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Abstract: Geometallurgical models are commonly built by combining explanatory variables to obtain
the response that requires prediction. This study presented a phosphate plant with three concentration
steps: magnetic separation, desliming and flotation, where the yields and recoveries corresponding to
each process unit were predicted. These output variables depended on the ore composition and the
collector concentration utilized. This paper proposed a solution based on feature engineering to select
the best set of explanatory variables and a subset of them able to keep the model as simple as possible
but with enough precision and accuracy. After choosing the input variables, two neural network
models were developed to simultaneously forecast the seven geometallurgical variables under study:
the first, using the best set of variables; and the second, using the reduced set of inputs. The forecasts
obtained in both scenarios were compared, and the results showed that the mean squared error and
the root mean squared error increase in all output variables evaluated in the test set was smaller than
2.6% when the reduced set was used. The trade-off between simplicity and the quality of the model
needs to be addressed when choosing the final neural network to be used in a 3D-block model.

Keywords: geometallurgy; neural networks; recursive feature elimination; phosphate; feature selection

1. Introduction

Geometallurgical models are essential for the mining industry. These models combine
geology, geochemistry, mineralogy, mine planning, rock mechanics, and metallurgy [1]
to make predictions about mineral processing performance. This performance can be
measured in several ways, depending on the goals to be achieved. Comminution energy
requirements; ore resistance to impact breakage (A × b); Ball Mill Work Index [2–6] through-
put [3,7,8]; particle size in the product—defined as the size at which 80% of the particles
are smaller (commonly known as P80) [9]; yields and recoveries [6,10–15]; the contaminant
grades in tailings [16,17]; and acid consumption [18,19] are variables frequently modeled in
geometallurgical studies. The most common input variables used to build geometallurgical
models include the mineralogical features; the geological descriptions (containing lithologi-
cal, textural, alteration, and weathering information); the chemical composition; and the
specific gravity of the ore. All of these generate many variables that need to be analyzed
and are related to plant performance.

The data collected from the ore vary in importance in terms of their effects on the metal-
lurgical performance of the process. Proper selection of the features is an important step in
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geometallurgical modeling. The selection of variables, also called feature selection, obtains
the subset of input data that contributes the most to determining the dependent variables
(target/output) to be modelled. The advantages of the feature selection procedure are:

• Removing redundant and irrelevant variables;
• Decreasing noise in the forecast, improving the efficiency of the model;
• Reducing the risk of overfitting;
• Reducing the computational cost of processing.

The process starts by deciding which variables should be used as inputs in the ge-
ometallurgical model. It is prevalent to start with a correlation matrix analysis aimed at
identifying the input variables with the strongest relationships with the outputs to be mod-
elled. If the selected variables present a strong correlation coefficient among themselves,
this can lead to a collinearity problem [20]. Furthermore, when the number of variables
increases, analyzing the correlation matrix can become a complex problem due to the
number of cells to interpret. Other methods that are frequently used to reduce the number
of variables are listed in Table 1, along with the core idea of the method, disadvantages,
and the appropriate references.

Table 1. Methods used to reduce the number of variables.

Method Core Idea Disadvantages Reference

Super Secondary
Linearly combine several

input variables into a single
variable

- Possible loss of interpretability of the
models that are generated;

- Requires previous knowledge to
determine which variables are to be
considered for amalgamation;

- High number of samples needed to
avoid the attribution of inflated
weights caused by poorly conditioned
matrices.

[18]

PCA and MAF Combination of variables

- Difficulty in interpreting the resulting
models that use the factors;

- Total variability of data is not
considered if not all the components
are used.

[21,22]

Agglomerative hierarchical
cluster analysis

Group variables instead of
samples by similarity

- Demands time for interpreting the
results.

[23–26]

Stepwise Methods (forward,
backward and stepwise)

Find the subset of variables
that minimizes the residual

sum of squares

- Do not ensure that collinearity
problems will not occur in models and
that irrelevant variables will not be part
of the selected subset.

[27]

Recursive feature elimination (RFE) [28] is another method used to select a subset of
features to reduce dimensionality. The idea is to start with a model containing all of the
available variables and iteratively remove one or more features in each algorithm step, until
only one variable remains. The improvement in the recursive feature elimination, in relation
to the backward elimination, is that the RFE allows the user to choose which technique
will be used to elaborate the forecast model. It allows the use of support vector regression,
random forest, linear regression, and other techniques which contain a measure of the
importance of each variable during the modeling. In contrast, the backward elimination
was conceived to be used only with linear regression models. Furthermore, the RFE allows
the user to remove more than one variable in each iteration, while the backward elimination
was initially developed to remove one variable at a time.

The RFE technique was chosen to be applied in this study for three main reasons:
first, the relation between the number of samples and the number of variables was not a
problem for the database under study. There were 3056 samples of ten input variables (nine
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chemical components and the collector concentration used in the flotation test), making
techniques such as PCA, MAF, and super secondary not advantageous due to the difficulty
in interpreting the resulting variables. The second reason was that the application of
clustering to choose variables demands more time for interpretation. This study’s core
objective was to develop a semi-automatic workflow to be applied and quickly updated
whenever new samples were introduced into the database. The third reason is that RFE is
an improvement when compared to the stepwise methods, more specifically the backward
elimination, allowing the use of other algorithms in its core and expanding the modeling
options under evaluation. Another advantage of the RFE algorithm is its use combined
with k-fold cross-validation [29], allowing the user to evaluate the variability of the results
by varying the samples used.

Thus, the workflow proposed in this paper was to carry out a feature selection study
using RFE to reduce model complexity and, after the most important features were selected,
to elaborate a neural network model to predict the processing plant response for any ore
sample. Some examples of neural networks applied to forecast geometallurgical variables,
as proposed in this paper, are listed below:

• Niquini and Costa used neural networks to forecast yield and metallurgical recovery
of all plant outputs in a gold [15] and a zinc [14] processing plants. The results showed
that neural networks are able to generate accurate and precise predictions while
satisfying the mass and metallurgical balance constraints;

• Both and Dimitrakopoulos [30] applied neural networks to forecast throughput and
compared the results against the throughput predicted by linear regression. The NN
showed better results and the predictions obtained with its use can be integrated into
production scheduling;

• Gholami et al. [31], used neural networks to forecast four geometallurgical variables
in a copper mine, using as inputs particle size distribution, collector and frother
concentrations, solids content, pH and mineralogical variables;

• Jorjani et al. [32] created a neural network model to forecast La, Ce, Y and Nd recoveries
from an apatite concentrate. The input variables were leaching time, pulp density,
agitation rate and acid concentration;

• Nakhaei et al. [33] developed a neural network model to forecast Cu and Mo grades
and recoveries using as inputs Cu and Mo grades measured in the flotation circuit as
well as some flotation circuit operational variables;

• Srivastava et al. [34] elaborated a neural network model to predict the power in a SAG
mill using, as inputs, the mill power observed in the previous time increments and the
feed rate in the evaluated time;

• Panda and Tripathy [35] created a neural network to forecast the grade and metallur-
gical recovery of chromite using operational variables as inputs.

After developing the neural network model, the process response can be included in a
3D block model used for mine planning. The reduced input scenario was compared to the
results obtained when the best scenario, using all variables available, was used to build the
neural network forecasting model. By doing this, it was possible to determine the impact
of removing features from the neural network inputs.

Process Modelling and Geometalurgical Modelling

A general solution for any flowsheet was established as early as 1979 [36], allowing
for accurate solutions for very complex and extensive mineral-processing plant flowsheets.
The performance of a mineral-processing plant can be predicted using a plant-wide simula-
tor [37]. However, the simulation prediction accuracy depends on several factors related to
the unit operation models and the ore model (also known as a geometallurgical model).
These two models cannot be completely separated and, in many cases, the unit operation
models contain ore model parameters such as comminution parameters for breakage and
selection functions. Nevertheless, it is advantageous to understand the problem as if the
unit operation models and the ore models are two separate, but not independent, entities.
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The reason for this is that, in the case of mine planning, the plant may, and should, be
considered as a fixed entity, a group of processes that will perform only as a function of the
ore that is fed to it. System data may change as a function of the ore that is fed to the plant,
and this includes solids flowrates, water flowrates, and particle-size distributions. If we
look at this problem from this perspective, it is clear that the ore model is the main factor
determining plant performance and the accuracy of the predictions made.

At the heart of the mineral-processing plant that was considered in this study, is
the flotation circuit. Although flotation is widely used to concentrate large tonnages of a
variety of ore minerals, it is a challenging process to model because of the large number
of micro-processes involved. King [37] gives an excellent review of the state of the art of
flotation modeling.

In King’s approach, the flotation process requires four models, for the pulp phase,
the bubble phase, the froth phase, and the entrained phase. Each of these models requires
several parameters, some of which are difficult to measure in practice. Many of the
micro-processes involved in flotation can be bundled in flotation rates. The onset of the
development of kinetic models is due to Sutherland [38]. Since then, several authors
have contributed to understanding flotation kinetics through developing particle-bubble
collision efficiency models [39–41]. Clift, Grace and Weber [42] and Schulze [43] contributed
with hydrodynamic considerations of bubble motion. Bubble-rise velocity models were
developed by Karamanev and Nikolov [44]. The micro-process of bubble loading and its
influence in flotation rates were investigated by Tomlinson and Fleming [45], King, Hatton
and Hulbert [46] and Bradshaw and O’Connor [47]. Recovery as a function of particle size
was modelled by Trahar and Warren [48].

Another important process in flotation is particle detachment, as described by Drzy-
mala [49]. A simple model for the froth phase was developed by Murphy, Zimmerman and
Woodburn [50]. Several other authors have made excellent contributions to understanding
and modelling each of the processes involved in flotation. The point here is to show that
it is not feasible to include every aspect of flotation simulation into a geometallurgical
model. For example, Neethling and Cilliers [51] provided a significantly more accurate and
realistic model for the froth phase that includes coalescence. However, the computation
is complex, and it is not likely that one simulation could be accomplished in a fraction of
a second.

While plant-wide simulation is suited for predicting yields and recoveries in the
context of mine planning, it would require a detailed characterization of the ore such as,
but not limited to, complete mineralogical assembly and liberation by size information
for every drill-core sample that is produced in the mine. At this stage in the development
of characterization techniques, this would consume too much time and would also be
financially unattractive. Process modelling is best employed in the context of flowsheet
optimization and for scaling up unit operations. In these applications, it is feasible to
obtain fundamental laboratory-scale parameters for a given ore sample. In the context of
geometallurgical modelling for mine planning, the approach that is described in this paper
is better suited because the number of samples that need to be characterized and tested
is large, the flowsheet does not change, or, more accurately, the geometallurgical model
is developed for a given flowsheet and it is valid while the flowsheet is not changed, and
there is no need for scale-up parameters as all unit operations have already been scaled at
the time the plant was designed.

2. Data Processing
2.1. Geological Context

The geological features of the region were studied extensively [52–55] due to the
anomalous occurrences of phosphate, titanium, niobium, and rare earth elements. The
anomalies are related to the weathering of Cretaceous alkaline intrusive rocks. The weath-
ering layer often reaches several tens of meters in depth and the unaltered rock is only
usually observed in cores from deep diamond drilling.
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In the study area, anomalous phosphate concentrations occur due to the presence of
apatite. Naturally, the alteration is more intense closer to the surface and the apatite there
is almost completely leached. The supergenic concentration of this mineral results from
the solubilization and leaching of the more unstable components contained in the original
rocks, such as mafic minerals and carbonates, mainly pyroxenites.

During the weathering process, at first, carbonates and mafic minerals are leached,
while apatite crystals remain, as well as titanium, the latter in the form of perovskite.
With the progress of such transformations, apatite is converted into secondary miner-
als, from the crandalite group, of reduced solubility and with lesser economic value.
Meanwhile, the perovskite transforms into anatase, which gradually becomes residually
concentrated. This process has led to the current weathering profile of the study area,
where the intermediate-upper layer shows a high content of titanium in the form of anatase,
and the intermediate-lower portion presents higher grades of phosphatic ore and lower
concentrations of titanium.

The lower portion of the weathering profile comprises semi-altered rocks, which may
marginally contain economic concentrations of apatite, but predominately comprise mafic
minerals, carbonates and magnetite. Variations due to the heterogeneity of the original
magma lead to higher or lower occurrences of minerals such as perovskite, phlogopite,
and vermiculite.

The samples taken for this study corresponded to the intermediate-lower portion of the
profile, which was classified as ore during the geological logging of the diamond-drilled cores.

2.2. Dependent and Independent Variables

The database under study contained 3056 individual geometallurgical samples, with
Al2O3, BaO, CaO, Fe2O3, MgO, Nb2O5, P2O5, SiO2, and TiO2 grades analyzed from vertical
diamond drilling. The feature selection study also considered the collector (fatty acid)
concentration used in the flotation batch tests as an input variable. This concentration
was determined by the laboratory technician, taking into account some sample aspects
such as: apatite crystal cleanliness; P2O5 grade after desliming and demagnetization;
and ore texture. The milling time adopted in the processing, the depressor (corn starch)
concentration, the pH, the flotation time, the strength of the magnetic field and the solid
concentration in the flotation pulp were kept under constant values to not affect the results;
the influence of these variables on the test responses was nil, and they were not considered
as input variables.

Mineralogy and rock texture, although very important aspects of a geometallurgical
study, were not directly available for this particular study as specific features, but were
certainly reflected in the wide assembly of grade variables considered. Table 2 summarizes
the ROM information and the collector concentration, showing that the mean grade of
P2O5 was 9.74%.

Understanding the relationship between independent and dependent variables re-
quires knowledge of the mineral processing plant’s flowsheet (Figure 1). All geometallur-
gical samples were submitted to batch tests that mimicked the flowsheet: starting with a
magnetic separation step, followed by desliming and flotation.

Magnetics, limes, tailings, and apatite concentrate are plant products. Therefore, each
batch test generated the relative fraction of the initial mass destined for each product,
making it possible to calculate the yield corresponding to each plant output. In this paper
the term “yield” was used to express the ratio between weight or throughput of a stream
and the throughput of the plant feed [56,57]. The term “recovery” was used to express the
fraction of apatite recovered in a stream with respect to the feed stream.
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Table 2. ROM descriptive statistics.

Variable N Mean Std. Dev. Minimum Q1 Median Q3 Maximum

Al2O3(% ) 3056 4.42 2.15 0.06 3.15 4.15 5.25 34.57

BaO (%) 3056 0.34 0.64 0.01 0.15 0.24 0.38 27.21

CaO (%) 3056 13.65 4.39 0.02 10.91 13.46 16.15 42.89

Fe2O3(%) 3056 27.33 7.21 7.59 22.68 26.50 31.12 68.64

MgO (%) 3056 4.09 2.50 0.01 2.17 3.86 5.61 17.85

Nb2O5(%) 3056 0.14 0.26 0.01 0.06 0.11 0.17 12.00

P2O5(%) 3056 9.74 3.08 0.36 7.80 9.46 11.34 31.63

SiO2(%) 3056 23.02 8.05 1.32 17.84 23.08 27.90 88.40

TiO2(%) 3056 8.45 4.11 0.13 5.74 7.64 10.41 39.31

Collector dosage (g/t) 3056 627.80 751.30 20.00 200.00 350.00 700.00 5000.00
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Let Qstream represent the solids flowrate of a given stream. Let Ystream represent the
yield of a given stream, then Equations (1) to (4) follow.

YMagnetics =
QMagnetics

QROM
(1)

YSlimes =
QSlimes
QROM

(2)

YConcentrate =
QConcentrate

QROM
(3)

YTailings =
QTailings

QROM
(4)

Thus, four yield values were available (totalling 100%): magnetics, slimes, concentrate,
and tailings yield.

Chemical analysis is routinely carried out for the ROM, the flotation feed, and the
flotation concentrate streams of the batch tests. The grades in the flotation tailings stream
can be calculated from the measured grades in the flotation feed and concentrate streams.
The grades in the combined magnetics and slime streams can be calculated using the
grades and yields measured in the ROM and in the flotation feed. Let the metallurgical
recovery of P2O5 in any stream be RStream and the grade of P2O5 in any stream be gStream.
The metallurgical recoveries of P2O5 were calculated using the yields and grades as shown
in Equations (5) to (7). Considering all output points with chemical information (calculated
or analysed), it is possible to determine the P2O5 metallurgical recovery with respect to
the ROM P2O5 content, as presented in Equations (6) to (8). It should be noted that when
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these three variables are added, the result equals 100%, as should be the case with the
yield variables.

RSlimes+Magnetics =
(
YSlimes + YMagnetics

)
×

gSlimes+Magnetics

gROM
(5)

RConcentrate = YConcentrate ×
gConcentrate

gROM
(6)

RTailings = YTailings ×
gTailings

gROM
(7)

Therefore, the dependent variables to be modeled are the slimes, magnetics, concen-
trate, and tailings yields, as well as the metallurgical recoveries in the slime + magnetic, in
the flotation concentrate, and the flotation tailings. Table 3 presents the descriptive statistics
for all dependent variables under study. On average, 47.81% of all P2O5 and 13.74% of all
mass fed in the plant are destined for the flotation concentrate.

Table 3. Dependent variables descriptive statistics. Values in %.

Variable (%) N Mean Std. Dev. Minimum Q1 Median Q3 Maximum

YSlimes 3056 42.85 10.10 4.09 36.07 42.37 49.52 81.62

YMagnetics 3056 10.79 8.09 0.04 4.74 9.25 14.95 68.35

YConcentrate 3056 13.74 6.94 0.34 8.47 13.14 18.10 52.55

YTailings 3056 32.61 11.86 1.91 23.19 32.17 41.52 68.84

RSlimes+Magnetics 3056 34.81 10.25 1.86 28.02 33.93 41.11 82.51

RConcentrate 3056 47.81 16.28 0.68 36.99 49.98 60.20 92.08

RTailings 3056 17.38 13.29 0.00 7.20 13.30 24.69 75.10

2.3. Database Partition

Twenty percent of the samples were randomly selected and set apart to be used as a
test set to evaluate the model’s performance. All models presented were elaborated using
the remaining 80% of the samples in the database. The k-fold technique [29] was used to
determine the optimum parameters for each proposed model. Then, the models obtained
were applied to the test dataset.

3. Materials and Methods

The methodology proposed in this work was based on two main methods: artificial
neural network (ANN) and recursive feature elimination, both belonging to the machine
learning framework.

As explained before, RFE is a technique used in, so-called, ‘Feature Engineering’ aimed
at identifying the most relevant input variables to predict either one or a set of output
variables. The goal is to use the least possible number of variables, thus simplifying the
model while maintaining good accuracy in the predictions.

ANNs are computing systems designed to most efficiently map the relationships
between input and output variables in complex structures. These two subjects are more ex-
tensively described in the following sections, and the overall methodology can be outlined
as follows:

(1) Selection of the most relevant input variables using RFE;
(2) The construction of ANN models to predict metallurgical attributes using the input

variables selected in the previous step;
(3) Checking the performance of the built model by forecasting the test dataset.
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3.1. Recursive Feature Elimination

As already mentioned, one must decide how many variables will be used as inputs in
the prediction model. It is common for the geometallurgical dataset to contain data that is
either redundant or not relevant to the prediction of the process performance. Recursive
feature elimination (RFE) [28] is an algorithm for automatic feature selection that uses a
prediction algorithm in its core to rank the inputs by relevance using a predefined metric.
The process starts by creating a predictive model with all the information, organizing the
information, and measuring model performance. The less critical predictor is removed at
each step. The model is rebuilt iteratively until the desired set of inputs is achieved.

Here, the most relevant subset was found using the RFE version with cross-validation
(RFECV) [58], partitioning the dataset tenfold, three times (ten-fold validation with three
repetitions). Three different machine learning multitarget predictive models were used in
its core: linear regression [59], random forest [60], and CatBoost regressor [61], which will
be briefly explained below.

Linear regression is one of the most commonly used techniques for building geometal-
lurgical models [15]. Its goal is to find the equation which minimizes the prediction’s mean
squared error using ordinary least squares. To rank the variables for importance, the recur-
sive feature elimination uses the p-value of each variable, removing the one corresponding
to the higher p-value in each algorithm iteration, until only the variable with the smallest
p-value remains.

The random forest algorithm establishes cutoffs in the input variables, which help
to estimate the output variables under study. The greater the number of times an input
variable is selected to best describe the output, the greater its importance in the model’s
creation. This importance is used inside the RFE to rank the input variables.

The CatBoost algorithm was developed based on the decision trees and gradient
boosting theory. The main idea of boosting is to sequentially combine many weak models
(small decision trees). Because gradient boosting fits the decision trees sequentially, the
fitted trees will learn from former trees’ mistakes and reduce the errors. Adding a new
function to the existing ones is continued until the selected loss function is no longer
minimized [61]. Similar to other decision tree-based algorithms, CatBoost uses feature
importance to rank the relevance of all inputs for the model being created.

It should be noted that only techniques which present a measure of variables’ im-
portance can be used in RFE. Artificial neural networks, ACE [62], and others which do
not provide this kind of information, cannot be used in combination with the recursive
feature elimination.

To evaluate the performance of each model built, the following metrics were chosen:
mean absolute error (MAE), square root of the mean squared error (RMSE), mean absolute
percentage error (MAPE), median absolute percentage error (MdAPE), and the Pearson
correlation coefficient. Once this study dealt with multitarget models, the mean value of
each variable metric was taken to give a general idea of the model’s precision and accuracy.
For example, the MAE value was calculated for each of the seven output variables under
study. The mean of the seven MAE values was then calculated and this was named the
global MAE. The same procedure was used for the other metrics.

The feature selection process was developed in three stages. First, the three predictive
algorithm performances were evaluated with RFECV for each subset of relevant inputs in
decreasing order until only the most important variable remained, obtaining the global
MAE value in each algorithm step. The lowest global MAE value indicated the best
predictive algorithm and optimum subset size.

In the second stage, the algorithm selected previously was used inside the RFECV,
and the global MAPE for the optimum set was calculated, this being the reference value.
All subsets of the variables were analysed (with a lower number of variables than the best
case), which provided a global MAPE increase of a maximum of 5%, compared with the
reference value. Thus, the smallest subset within the percentage cut-off was chosen as the
optimum subset.
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In the final third stage, to highlight the importance of the features, an adaptation
of the SHAP-values algorithm [63] was used to show the importance of each variable as
percentage values.

After the feature selection step, the development of two neural networks started: the
first one using the optimum set of variables as inputs (in this case, all available variables)
and the second using the variables contained in the optimum subset as inputs. Using this
technique to achieve the forecast models was preferred to the CatBoost algorithm, once
the neural network results were comparable to the CatBoost results while presenting the
advantage of providing the yields and metallurgical balances between the forecasts. Details
about the artificial neural network technique are given below.

3.2. Artificial Neural Networks

The artificial neural network technique (ANN) is versatile in geometallurgical model
construction. This method can forecast variables with nonlinear relationships with the
input parameters, such as the yields and metallurgical recoveries. Additionally, it can simul-
taneously predict two or more dependent variables using one single network structure. Due
to these characteristics and a history of good results [12,14,15], ANN was chosen to predict
the geometallurgical responses studied herein. A brief description of the theory related to
ANN is given below. For more details about neural networks, their mathematics, and their
applications in the mining industry, the reader should refer to Niquini and Costa [14].

Determining which, and how many, variables should be used as inputs is necessary,
given that different structures will lead to different results. The independent variables in
neural networks are named “input variables” (represented by X), while the dependent
variables are named “output variables” (represented by Y). Therefore, the oxide grades in
the ROM and the collector dosage inserted in the flotation tests are information that can be
used as inputs. The yields and metallurgical recoveries are in the network outputs.

In addition to the input and output layers, there are three other fundamental struc-
tures in the ANN: the hidden layer(s), the network weights, and the activation functions
(Figure 2).

The user determines the number of hidden nodes and the number of hidden layers.
The hidden layer is the intermediary part of the network, where the intermediate calculation
to generate the network’s final forecast is carried out. Each hidden node is denoted by Z.

The lines that connect the input layer to the hidden layer and the hidden layer to the
output layer are named network weights. They determine the nodes with a greater or a
lesser influence in each output node forecast: the higher the weight (in absolute terms),
the more significant the influence of the related node, and vice-versa. The determination
of α and β weight is usually made using the backpropagation algorithm (details in [64]).
Equation (8), an adaptation of the notation given by Izenman [64], shows the position of
the weights inside the network forecast function.

ŷi,k = gk

(
∑t

j=0 αkj

(
f j

(
∑r

m=0 β jmxi,m

)))
(8)

where i refers to the sample number in the database, with i = 1, . . . , n (where n is the
total number of samples); k is the index which represents the output variable under study,
with k = 1, . . . , s (where s is the number of output nodes); j is the index which represents
the hidden nodes, with j = 0, . . . , t (where t is the total number of hidden nodes); and m
represents the input nodes, with m = 0, . . . , r (where r is the total number of input nodes in
the network).



Minerals 2023, 13, 748 10 of 21

Minerals 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 

In the final third stage, to highlight the importance of the features, an adaptation of 

the SHAP-values algorithm [63] was used to show the importance of each variable as per-

centage values. 

After the feature selection step, the development of two neural networks started: the 

first one using the optimum set of variables as inputs (in this case, all available variables) 

and the second using the variables contained in the optimum subset as inputs. Using this 

technique to achieve the forecast models was preferred to the CatBoost algorithm, once 

the neural network results were comparable to the CatBoost results while presenting the 

advantage of providing the yields and metallurgical balances between the forecasts. De-

tails about the artificial neural network technique are given below. 

3.2. Artificial Neural Networks 

The artificial neural network technique (ANN) is versatile in geometallurgical model 

construction. This method can forecast variables with nonlinear relationships with the in-

put parameters, such as the yields and metallurgical recoveries. Additionally, it can sim-

ultaneously predict two or more dependent variables using one single network structure. 

Due to these characteristics and a history of good results [12,14,15], ANN was chosen to 

predict the geometallurgical responses studied herein. A brief description of the theory 

related to ANN is given below. For more details about neural networks, their mathemat-

ics, and their applications in the mining industry, the reader should refer to Niquini and 

Costa [14]. 

Determining which, and how many, variables should be used as inputs is necessary, 

given that different structures will lead to different results. The independent variables in 

neural networks are named “input variables” (represented by X), while the dependent 

variables are named “output variables” (represented by Y). Therefore, the oxide grades in 

the ROM and the collector dosage inserted in the flotation tests are information that can 

be used as inputs. The yields and metallurgical recoveries are in the network outputs. 

In addition to the input and output layers, there are three other fundamental struc-

tures in the ANN: the hidden layer(s), the network weights, and the activation functions 

(Figure 2). 

  

Figure 2. Example of a neural network with three input nodes and two output nodes. 

The user determines the number of hidden nodes and the number of hidden layers. 

The hidden layer is the intermediary part of the network, where the intermediate calcula-

tion to generate the network’s final forecast is carried out. Each hidden node is denoted 

by Z. 

Figure 2. Example of a neural network with three input nodes and two output nodes.

The functions g and f, in Equation (8), and shown in Figure 2, are the activation
functions: a set of predetermined functions which are fed with the linear combination of
the input nodes (x) and its β weights, in the case of the f function, or fed with the linear
combination of the hidden nodes (z) and its α weights, in case of the g function. Of all the
activation functions that exist in the literature, the following were used in this study:

Linear function:
ϕ(v) = v (9)

Sigmoid function:

ϕ(v) =
1

1 + e(−v)
(10)

ReLU function:
ϕ(v) = max(0, v) (11)

Softplus function:
ϕ(v) = ln(1 + ev) (12)

Tanh function:

ϕ(v) =
(ev − e−v)

(ev + e−v)
(13)

Using Equation (8) and the activation functions mentioned above, it is possible
to forecast the geometallurgical variables of interest. The models can predict the pro-
cessing plant performance in each block of the 3D block model, aiding in routine mine
scheduling procedures.

4. Results and Discussion

The first step in elaborating the forecast model for the seven output variables consisting
of yields and recoveries, was to determine which input variables would be used in the
neural network. Following the methodology proposed, the first stage included finding
the best predictive algorithm and subset size. Figure 3 presents the performance of the
three algorithms for a different number of features. As can be seen, the CatBoost Regressor
algorithm is the best for any quantity of inputs, with an optimal performance being achieved
by using 10 features in this scenario. Figure 3 also shows that the global MAE presents a
lower rate of decrease from four or more inputs. Hence, it is necessary to analyse whether
the size reduction of any chosen subset will significantly affect the model’s performance
and which variables are selected in each scenario.
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Figure 3. Results from predictive performances for all RFECV core algorithms.

The CatBoost algorithm was applied for the optimum set of variables (10 features)
and for the subsets containing four to nine features to reduce model complexity. The
results for four, five, and six features are presented due to their importance. A ten-fold
cross-validation technique was used, considering different randomly selected seeds. The
global MAPE value was calculated for each set size, as presented in Table 4. The increase in
the global MAPE value, compared to the best case, is presented in Table 5.

Table 4. Global MAPE values observed for the differing number of input variables.

Metric
Catboost Algortithm with

10 Variables 6 Variables 5 Variables 4 Variables

Global MAPE 6.07 6.36 6.50 6.75

By analyzing the results, it is possible to conclude that, by choosing the six most
relevant features, the global MAPE increment is lower than 5% when comparing this metric
against the global MAPE obtained for the best case. Thus, the scenario using six variables
was chosen to continue the study.

Table 5. Increase in global MAPE when subsets of variables were used.

Scenario Catboost Algortithm with Increase In Global MAPE (%)
Compared Agaist the Best Case

1 6 variables 4.6

2 5 variables 7.1

3 4 variables 11.1

In the next step of the analysis, the CatBoost hyperparameters were calibrated for the
two sets of variables: the best one, with all variables available, and the second, with six
variables chosen in the reduced scenario. The SHAP-values algorithm was then used to
estimate each input variable’s importance (at percentage levels) in both scenarios. Figure 4
illustrates the importance of the optimum scenario (10 features), while Figure 5 presents
this information for the subset with six variables. The graphics generated by the algorithm
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can be interpreted as follows: the X axis represents the importance of each feature to the
model (the higher the value, the more important the feature), while the Y axis shows the
input variables included in the evaluation. The horizontal bar colors are related to the
output variables that are to be predicted (the larger is the color bar, more important the
feature is to forecast the respective output behavior). More details about the SHAP values
technique can be read in [65].
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Amongst the grades, the most important feature to describe the geometallurgical
variables was the CaO concentration in the ROM, followed by the MgO concentration in
the best scenario and Fe2O3 concentration in the sub-optimum scenario. The importance
of collector dosage is notorious in both scenarios; being even more important to forecast
the flotation concentrate and the tailings recoveries. It is known that the collector dosage
cannot influence the desliming and demagnetization processes; thus, the influence of this
variable on the yield of slimes, the yield of magnetics and the recovery of slimes + magnetics
presented in Figures 4 and 5, are related to a cross-relation with other variables, for example:
if the sample has a lot of apatite grains with magnetite, part of the magnetic material will
be concentrated in the magnetic separator which will present a high yield, but another part
of the apatite grains with magnetite will follow through to flotation. When entering in the
flotation step, the laboratory technician will see the apatite grains with magnetite in the
sample and will add a higher collector dosage, in order to improve the flotation behavior.
Thus, the collector dosage was correlated with the magnetic mass yield not because the
first affected the latest, but because the first was calibrated to deal with the characteristic of
the sample not concentrated in the magnetic separation step.
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Figure 5. Features importance for the reduced model (six inputs).

BaO, Nb2O5, SiO2 and TiO2 grades were the variables removed in the reduced sce-
nario. It is known that barite and pyrochlore, the minerals that carry BaO and Nb2O5, are
present in the deposit and they may affect flotation when their grades are significant; more
specifically the barite which competes for the collector of apatite in flotation. Because these
minerals are not usually present in high quantities, their influence in the global scenario is
reduced, so the grades of BaO and Nb2O5 can be removed. The TiO2 grade was probably
selected for removal by the algorithm because it is correlated with the other two variables
that were kept in the model (correlation of 0.48 with Fe2O3 and 0.46 with MgO). The same
occurred with SiO2, which is correlated with the grades of Fe2O3 (0.68), P2O5 (0.56) and
MgO (0.53).

Next, the neural network’s hyperparameters were calibrated, starting with the com-
plete model with the optimum set of variables, presented in Figure 4. Several tests were
carried out to identify the best learning rate [66] to adjust this neural network, and the
value found was 0.001. One thousand epochs were used. Two hidden layers were used:
the first one with eight hidden nodes and a softplus activation function and the second
with nine hidden nodes and a linear activation function. The linear activation function
was used in the output layer. These sets of hyperparameters were selected because they
provided the smallest global MAE for the validation set. The metrics generated by this
network are summarized in Table 6. The first value in each cell represents the metric mean
of the ten-fold validation, and the second represents the standard error. At the bottom of
the table, the test set results obtained when the training and validation sets are combined
to create the final model are presented. The MdAPE metric was selected to be analyzed
because the outliers (illustrated in Figure 6) inflated the mean absolute percentage error
(MAPE), which may lead to an erroneous model interpretation.
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Table 6. ANN metrics using 10 input variables.

Variable Set
Mean ± Std. Error

Correlation MAE RMSE MdAPE

YConcentrate

Training

0.854 ± 0.001 2.664 ± 0.013 3.599 ± 0.013 14.938 ± 0.2

YSlimes 0.608 ± 0.002 6.241 ± 0.021 8.042 ± 0.033 12.297 ± 0.067

YMagnetics 0.855 ± 0.001 3.05 ± 0.013 4.156 ± 0.015 25.445 ± 0.16

YTailings 0.837 ± 0.001 5.158 ± 0.036 6.534 ± 0.035 13.711 ± 0.077

RConcentrate 0.667 ± 0.002 9.296 ± 0.036 12.174 ± 0.044 14.564 ± 0.17

RSlimes+Magnetics 0.456 ± 0.002 6.964 ± 0.016 9.149 ± 0.022 16.155 ± 0.048

RTailings 0.688 ± 0.001 6.941 ± 0.031 9.596 ± 0.022 36.768 ± 0.231

YConcentrate

Validation

0.849 ± 0.008 2.708 ± 0.06 3.641 ± 0.082 15.482 ± 0.473

YSlimes 0.585 ± 0.017 6.35 ± 0.078 8.272 ± 0.134 12.239 ± 0.233

YMagnetics 0.847 ± 0.009 3.115 ± 0.067 4.28 ± 0.135 25.999 ± 0.727

YTailings 0.83 ± 0.006 5.24 ± 0.077 6.664 ± 0.09 13.909 ± 0.26

RConcentrate 0.655 ± 0.014 9.432 ± 0.208 12.291 ± 0.253 14.774 ± 0.416

RSlimes+Magnetics 0.435 ± 0.017 7.059 ± 0.136 9.236 ± 0.18 16.348 ± 0.644

RTailings 0.676 ± 0.013 7.065 ± 0.191 9.728 ± 0.191 37.596 ± 1.316

YConcentrate

Test

0.866 2.631 3.601 14.897

YSlimes 0.583 6.389 8.416 12.449

YMagnetics 0.837 3.276 4.602 27.851

YTailings 0.833 5.353 6.741 14.263

RConcentrate 0.625 9.479 12.843 13.925

RSlimes+Magnetics 0.424 7.073 9.276 16.199

RTailings 0.658 7.181 10.420 34.133

The correlation coefficient between the forecasts and the real values for the flotation
concentrate yield was 0.866, and the MdAPE found was 14.897 in the test set. For the
flotation concentrate P2O5 recovery, the correlation coefficient was 0.625, associated with a
MdAPE value of 13.925. The slimes yield and the slimes + magnetics P2O5 recoveries also
showed good MdAPE values (12.449 and 16.199, respectively), although the correlation
coefficient between the real values and the forecasts is not very high. The magnetics yields
and tailings P2O5 recovery were the variables with the highest MdAPE values (27.851 and
34.133, respectively).

After completing the analysis with the optimum scenario, the neural network’s cali-
bration was conducted using the six variables presented in Figure 5. Two hidden layers
were used: the first with 10 hidden nodes and a sigmoid activation function and the second
with 10 hidden nodes and a linear activation function. The linear activation function was
used in the output layer. The best learning rate found to adjust this network was 0.002
and one thousand epochs were used. The metrics generated by using this network are
summarized in Table 7.
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The results presented in Table 7 show that for the reduced set of input variables, the
metrics observed were very similar to the ones seen in the optimum scenario, especially for
the variables with the most significant economic impact, namely the flotation concentrate
yield and P2O5 recovery.

Using six and 10 features, a comparison of the two scenarios can be summarized by
calculating the relative differences, as shown in Equation (14). Table 8 summarizes the
relative differences observed between the Pearson correlation coefficients, MAE, RMSE,
and MdAPE mean values.

Relative Di f f erence =

(
Metric Value6 f eatures − Metric Value10 f eatures

Metric Value10 f eatures

)
∗ 100% (14)
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Table 7. ANN metrics using six input variables.

Variable Set
Mean ± Std. Error

Correlation MAE RMSE MdAPE

YConcentrate

Training

0.855 ± 0.001 2.664 ± 0.025 3.598 ± 0.018 15.122 ± 0.32

YSlimes 0.599 ± 0.001 6.334 ± 0.022 8.093 ± 0.021 12.523 ± 0.062

YMagnetics 0.846 ± 0.001 3.195 ± 0.019 4.319 ± 0.018 26.523 ± 0.149

YTailings 0.835 ± 0.001 5.165 ± 0.021 6.528 ± 0.025 13.692 ± 0.072

RConcentrate 0.667 ± 0.002 9.32 ± 0.069 12.221 ± 0.06 14.601 ± 0.302

RSlimes+Magnetics 0.463 ± 0.002 6.957 ± 0.02 9.121 ± 0.031 16.231 ± 0.082

RTailings 0.692 ± 0.002 6.902 ± 0.055 9.561 ± 0.028 36.608 ± 0.457

YConcentrate

Validation

0.851 ± 0.008 2.706 ± 0.056 3.634 ± 0.075 15.564 ± 0.346

YSlimes 0.582 ± 0.012 6.412 ± 0.065 8.205 ± 0.092 12.732 ± 0.23

YMagnetics 0.84 ± 0.007 3.225 ± 0.073 4.372 ± 0.098 26.718 ± 0.788

YTailings 0.829 ± 0.006 5.236 ± 0.071 6.629 ± 0.097 13.855 ± 0.281

RConcentrate 0.657 ± 0.012 9.385 ± 0.207 12.32 ± 0.261 14.674 ± 0.404

RSlimes+Magnetics 0.447 ± 0.017 7.002 ± 0.135 9.168 ± 0.181 16.463 ± 0.276

RTailings 0.682 ± 0.011 6.985 ± 0.133 9.659 ± 0.174 36.91 ± 0.964

YConcentrate

Test

0.859 2.671 3.650 16.169

YSlimes 0.586 6.470 8.437 12.656

YMagnetics 0.838 3.312 4.599 28.397

YTailings 0.827 5.490 6.854 14.806

RConcentrate 0.634 9.395 12.637 15.157

RSlimes+Magnetics 0.443 7.006 9.191 16.189

RTailings 0.665 7.244 10.233 34.327

Table 8. Relative differences between the sub-optimum scenario and the optimum.

Variable Set
Relative Difference (%)

Correlation MAE RMSE MdAPE

YConcentrate

Training

0.1% 0.0% 0.0% 1.3%

YSlimes −1.5% 1.5% 0.6% 1.9%

YMagnetics −1.1% 4.8% 3.9% 4.2%

YTailings −0.2% 0.1% −0.1% −0.1%

RConcentrate 0.0% 0.3% 0.4% 0.3%

RSlimes+Magnetics 1.5% −0.1% −0.3% 0.5%

RTailings 0.6% −0.6% −0.4% −0.4%
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Table 8. Cont.

Variable Set
Relative Difference (%)

Correlation MAE RMSE MdAPE

YConcentrate

Validation

0.2% −0.1% −0.2% 0.5%

YSlimes −0.5% 1.0% −0.8% 4.1%

YMagnetics −0.8% 3.5% 2.1% 2.8%

YTailings −0.1% −0.1% −0.5% −0.4%

RConcentrate 0.3% −0.5% 0.2% −0.7%

RSlimes+Magnetics 2.8% −0.8% −0.7% 0.7%

RTailings 0.9% −1.1% −0.7% −1.8%

YConcentrate

Test

−0.7% 1.5% 1.4% 8.5%

YSlimes 0.3% 1.3% 0.3% 1.7%

YMagnetics 0.1% 1.1% −0.1% 1.9%

YTailings −0.7% 2.6% 1.7% 3.8%

RConcentrate 1.4% −0.9% −1.6% 8.8%

RSlimes+Magnetics 4.5% −1.0% −0.9% −0.1%

RTailings 1.1% 0.9% −1.8% 0.6%

By analysing the relative difference in the test set, it is possible to conclude that when
the correlation coefficient decreases, the fall is not marked (smaller than 0.7%), showing
that the reduction in the number of input variables did not impact the model’s precision. In
most cases, an improvement in the correlation coefficient value is noted when the reduced
set of variables is used.

Removing four variables from the inputs did not significantly affect the metrics. The
relative differences in the MAE and RMSE values showed an increase in errors lower
than 2.6% when the reduced set of variables is used instead of the optimum set. The most
significant impact observed was in the MdAPE values for the flotation concentrate mass and
metallurgical recoveries, showing an increase of 8.5% and 8.8% in the test set, respectively,
when the reduced scenario was adopted. The reduced model can be considered as a good
option to forecast the metallurgical variables of interest because the MdAPE increase was
lower than 4% for all other output variables.

Considering the above results, it can be concluded that it is possible to work with
the reduced model without losing much, in terms of model precision and accuracy. There
is a gain in simplicity once adding variables in the process can represent a considerable
increase in the workload, not only in computer power but also in time spent by the analyst
to elaborate, update, and evaluate the models created to estimate the input variables in
the block model using kriging or simulation. Analysing through the geostatistical point of
view, passing from 10 to six variables to be modelled implies a work-time reduction of 40%,
a considerable amount.

5. Conclusions

Reducing the number of variables leads to a lower computational cost. The gain is
also felt in the geostatistical workflow, once the number of input variables to be integrated
to the resource block model is reduced. However, those benefits are counterbalanced by
higher errors in the forecasting of some variables. The trade-off between a small error
and a higher labor force is important when applying such models to a complete industrial
operation. To help with this decision, it is important to quantify the errors related to the
two approaches and compare them, as shown in this paper.
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In this case study, the reduction from 10 to six input variables showed that dimension
reduction can lead to models capable of returning correlation values close to the ones
observed when the complete set of variables is used, with a small loss in the reduced
scenario, when it occurs. The increase in MAE and RMSE was smaller than 2.6% for all
output variables in the test set when the sub-optimum set of variables was used instead
of the set with all 10 features. The four removed variables make sense considering the
points discussed in chapter 4: the BaO and Nb2O5 are related to the presence of barite and
pyrochlore, which only affects the process in high quantities (which is rare); and SiO2 and
TiO2 grades are correlated with other variables that were maintained in the model, making
their presence redundant. Thus, it was decided to select the model elaborated with the
reduced number of input variables, due to its quality, and considering the practicality of
the whole process, as this is a workflow being suggested for an active mining operation
where time response represents a crucial aspect.

We would like to stress that each case study is unique. It is possible to achieve
smaller errors in the test set with a reduced set of variables compared with the optimum
scenario, especially if small datasets are used, due to overfitting (caused by a high number
of variables and a small number of samples). It is also possible to find higher errors that
do not justify the dimensionality reduction. Thus, it is important to follow the proposed
workflow and analyze the errors in both scenarios to choose the best option for each mine
under study.

It is important to mention that the geometallurgical ore model herein described is
essentially statistical in nature. Nevertheless, the model is powerful enough to include
some of the physical–chemistry aspects of the process. For example, the properly carried
out investigation has led to the establishment of a quantitative relationship describing
the deleterious effect of the presence of carbonates in the plant’s feed, understood as
the ratio between CaO and P2O5, proving that important geochemical/mineralogical
relationships were mathematically predicted, giving an interpretation of the results that
makes geological sense.

Another important point that needs to be stressed is related to the estimation of the
collector dosage in the block model. In this case study, this explanatory variable was
attributed to the blocks by the nearest neighbor estimation method. Thus, mining regions
which require a smaller collector dosage can be recognized, and areas which demand a
higher collector dosage are also noted.

Final Thoughts about Mineral Processing

Usually, the processing plant’s human operator(s) has a well-established objective of
a certain number of tonnes of the product (concentrate) with a required grade or quality.
Such quality may include different grades (for example, SiO2 and Fe2O3, but most certainly
P2O5). A conveyor belt equipped with a scale provides the tonnage of the filtered product,
so this information is readily available through the control system. At short time intervals,
samples are taken and sent for analysis so that, given a short delay, product quality and
moisture content are also available to the operator. Given that the plant is operating at
a steady pace, the operator may decide to change the processing parameters so that the
production objectives are met during his shift. The changes that can be made are relatively
small, such as in the reagent dosage, aeration rate, and perhaps also the froth levels, and
froth-wash-water flowrate.

The point here is that most of the plant’s processing parameters do not change at all,
and for the few parameters that do change, so that production requirements can be met, the
impacts on the production rate and quality are well-known. Therefore, it is safe to assume
that the plant and all its processing parameters can either be changed to meet the required
quality or not. Simply put, if the quality can be met, the rock is ore, and if not, the rock
is waste. The broad question that is left concerns the metallurgical recovery of P2O5 as a
function of ore quality. In other words, for the development of the geometallurgical model,
the main concern is with the ore model.
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