input variable
candidates for Step 4. This table was created by merging Tables 2 and 3 from Gozzard (2006) [45]
and partially appending information from Table 2 from Rajendran et al. (2019) [46]. Table courtesy of
Geological Survey and Resource Strategy Division, Department of Mines, Industry Regulation and
Safety. © State of Western Australia 2023.

No. ASTER Band Math Features Comments Reference

1 2/1 Ferric iron, Fe3+

discrimination (blue)
—

Rowan et al., 2003 [6]
Hewson et al., 2001 [48]
Abrams et al., 1995 [5]

2 (5/3) + (1/2) Ferric iron, Fe2+ — Rowan et al., 2003 [6]

3 4/5 Laterite
alteration — Bierwith, 2002 [43]

Volesky et al., 2003 [47]

4 4/2 Gossan — Volesky et al., 2003 [47]

5 5/4 Ferrous silicates (biotite, chlorite,
amphibole) Fe oxide Cu–Au alteration Hewson et al., 2001 [48]

6 4/3 Ferric oxide
discrimination (green) Can be ambiguous Hewson et al., 2001 [48]

Abrams et al., 1995 [5]

7 (7 + 9)/8 Carbonate–chlorite–epidote — Rowan et al., 2003 [6]

8 (6 + 9)/(7 + 8) Epidote–chlorite–amphibole Endoskarn Hewson et al., 2001 [48]

9 (6 + 9)/8 Amphibole–MgOH Can be either MgOH or
carbonate Hewson et al., 2001 [48]

10 6/8 Amphibole — Bierwith, 2002 [43]

11 (6 + 8)/7 Dolomite — Rowan et al., 2003 [6]

12 13/14 Carbonate Exoskarn (calcite–dolomite)
Bierwith, 2002 [43]

Ninomiya, 2002 [49]
Hewson et al., 2001 [48]

13 (5 + 7)/6 Sericite–muscovite–illite–
smectite Phyllic alteration Rowan et al., 2003 [6]

Hewson et al., 2001 [48]

14 (4 + 6)/5 Alunite–kaolinite–pyrophyllite — Rowan et al., 2003 [6]

15 5/6 Phengite
host rock — Hewson et al., 2001 [48]

Volesky et al., 2003 [47]

16 7/6 Muscovite — Hewson et al., 2001 [48]

17 7/5 Kaolinite Approximate only Hewson et al., 2001 [48]

18 (5 × 7)/(6 × 6) Clay — Bierwith, 2002 [43]

19 14/12 Quartz-rich rocks — Rowan et al., 2003 [6]

20 (11 × 11)/(10 × 12) Silica
siliceous rocks — Bierwith, 2002 [43]

Ninomiya, 2002 [49]
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Table 5. Cont.

No. ASTER Band Math Features Comments Reference

21 12/13 Mafic minerals
SIO2

Inversely correlated with
SiO2 content in silicate rocks

Bierwith, 2002 [43]
Ninomiya, 2002 [49]

Hewson et al., 2001 [48]

22 (12 × 12 × 14)/(13 × 13 × 13) Mafic minerals (improved) Inversely correlated with
SiO2 content in silicate rocks Ninomiya, 2002 [49]

23 13/12 SIO2 Same as 14/12 —

24 11/10 Silica — Hewson et al., 2001 [48]

25 11/12 Silica — Hewson et al., 2001 [48]

26 13/10 Silica — Hewson et al., 2001 [48]

27 3/2 Vegetation — —

28 (3 − 2)/(3 + 2) NDVI Normalized difference
vegetation index —

29 4/1 Discrimination for mapping
(red) — —

30 3/1 Discrimination for mapping
(green) — —

31 12/14 Discrimination for mapping
(blue) — —

32 4/7 Discrimination (red) — Abrams et al., 1995 [5]

3. Results
3.1. Validation Results Using AVIRIS and ASTER Images

The HS-based mineral map obtained via Section 2.1.2 using AVIRIS images is shown
in Figure 3a. A total of nine minerals were identified by this process, including alunite and
muscovite. The white dotted box in the image’s southern half was defined as the overlap
area between the HS and MS images. The northern half of the image was assumed to be a
non-overlap area. Although this region was actually covered by the AVIRIS image, we did
not use it; rather, we identified minerals by each method using the ASTER image.

Table 6 shows the overall accuracy when the position of the AVIRIS image is shifted
by ±1 pixel in the x- and y-directions with respect to the ASTER image, according to
Section 2.1.3. Since the highest overall accuracy was obtained for the center position
(∆x = ∆y = 0), no position correction was performed between the AVIRIS and ASTER
images. As a result, the geocoding of Step 1 was adopted as is.

In Section 2.1.4, 8 of the 47 input values, including the 1, 2, and 10–14 band values,
and the mineral index No. 24 in Table 5 were excluded, leaving 39 variables to be selected.
In the proposed method and the alternative methods, these were used as input variables
for the RF classification in Step 5. The same validation was also performed in the expanded
region to show accuracy.

Figure 3b–f shows the mineral maps obtained by the proposed method, the two
alternative methods, the improved HT method, and the MS-based method. The non-
overlap area in the north was extended using the MS image in the overlap area in the
south. Table 7 also shows the accuracy of each mineral obtained by each method, with
precision, recall, and F1-score as evaluation measures, for each of the overlap and non-
overlap regions. The bottom row shows the average values of precision and recall and
the F1-score calculated from them for the nine identified minerals. Bold numbers in each
measure indicate the highest number among the methods.
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Figure 3. Comparison of mineral maps obtained from a single AVIRIS image and mineral maps from
each of the extension methods using ASTER images: (a) AVIRIS-based map and the extended maps
by (b) proposed method, (c) method A, (d) method B, (e) improved HT method, and (f) MS-based
method. The white dotted box in (a) indicates the overlap region.

The proposed method has the highest precision for all minerals except alunite. The
two alternative methods show similar results to each other. The improved HT method
showed higher accuracy for alunite than the other methods, but the accuracy for some
minerals was lower. In the non-overlap region, montmorillonite identification was low for
all methods. The MS-based method had the lowest average F1-score of the methods.
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Table 6. Overall accuracy when the position of the AVIRIS image was shifted by ±1 pixel in the x-
and y-directions with respect to the ASTER image, according to Section 2.1.3. The bold number is the
highest value.

∆x = −1 ∆x = ±0 ∆x = +1

∆y = −1 81.93 83.21 81.77
∆y = ±0 83.20 88.90 83.29
∆y = +1 81.69 83.24 81.98

Table 7. Precision, recall, and F1-score for each mineral in the overlap and non-overlap regions for
each method when the AVIRIS image was used as the HS image. The average values of precision and
recall and the F1-score calculated from them are also shown in the bottom row. Bold numbers in each
row indicate the highest number among the methods.

Mineral Measure

Proposed Method A Method B Improved HT MS-Based

Overlap Non-
Overlap Overlap Non-

Overlap Overlap Non-
Overlap Overlap Non-

Overlap Overlap Non-
Overlap

Calcite
Precision 99.28 79.01 95.91 50.27 96.32 54.02 58.78 73.29 16.85 12.14

Recall 97.41 42.97 97.35 49.84 97.29 47.56 71.46 50.63 93.34 51.22
F1-score 98.33 55.67 96.62 50.05 96.80 50.58 64.51 59.89 28.55 19.63

Alunite
Precision 91.33 81.54 86.43 74.15 86.90 74.98 91.64 91.75 38.42 16.07

Recall 81.86 65.21 87.92 76.78 87.49 75.98 41.77 35.08 72.05 67.39
F1-score 86.34 72.47 87.17 75.44 87.20 75.48 57.38 50.75 50.11 25.95

Montmorillonite
Precision 99.68 3.54 97.47 2.25 97.67 2.47 5.28 0.60 13.66 2.51

Recall 84.76 0.12 84.48 1.01 84.47 0.88 37.64 10.11 35.71 5.82
F1-score 91.62 0.24 90.51 1.39 90.59 1.30 9.27 1.13 19.76 3.51

Chlorite
Precision 96.14 87.63 95.02 86.11 95.02 86.11 75.68 71.52 91.03 86.65

Recall 94.78 92.21 97.08 95.35 97.08 95.35 29.77 8.27 4.01 24.66
F1-score 95.45 89.86 96.04 90.50 96.04 90.50 42.73 14.82 7.68 38.40

Opal
Precision 87.36 68.92 75.92 53.54 75.62 53.19 8.22 5.76 43.85 27.44

Recall 70.83 37.29 77.27 48.13 76.93 47.76 10.96 16.44 2.82 3.82
F1-score 78.23 48.40 76.59 50.69 76.27 50.33 9.39 8.54 5.30 6.70

Kaolinite
Precision 90.98 65.22 78.37 48.50 79.84 50.27 20.84 25.14 20.33 23.16

Recall 52.47 13.30 57.17 20.32 56.52 19.56 52.60 42.75 48.73 39.66
F1-score 66.56 22.09 66.11 28.64 66.18 28.16 29.85 31.66 28.69 29.24

Muscovite
Precision 94.24 74.85 91.15 67.84 90.66 67.24 91.14 86.73 24.43 19.55

Recall 93.38 63.47 94.06 68.37 94.20 68.72 56.41 26.74 50.28 66.75
F1-score 93.81 68.69 92.58 68.10 92.40 67.97 69.69 40.88 32.88 30.24

Buddingtonite
Precision 98.83 66.67 87.44 26.47 92.97 35.00 5.37 0.24 0.00 0.00

Recall 87.11 6.78 89.69 15.25 88.66 11.86 57.22 33.90 0.00 0.00
F1-score 92.60 12.31 88.55 19.35 90.77 17.72 9.81 0.48 0.00 0.00

Nontronite
Precision 99.74 64.90 94.81 50.47 92.17 46.52 4.02 9.39 5.29 9.52

Recall 42.44 1.80 41.67 6.67 41.35 7.26 51.26 76.06 28.71 30.34
F1-score 59.54 3.50 57.89 11.78 57.09 12.56 7.46 16.72 8.94 14.49

All
Precision 95.29 65.81 89.17 51.07 89.69 52.20 40.11 40.49 28.21 21.89

Recall 78.34 35.91 80.74 42.41 80.44 41.66 45.45 33.33 37.29 32.18
F1-score 85.98 46.46 84.75 46.34 84.81 46.34 42.61 36.56 32.12 26.06

3.2. Validation Results Using HISUI and ASTER Images

The HS-based mineral map obtained via Section 2.1.2 using the HISUI image is shown
in Figure 4a. The dummy region in the lower right is outside the observed area. A total
of nine minerals were identified by this process, which is the same as the results obtained
using the AVIRIS image. The white dotted box in the image’s southern half was defined as
the overlap area between the HS and MS image.
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Figure 4. Comparison of mineral maps obtained from a single HISUI image and mineral maps from
each of the extension methods using ASTER images: (a) HISUI-based map and the extended maps
by (b) proposed method, (c) method A, (d) method B, (e) improved HT method, and (f) MS-based
method. The white dotted box in (a) indicates the overlap region.

The overall accuracy when the position of the HISUI image was shifted ±1 pixel in
the x- and y-directions with respect to the ASTER image in Section 2.1.3 is shown in Table 8.
Since the highest overall accuracy was obtained at the center position (∆x = ∆y = 0), no
position correction was performed between the HISUI and ASTER images. Therefore, the
geocoding of Step 1 was adopted as is.
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Table 8. Overall accuracy when the position of the HISUI image was shifted by ±1 pixel in the x- and
y-directions with respect to the ASTER image, according to Section 2.1.3. The bold number is the
highest value.

∆x = −1 ∆x = ±0 ∆x = +1

∆y = −1 62.41 64.47 62.44
∆y = ±0 63.79 68.37 62.96
∆y = +1 62.24 63.28 62.25

For Section 2.1.4, the 39 variables obtained from the analysis using the AVIRIS images
discussed in Section 3.1 were used as input variables in the validation with the HISUI
image as well. Figure 4b–f shows the mineral maps obtained by the five methods. Because
the MS-based method does not depend on HS images, Figure 4f is the same as Figure 3f.

The validation results using the HISUI and ASTER combination are shown in Table 9.
Precision is the highest for the proposed method for all minerals, and the two alternative
methods show similar results to each other. The region of nontronite slightly above the
center was not reproduced well by all methods, while the improved HT method showed
better results for this mineral. The MS-based method had the lowest average F1-score of
the methods.

Table 9. Precision, recall, and F1-score for each mineral in the overlap and non-overlap regions for
each method when the HISUI image was used as the HS image. The average values of precision and
recall and the F1-score calculated from them are also shown in the bottom row. Bold numbers in each
row indicate the highest number among the methods.

Mineral Measure

Proposed Method A Method B Improved HT MS-Based

Overlap Non-
Overlap Overlap Non-

Overlap Overlap Non-
Overlap Overlap Non-

Overlap Overlap Non-
Overlap

Calcite
Precision 99.58 79.26 96.90 56.90 96.90 50.51 73.77 79.14 7.57 9.18

Recall 98.50 52.73 95.36 52.08 95.36 52.60 42.84 18.47 97.37 66.66
F1-score 99.03 63.33 96.12 54.38 96.12 51.53 54.20 29.96 14.05 16.14

Alunite
Precision 89.17 77.50 83.14 66.76 83.33 67.45 83.60 63.57 35.40 14.03

Recall 87.86 74.43 91.07 78.71 91.22 78.51 75.26 66.43 71.84 67.33
F1-score 88.51 75.93 86.93 72.24 87.10 72.56 79.21 64.97 47.42 23.22

Montmorillonite
Precision 98.50 39.65 93.77 9.38 96.22 22.40 10.17 1.88 16.96 3.79

Recall 75.58 7.80 73.83 12.14 73.43 13.86 54.23 20.90 35.77 10.96
F1-score 85.53 13.04 82.61 10.59 83.29 17.12 17.12 3.45 23.01 5.63

Chlorite
Precision 90.79 67.65 87.00 67.03 86.46 66.33 76.18 60.29 87.94 90.10

Recall 75.31 39.74 81.75 52.88 82.30 52.98 38.24 10.36 4.59 28.93
F1-score 82.33 50.07 84.29 59.12 84.33 58.91 50.92 17.68 8.73 43.79

Opal
Precision 79.15 46.39 61.92 26.37 68.13 35.56 2.43 0.24 27.29 8.74

Recall 77.29 43.57 81.76 52.34 77.76 47.31 31.72 37.27 18.71 20.33
F1-score 78.21 44.94 70.47 35.07 72.62 40.60 4.51 0.48 22.20 12.23

Kaolinite
Precision 86.63 36.34 69.98 27.22 72.59 26.40 7.06 7.35 9.87 9.27

Recall 53.26 8.89 56.57 18.53 55.60 14.89 64.32 62.53 50.49 47.11
F1-score 65.97 14.29 62.56 22.05 62.97 19.04 12.73 13.15 16.51 15.49

Muscovite
Precision 91.82 54.06 83.30 33.59 83.32 30.88 70.94 59.01 20.02 12.99

Recall 87.71 32.37 87.70 33.77 87.67 33.71 47.39 28.79 42.28 57.65
F1-score 89.72 40.49 85.44 33.68 85.44 32.23 56.82 38.70 27.17 21.20

Buddingtonite
Precision 97.83 40.00 85.26 26.92 89.19 26.92 11.83 0.26 0.00 0.00

Recall 92.47 15.38 91.10 53.85 90.41 53.85 61.64 100.00 0.00 0.00
F1-score 95.07 22.22 88.08 35.90 89.80 35.90 19.85 0.52 0.00 0.00

Nontronite
Precision 58.04 19.34 54.25 23.52 54.73 22.67 31.84 29.37 21.37 19.43

Recall 55.67 28.09 60.31 37.12 59.13 35.31 58.11 57.68 24.51 21.94
F1-score 56.83 22.91 57.12 28.79 56.85 27.61 41.14 38.92 22.83 20.61

All
Precision 87.95 51.13 79.50 37.52 81.21 38.79 40.87 33.46 25.16 18.61

Recall 78.18 33.67 79.94 43.49 79.21 42.56 52.64 44.71 38.40 35.66
F1-score 82.78 40.60 79.72 40.29 80.20 40.59 46.01 38.27 30.40 24.46
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3.3. Effect of Misalignment between AVIRIS and ASTER Images

Figure 5 shows the mineral map of each method when the AVIRIS and ASTER images
were misaligned (two pixels to the bottom and one pixel to the right), and Table 10 shows
the accuracy of each method. In the MS-based method, positional misalignment is irrelevant
and is therefore not mentioned.
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improved HT method. The white dotted box in (a) indicates the overlap region.
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Table 10. Precision, recall, and F1-score for each mineral in the overlap and non-overlap regions for
each method for the case of misalignment between AVIRIS and ASTER images. The average values
of precision and recall and the F1-score calculated from them are also shown in the bottom row. Bold
numbers in each row indicate the highest number among the methods.

Mineral Measure
Proposed Method A Method B Improved HT

Overlap Non-
Overlap Overlap Non-

Overlap Overlap Non-
Overlap Overlap Non-

Overlap

Calcite
Precision 69.45 61.83 68.11 52.03 68.23 53.41 58.78 73.29

Recall 68.52 44.71 68.82 51.78 68.86 51.01 71.46 50.63
F1-score 68.98 51.89 68.46 51.91 68.54 52.18 64.51 59.89

Alunite
Precision 82.34 79.15 77.82 71.55 78.29 72.35 91.64 91.75

Recall 72.96 63.26 80.69 77.90 80.53 77.59 41.77 35.08
F1-score 77.37 70.32 79.23 74.59 79.39 74.88 57.38 50.75

Montmorillonite
Precision 52.38 1.60 51.82 3.65 52.08 3.95 5.28 0.60

Recall 44.73 0.09 45.00 0.64 45.07 0.46 37.64 10.11
F1-score 48.25 0.17 48.17 1.09 48.32 0.82 9.27 1.13

Chlorite
Precision 89.67 87.19 88.72 85.62 88.72 85.62 75.68 71.52

Recall 87.24 90.77 90.60 95.69 90.60 95.69 29.77 8.27
F1-score 88.44 88.95 89.65 90.38 89.65 90.38 42.73 14.82

Opal
Precision 64.91 68.30 59.08 54.02 58.80 53.49 8.22 5.76

Recall 47.70 30.28 55.53 42.62 56.15 43.66 10.96 16.44
F1-score 54.99 41.96 57.25 47.64 57.44 48.08 9.39 8.54

Kaolinite
Precision 57.35 63.55 53.92 51.03 53.71 50.45 20.84 25.14

Recall 30.85 10.23 35.73 16.76 35.87 16.93 52.60 42.75
F1-score 40.12 17.62 42.98 25.23 43.02 25.36 29.85 31.66

Muscovite
Precision 84.35 71.33 82.00 66.18 82.10 66.41 91.14 86.73

Recall 84.77 65.47 85.85 70.90 85.86 70.75 56.41 26.74
F1-score 84.56 68.28 83.88 68.46 83.94 68.51 69.69 40.88

Buddingtonite
Precision 54.43 16.67 51.43 25.00 50.89 11.11 5.37 0.24

Recall 44.33 1.69 46.39 10.17 44.33 3.39 57.22 33.90
F1-score 48.86 3.08 48.78 14.46 47.38 5.19 9.81 0.48

Nontronite
Precision 23.98 34.50 23.57 43.84 23.45 35.23 4.02 9.39

Recall 9.90 0.45 10.06 0.83 10.18 1.18 51.26 76.06
F1-score 14.01 0.90 14.10 1.63 14.20 2.28 7.46 16.72

All
Precision 64.32 53.79 61.83 50.32 61.81 48.00 40.11 40.49

Recall 54.56 34.11 57.63 40.81 57.49 40.07 45.45 33.33
F1-score 59.04 41.74 59.66 45.07 59.57 43.68 42.61 36.56

Although the proposed and alternative methods all showed a decrease in accuracy
due to misalignment, method A had a minor decrease in accuracy and the highest precision
and recall for many minerals, and the proposed method was the most affected. Since the
improved HT method was not affected by misalignment, the mineral map and the accuracy
were the same as in Figure 3e and Table 7, respectively.

4. Discussion

In comparison to the MS-based method in the non-overlapping region, all region
expansion methods that used the HS image showed higher average F1-scores. This indicates
that region expansion of mineral maps using HS images is effective. The validation results
using AVIRIS and ASTER images showed that the proposed method had the highest
precision for almost all minerals, although the performance of the non-overlap region was
lower than that of the overlap region. At the same time, recall was generally higher for
the two alternative methods. This is likely because the RF multiclass classifiers of the
alternative methods optimized the entire image, resulting in higher precision for minerals
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such as chlorite and muscovite, which had more pixels, and lower precision for minerals
such as buddingtonite, which had fewer pixels. The proposed method does not depend on
the number of pixels of each mineral, and the F1-score calculated from the inter-mineral
averages of precision and recall was the highest value, although some minerals showed a
significantly lower average F1-score in the expanded region. Minerals with low accuracy
in all methods may be due to similarities in spectral shape between minerals [11]. For
example, it is clear from the resulting images that nontronite was misestimated as chlorite,
and kaolinite was misestimated as alunite. In particular, there are several previous studies
on kaolinite and alunite, as both are useful iron-bearing minerals. Pour et al. reported
that data from ASTER, Advanced Land Imager (ALI), and Hyperion sensors were used for
lithological mapping and ore mineral exploration, but they could not distinguish kaolinite
and alunite from other minerals [53]. As for the improved HT method, it had lower
accuracy for some minerals, but it would have yielded more accurate results if the number
of minerals to be identified had been smaller.

A comparison of the AVIRIS-based mineral map in Figure 3a and the HISUI-based
mineral map in Figure 4a shows a significant difference in the distribution of nontronite
and generally similar trends for the other minerals. The likely reason for the significant
difference in the distribution of nontronite is that the noise in the HISUI image is more
significant than that in the AVIRIS image, and the MNF transform suppressed the data
around 2.05 µm, where nontronite shows absorption features.

An evaluation of the effect of misalignment between AVIRIS and ASTER images
showed that the proposed and alternative methods all decreased in accuracy. Therefore, it
is essential to perform the misalignment correction in Step 3. In particular, buddingtonite,
which has few pixels, and nontronite and kaolinite, which have many but scattered pixels,
are susceptible to misalignment, and the accuracy for these is significantly degraded. On the
other hand, the alternative methods work and carry out overall optimization by multiclass
classification and have the slightest loss of accuracy due to misalignment and the highest
precision and recall for many minerals. If there is a misalignment in HS–MS images, the
proposed method is likely to identify first the minerals that are widely distributed and
continuous. The reason for this is that the identification error due to misalignment is greater
for minerals with small distribution amounts or minerals with scattered distribution. On
the other hand, the improved HT method did not show any decrease in accuracy due to
misalignment because of its ability to suppress the effect of misalignment. This is due to the
ability to search for the best performance of the endmember pixels from the surrounding
pixels of the HS endmember [24].

From the above information, we can conclude the following: the proposed method
provides more accurate results even for minerals with small distributions because it maps
minerals with high confidence. Additionally, because of the high precision, the minerals
shown in the obtained maps are expected to be minerals with a high probability. How-
ever, since misalignment between HS–MS images causes a decrease in precision, precise
alignment is necessary, and depending on the image used, the position correction in Step
3 may be significant. The two alternative methods optimize the overall accuracy of the
mineral map by multiclass classification, and thus, the overall accuracy of the mineral map
is relatively high. However, the accuracy for minerals present in small amounts tends to
deteriorate. The improved HT method is robust against misalignment. However, when the
number of minerals to be identified is significant, as in this study case, it becomes difficult
to set the threshold of the SAM method automatically, and fine-tuning the threshold for
each mineral is necessary to improve accuracy.

The improved forecasting accuracy of the proposed method can be attributed to
its hierarchical or cascading approach, in which the classifier is trained sequentially on
subsets of classes. The output of each stage is fed into the next, potentially improving
the F1-score compared to that from a typical random forest classification. The approach
has two main advantages. First, it can reduce class imbalance by training a separate
classifier for each target mineral, improving precision values for each stage. Second, it takes
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advantage of contextual information by using the previous stages’ outputs to guide the
next stage’s classification. This iterative refinement of classification can potentially reduce
misclassifications compared to a single random forest classifier. The hierarchical approach
benefits multiclass problems with imbalanced or overlapping classes and can improve
the F1-score.

In the proposed method, various mineral indices proposed for the targeted MS sensor
are used as RF input candidates, and then unnecessary indices are removed from them
based on the RF results. Here, since the candidate mineral indices to be prepared depend
on the wavelength and spectral resolution of the MS sensor, it is necessary to consider the
candidate mineral indices to be prepared according to the MS sensor to be used. However,
since the ASTER used in this study is a typical MS sensor used in geological mapping and
has covered most of the Earth’s land surface after more than 20 years of observation [54],
and since the temporal changes in rocks and minerals are very gradual, adopting the
ASTER used in this study as the MS sensor is efficient, and, in this case, the ASTER mineral
indices evaluated in this study can be used as candidates.

5. Conclusions

In this study, we proposed a new method to extend the mineral map of HS images
by using MS images. The method iteratively performs two-class classification by RF to
determine the minerals in order of their consistency within the HS image. The validation
results show that the inter-mineral averages of the F1-scores for the overlap and non-overlap
regions were 85.98% and 46.46% for the AVIRIS–ASTER image pair and were 82.78% and
42.60% for the HISUI–ASTER image pair, respectively. Although the performance in the
non-overlap region was lower than that in the overlap region, the method showed high
precision for almost all minerals and high accuracy even for minerals with a few pixels. The
comparison between mineral maps generated through multispectral imaging and those
based on hyperspectral data showed that using hyperspectral mineral maps as a learning
source led to multispectral mineral maps that more closely resembled hyperspectral maps.
While existing mineral indices for MS sensors, such as those used in this study, can be
calculated by simple arithmetic and applied to various areas, the approach in this study
is innovative in that it enables mineral identification that best fits the HS mineral map by
integrating these various mineral indices specifically for the area of interest and applying a
random forest iteratively while switching minerals. Misalignment between HS–MS images
is a factor that degrades accuracy and requires precise alignment. However, the effect of
misalignment can be suppressed by the misalignment correction included in the proposed
method. Validation studies using different regions and different sensors will be carried out
in future works.
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