
Citation: Zhao, S.; Hai, L.; Liu, B.;

Dong, H.; Mei, C.; Xu, Q.; Mu, C.;

Wei, X. Late Ordovician High Ba-Sr

Intrusion in the Eastern North Qilian

Orogen: Implications for

Crust–Mantle Interaction and

Proto-Tethys Ocean Evolution.

Minerals 2023, 13, 744. https://

doi.org/10.3390/min13060744

Academic Editor: Manuel Francisco

Pereira

Received: 8 May 2023

Revised: 25 May 2023

Accepted: 28 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Late Ordovician High Ba-Sr Intrusion in the Eastern North
Qilian Orogen: Implications for Crust–Mantle Interaction and
Proto-Tethys Ocean Evolution
Shaoqing Zhao 1,* , Lianfu Hai 2,3,*, Bin Liu 1, Huan Dong 1 , Chao Mei 2,3, Qinghai Xu 1 , Caixia Mu 2,3

and Xiangcheng Wei 2,3

1 School of Geosciences, Yangtze University, Wuhan 430100, China; binliu@yangtzeu.edu.cn (B.L.)
2 Mineral Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750021, China
3 Institute of Mineral Geology of Ningxia Hui Autonomous Region, Yinchuan 750021, China
* Correspondence: shaoqing@yangtzeu.edu.cn (S.Z.); hailianfu@163.com (L.H.)

Abstract: High Ba-Sr granitic rocks are widespread in Phanerozoic orogenic systems, and their
petrogenesis is important for revealing the evolutionary process of the Proto-Tethys Ocean in the
North Qilian orogenic belt. This paper presents a combination of zircon U-Pb age, whole-rock
major and trace element concentrations, and Sr-Nd-Hf isotopic data for Caowa high Ba-Sr dioritic
intrusion from the eastern part of the North Qilian orogenic belt, aiming to decipher its petrogenesis
and tectonic setting. LA-ICP-MS zircon U-Pb dating yield an emplacement age of 450 ± 2 Ma for
the Caowa intrusion, indicating a magmatic activity of the Late Ordovician. The Caowa quartz
diorites contain moderate contents of SiO2, MgO, Mg#, and resultant high concentrations of Na2O +
K2O, Fe2O3

T, and Al2O3, displaying calc-alkaline and metaluminous characteristics. The studied
samples have relatively elevated Ba (up to 1165 ppm) and Sr (561 to 646 ppm) contents, with obvious
enrichment in LILEs (e.g., Ba, Th, U) and depletions in HFSEs (e.g., Nb, Ta, Ti), resembling those of
typical high Ba-Sr granitoids in subduction zones. Together with enriched Sr-Nd isotopic composition
[(87Sr/86Sr)i = 0.7082–0.7086, εNd(t) = −5.1 to −4.9], and the wide ranges of zircon εHf(t) values
(−13.2 to +8.5), it suggests that these high Ba-Sr quartz diorites were derived from a mixture magma
source between the ancient crust materials and the enriched lithospheric mantle metasomatized by
fluid released from subducted oceanic crust or sediment. Taking into account the ophiolites, high
pressure metamorphic rocks, and arc magmatic rocks in the region, we infer that due to the influence
of the northward subduction of the Qilian Proto-Tethys Ocean, the Laohushan oceanic crust of the
North Qilian back-arc basin was subducted during the Late Ordovician and resulted in extensive
metasomatism of lithospheric mantle by fluids derived from oceanic crust or sediments, and the
Caowa high Ba-Sr quartz diorites were generated in the process of crust–mantle interaction during
the Late Ordovician.

Keywords: high Ba-Sr granitoids; Late Ordovician; subduction; Proto-Tethys; North Qilian orogen

1. Introduction

The Qilian orogenic system, located in the northeastern Tibetan Plateau, has been
considered as the northernmost orogenic collage of the Proto-Tethys Realm. It records a
multistage tectonic process from the Neo-proterozoic continental breakup of the Rodinia
supercontinent, the Early Paleozoic oceanic subduction and accretion, finally resulting in
arc-continent and continent collisions [1–3]. As a significant unit of the Qilian orogenic
system, the North Qilian orogenic belt has been confirmed by the typical subduction–
accretion suture with a complex trough–arc–basin system, marking the tectonic evolution
of the Proto-Tethys Ocean [4–6]. Previous studies have been carried out on the outcrops of
the south mid-ocean-ridge-type ophiolites, the middle part subduction/collision-related arc
igneous rocks, and the north back-arc-basin-type ophiolites in the North Qilian, and indicate
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that the northward subduction of the Qilian Proto-Tethys Ocean during the Ordovician is
the most popular viewpoint [5,7,8]. Nevertheless, the evolutionary process of the Proto-
Tethys Ocean in the eastern part of North Qilian belt remains unclear. Many Early Paleozoic
adakitic granitoids are recognized in the Eastern North Qilian orogenic belt, and some recent
studies suggested that they generated during continent–continent collision or post-collision
collapse [9–13]. However, their petrogenesis and geodynamic evolution processes are still
disputed, and little research has focused on the oceanic subduction-related granitoids (e.g.,
I-type granite, high Ba-Sr granitic rocks) in the region, especially in the Nanhuashan area
of Ningxia province, easternmost North Qilian belt.

High Ba-Sr granitoids, as a distinct group of magmatic rocks, are widespread in
Phanerozoic orogenic systems and provide a large amount of effective information to esti-
mate the tectonic evolution process of the orogenic belts [14–17]. Compared to traditional
I-, S-, and A-type granitoids, the high Ba-Sr granitoids have several unique signatures such
as alkali-rich, high Ba (>500 ppm) and Sr (>300 ppm) contents, and low Rb (<200 ppm)
and Y (<30 ppm) contents with Rb/Ba ratios < 0.2. They also display high Sr/Y ratios,
enrichment of light rare earth elements (LREEs) and large-ion lithophile elements (LILEs),
depletion in heavy rare earth elements (HREEs) and high field-strength elements (HFSEs),
with no significant negative Eu anomalies [14,18]. High Ba-Sr granitoids always carry
geochemical and isotopic signatures of enriched mantle sources, which is linked to the
oceanic subduction-related metasomatism [15,19–23]. However, the possible mechanisms
for the generation of high Ba-Sr granitoids, such as partial melting of subducted ocean
islands/ocean plateaus [14], melting of mafic lower crust [18,24], or magma mixing [16,25],
have also been proposed. Therefore, the recognition of high Ba-Sr granitoids may provide
particular information on crust–mantle interactions and the growth of the continental crust
in subduction zones.

In this paper, we present zircon U-Pb geochronology, whole-rock geochemistry, and
Sr-Nd-Hf isotopic data for the Late Ordovician dioritic intrusion (mainly composed of
quartz diorites) with high Ba-Sr signatures in the Nanhuashan area of Ningxia, Eastern
North Qilian orogenic belt (Figure 1). The results, together with previously published data,
are used to elucidate the petrogenesis of the high Ba-Sr quartz diorites, and further evaluate
their geodynamic implications for the Proto-Tethys Ocean evolution.
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Figure 1. (a) Simplified geological map of China (modified from [5]); (b) simplified geological
map of the North Qilian Orogenic Belt showing distributions of the main tectonic units (modified
from [26]), and (c) simplified distribution map of the Caowa dioritic intrusion, showing the studied
samples’ location.
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2. Geological Background and Petrography

The Qilian orogenic belt, located in the northeastern margin of the Tibetan Plateau,
is divided into three units from north to south: the North Qilian orogenic belt (NQOB),
the Central Qilian block, and the South Qilian accretionary complex belt [1,27] (Figure 1a).
The NQOB, extending NW–SE more than 1000 km, lies between the Alxa Block to the
north and the Central Qilian Block to the south, and is separated from the Altyn-Tagh
Fault to the west (Figure 1b). It is dominated by an outcrop of Early Paleozoic ophio-
lites (MORB-type), high-pressure metamorphic rocks (e.g., eclogites, blueschists), and a
series of subduction/collision-related magmatic rocks, and was confirmed as a typical
subduction–accretion orogenic belt with a complex trough–arc–basin system [5,6]. Two
ophiolite sequences are distributed in the NQOB (Figure 1b). The southern ophiolite
belt (550−496 Ma) is connected with Aoyougou, Yushigou, and Dongcaohe ophiolites
and mainly consists of mantle peridotite, cumulate gabbro, and MORB, which document
the oceanic crust fragments of the Qilian Proto-Tethys Ocean [5]. The northern ophiolite
belt (490−448 Ma) is a typical back-arc basin ophiolite (e.g., Jiugequan, Biandukou, and
Laohushan ophiolites), representing the extension of the North Qilian back-arc oceanic
basin [5,26,28]. There are volcanic-magma arc belt (520−440 Ma) outcrops between the two
ophiolite belts, mainly including mafic and felsic volcanic rocks [8]. The high pressure–low
temperature (HP–LT) metamorphic rocks in the NQOB are predominantly composed of
blueschists and low-temperature eclogites, with metamorphic ages ranging from 490 to
440 Ma [2,29,30]. In addition, a large number of Early Paleozoic granitoids (520−420 Ma),
including adakitic, I-, and A-type granitoids, have been recognized in the NQOB from
the Changma-Dachadaban-Corridor Nanshan in the west to the Leigongshan-Laohushan-
Quwushan Mountain in the east, and their formation was linked to oceanic subduction,
closure, and post-collision processes of the Qilian Proto-Tethys Ocean [10,12,13,31,32].

The Nanhuashan Mountain, connecting with Quwushan-Baojishan-Laohushan-
Leigongshan Mountain to the west in the eastern part of NQOB, exposed a large amount
of Early Paleozoic granitic intrusions. These intrusions, including Caiyuan, Shiwali,
Youfangyuan, Luanduizi, and Caowa intrusions, intrude into the Meso-proterozoic Haiyuan
Group. Notably, these magmatic events were very closely related to Cu-Au mineraliza-
tion in the Nanhuashan area. The high Ba-Sr signature rocks reported in this paper were
collected from the Caowa intrusion (Figure 1c). The Caowa dioritic intrusion is mainly
composed of quartz diorites, with an outcrop area of ~4 km2, which are medium- to
coarse-grained rocks (Figure 2a). The quartz diorites are mainly composed of plagioclase
(40–50 vol.%), hornblende (20–30 vol.%), quartz (5–10 vol.%), and K-feldspar (5–10 vol.%),
with minor amounts of iron oxides, zircon, and apatite (Figure 2b–d). The plagioclase
generally forms euhedral–subhedral laths with polysynthetic twinning. Some of these
laths display concentric compositional zoning and are more sericitized (Figure 2b,d). Horn-
blende occurs as euhedral–subhedral grains, with length of 0.5–1 mm, and usually appears
as a mafic polycrystalline agglomerate (Figure 2c,d). K-feldspar is subhedral–anhedral
and mainly consists of orthoclase and occasional microcline. Quartz is anhedral and fills
the interstices between amphibole and plagioclase crystals. In addition, acicular apatite
commonly occurs near the hornblende polycrystalline agglomerate (Figure 2c,d).
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(a) Field photograph of the dioritic intrusion; (b–d) photomicrographs of the quartz diorites. Abbre-
viations: Hb = hornblende, Pl = plagioclase, Kfs = K-feldspar, Qtz = quartz, Ap = apatite.

3. Analytical Methods
3.1. Zircon U-Pb Dating and Hf Isotope Analyses

In this paper, zircon U-Pb dating and in situ Hf isotope analyses were carried out for
Caowa quartz diorite from the Nanhuashan area in the eastern section of NQOB; the sam-
pling geographic coordinates are 36◦26′08” N, 105◦44′32” E (Figure 1c). Density–magnetic
techniques were used to separate zircon grains from a quartz diorite sample (CW-6) at the
laboratory of the Hebei Regional Geological Survey Institute. Subsequently, zircon grains
were polished until core areas were exposed, and pictures of cathodoluminescence (CL)
were taken. Zircon U-Pb dating and trace element analyses were conducted simultaneously
by LA-ICP-MS at the Wuhan SampleSolution Analytical Technology Co., Ltd. (Wuhan,
China). Laser sampling was performed using a GeolasPro laser ablation system and a
MicroLas optical system with a laser spot size of 32 µm and laser frequency of 8 Hz. An
Agilent 7900 ICP-MS instrument was used to obtain ion-signal intensities [33]. Zircon
91,500, NIST 610, and GJ-1 were used as external standards for U-Pb dating and trace
element calibration. Each analysis incorporated a background acquisition of approximately
20–30 s followed by 50 s of data acquisition from the sample. Detailed operating techniques
and methods have been given by Zong et al. (2017) [34]. The software ICPMSDataCal was
used for off-line selection, time-drift correction, and quantitative calibration for U-Pb dating
and trace element analysis [35]. Concordia diagrams and weighted mean calculations were
made using Isoplot [36].

In situ Hf isotope analyses of zircons were conducted using a Neptune Plus MC-
ICP-MS (Thermo Fisher Scientific, Karlsruhe, Germany) in combination with an excimer
ArF laser ablation system (Geolas HD) that was hosted at the Wuhan SampleSolution
Analytical Technology Co., Ltd. During the analyses, a spot size of 32 µm and energy
density of ~7.0 J cm−2 were used. Detailed operating techniques and methods are the
same as described by Hu et al. (2012) [37]. During analyses, three international zircon
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standards (Plešovice, 91,500, and GJ-1) were analyzed simultaneously with the actual sam-
ples. The Hf isotope compositions of Plešovice, 91,500, and GJ-1 are 0.282478 ± 0.000008,
0.282300 ± 0.000011, and 0.282009 ± 0.000010, respectively [38].

3.2. Whole-Rock Major and Trace Element Analyses

Unaltered whole-rock samples were chosen and crushed to 60 mesh in a corundum
jaw crusher, and about 60 g was powered in an agate ring mill to less than 200 mesh. Major
and trace element analyses of the fresh whole-rock samples were carried out at Wuhan
SampleSolution Analytical Technology Co., Ltd. Major element analyses were performed
by an X-ray fluorescence spectrometer (XRF; Primus II, Rigaku, Austin, TX, USA), and the
relative standard deviation was less than 2%. The samples for trace element analyses were
digested by HF + HNO3 solution in Teflon bombs at 195 ◦C for >24 h and then analyzed on
an Agilent 7700e ICP-MS.

3.3. Whole-Rock Sr-Nd Isotope Analyses

The analyses of the whole-rock Sr-Nd isotope were conducted at Wuhan SampleSo-
lution Analytical Technology Co., Ltd. by using a Neptune Plus MC-ICP-MS instrument.
The Sr and Nd fractions were eluted using 2.5 and 0.3 M HCl, respectively. Isotopes were
separated by conventional cation exchange. The mass fractionation correction for Sr and
Nd isotopic ratios were normalized to 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, re-
spectively. International standards (NBS987 and GSB) were used as bracketing standards
to monitor the instrument drift during the analysis of Sr and Nd isotopes, respectively.
Repeated analysis for NBS987 gave an average 87Sr/86Sr = 0.710242 ± 14 (2σ). Repeated
analysis for GSB gave an average 143Nd/144Nd = 0.512440 ± 1 (2σ). The precision for
87Rb/86Sr was better than 1%, and the error in the 147Sm/144Nd was < 0.5%.

4. Results
4.1. Zircon U-Pb Geochronology

The zircon U-Pb isotopic data and trace element results of the Caowa dioritic intrusion
are presented in Tables 1 and 2, respectively. The zircon CL images and concordia diagrams
are shown in Figure 3.
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normalized REE patterns (c) of representative zircons from Caowa quartz diorite (a). Solid and
dashed circles indicate the location of U-Pb analysis and Hf analysis, respectively.
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Table 1. LA-ICP-MS zircon U-Pb dating results of the Caowa quartz diorite.

Spot No.
Contents (ppm)

Th/U
Isotopic Ratios Isotopic Ages (Ma)

232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ

CW-6-01 744 1889 0.39 0.0546 0.0018 0.5629 0.0146 0.0730 0.0012 0.0224 0.0005 394 79 453 10 454 7
CW-6-02 1093 2859 0.38 0.0602 0.0013 0.5984 0.0127 0.0721 0.0008 0.0247 0.0006 613 46 476 8 449 5
CW-6-03 781 2046 0.38 0.0559 0.0013 0.5572 0.0121 0.0709 0.0007 0.0215 0.0004 456 52 450 8 442 4
CW-6-04 744 1860 0.40 0.0559 0.0013 0.5516 0.0114 0.0712 0.0008 0.0219 0.0004 456 52 446 7 444 5
CW-6-05 370 1424 0.26 0.0538 0.0013 0.5396 0.0132 0.0725 0.0007 0.0213 0.0004 365 54 438 9 451 4
CW-6-06 619 1916 0.32 0.0561 0.0013 0.5718 0.0168 0.0734 0.0009 0.0225 0.0004 457 52 459 11 457 5
CW-6-07 368 1498 0.25 0.0599 0.0012 0.5898 0.0120 0.0712 0.0006 0.0251 0.0004 611 38 471 8 444 3
CW-6-08 465 1687 0.28 0.0557 0.0010 0.5507 0.0110 0.0715 0.0007 0.0218 0.0004 443 43 445 7 445 4
CW-6-09 342 1222 0.28 0.0560 0.0012 0.5480 0.0117 0.0708 0.0006 0.0220 0.0004 450 46 444 8 441 4
CW-6-10 516 1633 0.32 0.0562 0.0018 0.5645 0.0180 0.0728 0.0008 0.0228 0.0005 457 72 454 12 453 5
CW-6-11 393 1455 0.27 0.0577 0.0020 0.5787 0.0200 0.0723 0.0008 0.0272 0.0007 520 74 464 13 450 5
CW-6-12 761 2264 0.34 0.0559 0.0013 0.5637 0.0135 0.0727 0.0006 0.0212 0.0004 456 50 454 9 452 4
CW-6-13 494 1690 0.29 0.0553 0.0012 0.5519 0.0128 0.0719 0.0007 0.0230 0.0005 433 48 446 8 448 4
CW-6-14 428 1386 0.31 0.0561 0.0014 0.5554 0.0135 0.0716 0.0007 0.0221 0.0005 457 21 449 9 446 4
CW-6-15 615 1777 0.35 0.0556 0.0014 0.5521 0.0159 0.0714 0.0006 0.0226 0.0005 435 56 446 10 444 4
CW-6-16 451 1584 0.28 0.0558 0.0012 0.5587 0.0122 0.0722 0.0006 0.0216 0.0004 443 51 451 8 449 4
CW-6-17 495 1491 0.33 0.0571 0.0019 0.5540 0.0185 0.0700 0.0009 0.0233 0.0006 498 74 448 12 436 5
CW-6-18 608 1693 0.36 0.0621 0.0020 0.6192 0.0221 0.0718 0.0009 0.0242 0.0012 676 69 489 14 447 5
CW-6-19 487 1678 0.29 0.0563 0.0014 0.5778 0.0141 0.0737 0.0008 0.0233 0.0006 465 54 463 9 459 5

Table 2. Zircon trace element data of the Caowa quartz diorite.

Spot No. La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Eu/Eu* Hf Ta Y Ti Nb

CW-6-01 0.16 65.71 0.30 2.50 5.64 3.43 41.79 15.29 207 88.11 442 106.56 1095 257 0.49 28,295 6.09 2803 13.32 18.18
CW-6-02 2.71 95.28 2.51 16.76 13.22 6.67 59.00 21.00 273 113.41 556 132.00 1356 306 0.62 27,149 8.94 3634 22.20 33.09
CW-6-03 0.01 66.60 0.08 1.92 6.56 3.44 42.17 16.44 217 91.56 472 113.50 1184 277 0.48 28,530 6.55 2957 11.24 19.62
CW-6-04 0.20 76.26 0.21 3.53 6.55 4.17 44.84 17.58 227 97.89 498 118.97 1248 292 0.55 27,469 6.58 3153 12.14 22.23
CW-6-05 0.02 50.15 0.11 1.65 4.07 2.80 30.96 13.94 189 80.95 418 102.28 1088 261 0.54 27,647 5.66 2607 9.11 15.53
CW-6-06 13.94 82.46 4.87 22.53 7.96 3.02 38.18 13.71 181 76.11 395 94.46 1003 239 0.44 29,534 5.88 2473 7.24 17.51
CW-6-07 2.96 62.56 1.85 11.27 10.34 4.18 41.91 14.74 210 92.24 490 122.45 1296 311 0.53 29,319 6.04 3019 13.23 18.31
CW-6-08 0.00 60.01 0.09 2.03 6.29 3.34 44.66 16.44 239 108.89 573 139.26 1488 355 0.45 28,350 6.75 3530 10.76 23.00
CW-6-09 0.01 51.36 0.11 2.37 5.80 3.42 40.01 15.27 228 100.04 538 131.31 1376 327 0.51 27,151 5.18 3246 11.26 18.19
CW-6-10 0.06 55.93 0.15 2.10 4.98 3.37 36.84 14.65 201 85.35 452 110.00 1156 273 0.55 28,330 6.46 2800 11.83 19.52
CW-6-11 1.61 82.48 1.61 11.68 10.50 4.74 42.03 14.21 192 83.62 420 98.51 1029 252 0.60 29,354 4.25 2626 22.40 13.69
CW-6-12 0.08 60.44 0.08 1.06 4.83 3.30 35.79 13.82 191 83.22 420 102.55 1069 252 0.55 29,612 7.33 2661 9.38 19.93
CW-6-13 0.01 62.43 0.11 2.33 6.54 3.99 45.41 18.07 254 114.76 605 150.52 1592 380 0.52 27,316 6.95 3712 13.38 22.66
CW-6-14 1.56 56.25 0.78 6.05 6.50 3.42 40.46 15.75 209 92.13 485 117.96 1243 297 0.49 27,661 5.72 2963 30.72 17.65
CW-6-15 0.40 62.18 0.30 2.90 6.80 3.51 42.94 15.20 214 91.05 469 113.20 1174 280 0.48 27,915 6.77 2907 10.23 19.48
CW-6-16 0.01 53.87 0.11 2.03 5.84 2.90 38.17 15.39 211 94.62 492 120.89 1268 304 0.45 28,605 6.03 3029 11.04 20.50
CW-6-17 0.19 57.12 0.20 2.29 5.43 2.38 32.30 12.46 165 70.94 370 88.25 928 220 0.43 28,248 5.33 2278 21.60 13.96
CW-6-18 4.17 127.01 4.87 31.21 23.26 12.35 68.83 21.36 245 98.51 473 107.22 1144 262 0.87 26,455 6.09 3042 15.51 18.31
CW-6-19 0.03 55.17 0.09 1.80 5.20 3.05 39.80 15.83 224 99.35 531 132.58 1388 334 0.46 28,114 6.50 3256 10.68 21.27
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The zircon grains in the Caowa quartz diorite sample CW-6 are colorless to faint
yellow, transparent, and with euhedral morphology. They have a size range of 50–150 µm,
with a length/width ratio of 2:1 to 3:1, and show broad oscillatory growth zoning or
are homogeneous in the CL images (Figure 3a). The analyzed zircons have U and Th
contents of 1222–2859 and 342–1093 ppm, and show high Th/U ratios ranging from 0.25 to
0.40. They display enrichment in HREEs and depletion in LREEs, with obvious positive
Ce anomalies, weak negative Eu anomalies, and positive correlation between Th and U
contents (Figure 3c), indicating their magmatic origin [39,40]. We analyzed 19 spots on
19 zircons, with 206Pb/238U ages ranging from 436 ± 5 to 459 ± 5 Ma. Among them, 6 spots
displayed younger 206Pb/238U ages between 436± 5 and 444± 4 Ma, with a weighted mean
of 442 ± 3 Ma (MSWD = 0.41), and the remaining 13 spots yielded older 206Pb/238U ages
ranging from 445 ± 4 to 459 ± 5 Ma, with a weighted mean of 450 ± 2 Ma (MSWD = 0.76)
(Figure 3b). We consider that the age of 450 ± 2 Ma represents the emplacement age of the
Caowa dioritic intrusion.

4.2. Whole-Rock Major and Trace Elements

Major and trace element data of the Caowa quartz diorites are listed in Table 3. Based
on petrographic examination, all samples are not significantly affected by hydrothermal
alteration, and their low loss on ignition (LOI) contents (1.36–2.45 wt.%, Table 3) further
indicate that the samples are basically fresh.

Table 3. Major (wt.%), trace element (ppm) and Sr-Nd isotopic compositions of the Caowa quartz
diorites.

Sample CW-1 CW-2 CW-3 CW-4 CW-5 CW-6

SiO2 62.80 62.87 59.75 58.34 57.53 61.97
TiO2 0.61 0.59 0.74 0.77 0.90 0.63

Al2O3 16.32 16.85 16.99 16.66 17.16 16.90
Fe2O3

T 5.39 5.22 6.58 6.63 7.88 5.54
MnO 0.13 0.12 0.14 0.14 0.17 0.12
MgO 2.13 2.10 2.43 2.63 3.01 2.08
CaO 3.47 3.71 4.65 5.46 5.26 3.81

Na2O 3.91 3.95 3.78 3.71 3.65 3.86
K2O 2.95 2.93 2.78 2.94 2.50 2.82
P2O5 0.19 0.19 0.23 0.23 0.26 0.20
LOI 2.13 1.36 1.42 2.453 1.43 1.62
Total 100.03 99.90 99.48 99.97 99.74 99.56
Mg# 44 44 42 44 43 43

A/CNK 1.02 1.02 0.96 0.87 0.94 1.03
Na2O + K2O 6.86 6.89 6.55 6.65 6.16 6.68

Sc 9.22 8.41 11.84 11.76 15.11 9.24
V 78.3 80.2 105.7 106.7 130.8 83.7
Cr 4.81 5.21 5.69 5.45 6.43 4.58
Co 8.92 9.08 11.92 11.89 14.65 9.57
Ni 3.29 3.46 4.53 4.61 5.12 3.71
Cu 9.87 8.70 11.77 14.24 23.66 4.63
Zn 70.0 69.0 80.5 78.6 93.0 67.9
Rb 92.1 90.0 81.6 80.2 76.6 72.9
Sr 561 612 623 601 646 646
Y 25.07 22.93 28.90 28.01 33.24 23.98
Zr 193.6 180.5 218.9 206.7 228.8 193.5
Nb 12.53 13.02 13.42 13.84 13.05 12.20
Ba 1165 916 860 1151 822 902
La 60.86 40.90 27.52 18.27 57.29 44.74
Ce 112.96 77.92 53.83 37.62 111.28 85.59
Pr 12.26 8.69 6.64 5.05 12.74 9.50
Nd 41.73 30.58 25.94 21.20 45.27 33.69
Sm 7.06 5.42 5.92 5.23 8.40 6.20
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Table 3. Cont.

Sample CW-1 CW-2 CW-3 CW-4 CW-5 CW-6

Eu 1.58 1.36 1.60 1.57 1.96 1.54
Gd 5.04 4.30 5.20 4.96 6.60 4.66
Tb 0.74 0.64 0.81 0.79 1.00 0.70
Dy 4.30 3.70 4.92 4.67 5.89 3.98
Ho 0.86 0.79 0.96 1.00 1.17 0.83
Er 2.59 2.32 2.93 2.87 3.32 2.50
Tm 0.37 0.34 0.44 0.42 0.48 0.37
Yb 2.50 2.37 2.86 2.87 3.17 2.38
Lu 0.39 0.36 0.44 0.43 0.49 0.37
Hf 5.02 4.60 5.44 5.11 5.71 4.76
Ta 0.76 0.90 0.80 0.81 0.65 0.73
Pb 21.10 18.48 15.75 18.52 17.27 19.10
Th 15.53 10.99 6.12 4.29 14.31 11.99
U 1.68 1.39 1.57 1.68 2.17 1.79

REE 253.22 179.69 140.01 106.95 259.06 197.05
Eu/Eu* 0.77 0.83 0.86 0.93 0.78 0.84

Sr/Y 22.38 26.68 21.57 21.44 19.44 26.93
Nb/Ta 16.38 14.46 16.70 16.99 20.22 16.70

(La/Yb)N 17.47 12.36 6.91 4.56 12.95 13.47
(Gd/Yb)N 1.67 1.50 1.51 1.43 1.72 1.62
87Rb/86Sr 0.4258 0.3863 0.3267
87Sr/86Sr 0.711129 0.710716 0.710747

(87Sr/86Sr)i 0.708338 0.708184 0.708606
147Sm/144Nd 0.1071 0.1493 0.1113
143Nd/144Nd 0.512124 0.512243 0.512119

εNd(t) −4.8 −4.9 −5.1
TDM2 (Ma) 1579 1591 1607

The Caowa quartz diorites have variable SiO2 contents (57.53–62.87 wt.%) and are
of intermediate diorite or monzonite compositions (Figure 4a). They have high-K calc-
alkaline and metaluminous to weak peraluminous features, as indicated by their high total
alkalis (Na2O + K2O = 6.16–6.89 wt.%), and low A/CNK values (0.87–1.03) (Figure 4b–d).
They have high Fe2O3

T (5.22–7.88 wt.%), CaO (3.47–5.46 wt.%) contents, and moderate
MgO (2.08–3.01 wt.%) and Mg# (42–44) contents. The Caowa quartz diorites have higher
contents of REEs, ranging from 106.95 to 259.06 ppm (Table 3). The samples have high La
(18.27–60.86 ppm) and low Yb (2.37–3.17 ppm) contents, and the (La/Yb)N ratios range
from 4.56 to 17.47 (Table 3). Chondrite-normalized REE patterns display that all samples
are enriched in LREEs and relatively depleted in HREEs, with no significant negative Eu
anomalies (Eu/Eu* = 0.77–0.93; Figure 5a). The Caowa quartz diorites display extremely
high Ba (up to 1165 ppm) and Sr (561 to 646 ppm) contents, with obvious enrichment in
LILEs (Th, U, and K) and depletion in HFSEs (Nb, Ta, Ti, and P; Figure 5b).

4.3. Whole-Rock Sr-Nd Isotopes

Whole-rock Sr-Nd isotopic data for selected samples are presented in Table 3 and
shown in Figure 6. The initial Sr-Nd isotopic ratios were calculated at 450 Ma based
on the zircon U-Pb age. The Caowa quartz diorites show heterogeneous Sr-Nd isotope
compositions characterized by slightly high (87Sr/86Sr)i ratios (0.70818–0.70860), and lower
εNd(t) values (−5.1 to −4.9), with two-stage Nd model ages (TDM2) of 1579–1607 Ma.
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Figure 4. Geochemical classification of the Caowa quartz diorites. (a) Total alkali vs. silica (TAS)
diagram (after [41]); (b) K2O vs. SiO2 diagram (after [42]); (c) (Na2O + K2O − CaO) vs. SiO2 diagram
(after [43]); and (d) A/NK [molar ratio Al2O3/(Na2O + K2O)] vs. A/CNK [molar ratio Al2O3/(CaO
+ Na2O + K2O)] diagram (after [44]). The data for typical high Ba-Sr granitoids are from [15,19].
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Figure 6. Initial 87Sr/86Sr vs. εNd(t) (a) and zircon εHf(t) vs. εNd(t) diagrams (b) for the Caowa quartz
diorites. Data sources: depleted mantle-derived ophiolites and adakites in the NQOB are from [46–48];
enriched mantle-derived Bamishan and Laohushan mafic rocks and high Ba-Sr granitoids in the
NQOB are from [49]; thickened lower crust-derived adakitic rocks and old crust-derived granites
in the NQOB are from [9,10,22,50]; Qilian basement from [51]. Fields of MORB, OIB and marine
sediments, and Terrestrial array after [52].

4.4. Zircon Hf Isotopes

In situ Hf isotope analyses of zircons from the Caowa quartz diorite are listed in
Table 4 and shown in Figure 7. The Caowa quartz diorite displays variable 176Hf/177Hf
ratios (0.282135–0.282753) and εHf(t) values (−13.2 to +8.5), with two-stage Hf model ages
(TDM

c) of 830–2029 Ma. The wide ranges of εHf(t) values are similar to the granitoids of
crust–mantle mixed source in the NQOB (Figure 7).

Table 4. Zircon Hf isotopic compositions of the Caowa quartz diorites.

Spot
No.

Age
(Ma)

176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ εHf(0) εHf(t) TDM
(Ma)

TDM
c

(Ma) f Lu/Hf

CW-6-01 454 0.047583 0.001043 0.282401 0.000028 −13.1 −3.5 1204 1499 −0.97
CW-6-03 442 0.060913 0.001249 0.282459 0.000102 −11.1 −1.7 1128 1393 −0.96
CW-6-04 444 0.053286 0.001496 0.282355 0.000036 −14.7 −5.4 1283 1599 −0.95
CW-6-05 451 0.041103 0.000944 0.282449 0.000048 −11.4 −1.8 1133 1404 −0.97
CW-6-06 457 0.051349 0.001116 0.282409 0.000073 −12.8 −3.1 1195 1483 −0.97
CW-6-07 444 0.074723 0.001580 0.282135 0.000366 −22.5 −13.2 1598 2029 −0.95
CW-6-08 445 0.067271 0.001497 0.282319 0.000104 −16.0 −6.7 1335 1670 −0.95
CW-6-09 441 0.043239 0.001363 0.282365 0.000032 −14.4 −5.1 1264 1578 −0.96
CW-6-10 453 0.053681 0.001471 0.282335 0.000066 −15.4 −5.9 1310 1634 −0.96
CW-6-12 452 0.067973 0.001496 0.282411 0.000057 −12.8 −3.3 1204 1487 −0.95
CW-6-13 448 0.062911 0.001953 0.282340 0.000028 −15.3 −6.0 1320 1634 −0.94
CW-6-14 446 0.079210 0.002148 0.282753 0.000114 −0.7 8.5 730 830 −0.94
CW-6-15 444 0.057545 0.001758 0.282422 0.000041 −12.4 −3.1 1197 1473 −0.95
CW-6-16 449 0.059503 0.001403 0.282364 0.000085 −14.4 −5.0 1268 1579 −0.96
CW-6-19 459 0.061641 0.001196 0.282682 0.000099 −3.2 6.6 812 948 −0.96
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5. Discussion
5.1. Petrogenesis

The major element data show that the Caowa quartz diorites are high-K calc-alkaline
rocks and have slightly higher MgO content. The studied samples are enriched in LILEs
(e.g., Ba, Th, and U) and LREEs and depleted in HFSEs (e.g., Nb, Ta, and Ti); these
geochemical features suggest that they are similar to arc magmatic rocks in subduction
zones [55]. In addition, the Caowa quartz diorites carry some geochemical characteristics of
trace elements that distinguish them from traditional I-, S-, and A-type granitoids. In the Rb-
Ba-Sr diagram (Figure 8), the samples plot in the field of high Ba-Sr granitoids. The samples
show high Ba (822–1165 ppm) and Sr (561–646 ppm) contents and low Rb (72.9–92.1 ppm)
and U (1.39–2.17 ppm) contents, together with enrichment in LREEs and depletion in
HREEs, and negligible Eu anomalies (Figure 5), which are similar to the typical high Ba-
Sr granitoids worldwide (e.g., Northern Scotland, Eastern China) [14,16,17,20]. Several
petrogenetic models have been proposed for the high Ba-Sr granitoids: (1) partial melting of
subducted ocean islands/ocean plateaus [14]; (2) partial melting of thickened mafic lower
crust with or without mantle input [18,24,56]; (3) partial melting of enriched lithospheric
mantle metasomatized by subduction-related fluids or melts [19,21,22]; (4) mixing of
enriched mantle-derived mafic magmas with crustal felsic melts [16,17,25].
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Tarney and Jones (1994) first proposed that partial melting of subducted oceanic islands
or plateaus can generate high Ba-Sr initial magmas, which can also explain their strong
fractionated REE patterns and negligible Eu anomalies [14]. However, based on the findings
from experimental petrology, partial melting of basaltic oceanic crust (MORB or OIB)
usually produces Na-rich magmas (Na2O > 5 wt.%) [57], which is evidently inconsistent
with the high-K calc-alkaline characteristics of the Caowa quartz diorites (Figure 4b). In
addition, the Caowa quartz diorites have enriched Sr-Nd isotope compositions with initial
87Sr/86Sr ratios = 0.70818–0.70860 and εNd(t) =−5.1 to−4.9 that are obviously distinct from
those of depleted mantle-derived Early Paleozoic ophiolites and adakites in NQOB [46–48]
(Figure 6a). The partial melting of basaltic oceanic crust cannot generate the Caowa high
Ba-Sr quartz diorites.

It is generally accepted that partial melting of thickened mafic lower continental crust
is a key mechanism to produce high Ba-Sr granitoids [19,25,56], which is mainly due to
their affinities with adakitic granitoids, such as: high alkali, Sr, and LREE contents; low
Rb, Y, and HREE contents; and high Sr/Y and La/Yb ratios [20,58]. Although the rocks
studied here display high Sr contents, enrichment in LREEs, and negligible Eu anomalies
(some adakitic features), they have high Y (22.93–33.24 ppm) and Yb (2.37–3.17 ppm)
contents and low Sr/Y (19–27) and La/Yb (4.56–17.47) ratios significantly different from
typical adakites (Figure 9), and more evolved Sr-Nd isotope compositions than the adakitic
granitoids that are proposed to have originated from partial melting of thickened lower
crust in the eastern part of NQOB [9,10,13] (Figure 6a). Furthermore, magmas, derived
from high-pressure partial melting of the thickened lower crust, generally possess extinct
fractioned HREEs (e.g., Gd/Yb ratios > 8) [59]. All samples studied here display low Gd/Yb
ratios (1.43–1.72) and flat HREE distribution patterns (Figure 5a), which indicates that there
was no significant involvement of garnet during the magmatic generation. Consequently,
the thickened crust model for the petrogenesis of the high Ba-Sr granitoids may not be
applicable to the Caowa quartz diorites.
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Previous studies have shown that subducted oceanic slab and sediment-derived
melts or fluids have a high capacity to carry significant amounts of Ba and Sr [60,61], and
transfer of these elements would result in enrichment of the overlying lithospheric mantle
through metasomatism. Thus, low-degree partial melting of enriched lithospheric mantle
metasomatized by subduction-related fluids or melts can generate initial magmas with high
Ba-Sr signatures [19,21,22]. The Caowa quartz diorites exhibit higher Nd (21.20–45.27 ppm)
and Nb (12.20–13.84 ppm) contents and Nb/Ta (14.46–20.22) values than those derived
from the continental crust (Nd = 11–27, average Nb/Ta = 11) [45], indicating the significant
contribution of mantle components. Moreover, the Caowa quartz diorites have relatively
enriched Sr-Nd-Hf isotopic compositions, which are consistent with those of the enriched
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mantle-derived high Ba-Sr granitoids from the southern margin of Alxa block (Figures
6a and 7) [22]. As shown in plots of Ba/Th vs. Th/Zr and Rb/Y vs. Nb/Y (Figure 10),
magma sources for the Caowa quartz diorites were probably related to the lithospheric
mantle metasomatized by subduction-related fluids. This is also confirmed by the Nd-Hf
isotope decoupling (Figure 6b), owing to the discrepant elemental behavior between Nd
and Hf. Normally, Nd is much more mobile than Hf in subduction zones. It is difficult to
cause Hf isotope enrichment when metasomatism occurs with the overlying lithospheric
mantle [62,63], which is consistent with the occurrence of higher εHf(t) values (e.g., −3.5 to
−1.7) than εNd(t) values (−5.1 to −4.8) for the Caowa dioritic intrusion. More importantly,
the positive εHf(t) values (e.g., +6.6 and +8.5) likely indicate that there may also be a very
small quantity of oceanic crust materials involved in the magma source of the Caowa
quartz diorites. However, it should be noted that partial melting of enriched mantle model
provides a certain degree of support for the high Ba-Sr signatures of Caowa quartz diorites,
but the relatively low MgO (2.08–3.01 wt.%), Mg# (42–44), Cr (4.58–6.43 ppm), and Ni
(3.29–5.12 ppm) contents of these rocks are distinct from the high-Mg diorites and clearly
argue against a single, common mantle evolution by partial melting processes [64,65]. Since
such a mechanism is not feasible here, we interpret that the magma source of these rocks
may also have the addition of continental crustal components, and the extremely low zircon
εHf(t) values (as low as −13.2) of the Caowa quartz diorite also manifest the additional
ancient crust composition in the magma source.
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Here, we propose that the studied Caowa high Ba-Sr quartz diorites probably gen-
erated through mixing of enriched lithospheric mantle-derived basaltic and crustal felsic
magmas. Their moderate SiO2 (57.53–62.87 wt.%) and MgO (2.08–3.01 wt.%) contents
and Mg# values (42–44), as well as the wide ranges of zircon Hf isotopes, support the
mechanism of crust–mantle interaction (Figure 7). The studied rocks exhibit more radio-
genic Sr and Nd isotopes when compared to the enriched mantle-derived mafic rocks from
NQOB, and are also different from those of the Precambrian metamorphic basement and
associated granites (Figure 6a) [50,51]. A simple isotope model was adopted to evaluate the
possible mixing proportion of mantle and crustal components, and it is suggested that the
Caowa high Ba-Sr quartz diorites might be products of mixing of 40% enriched mantle and
60% ancient crustal melts (Figure 6a). Moreover, the Caowa quartz diorites are associated
with the contemporary mafic rocks, dioritic enclaves, and felsic rocks in the surrounding
areas, such as Laohushan-Quwushan Mountain (Figure 1b), which were considered to be
derived from partial melting of the metasomatized enriched lithosphere mantle, magma
mixing, and partial melting of lower continental crust, respectively [11,13,66,67]. Successive
variation in major elemental compositions between them (Figure 11) further substantiates
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a petrogenetic model of crust–mantle interaction [68,69]. Such a crust–mantle interaction
mechanism can be further supported by the hyperbolic curves in diagrams involving the
incompatible elements and their ratios [68,70]. In the Th vs. Th/Nd and Th/La vs. Zr/Sm
diagrams, the studied rocks and associated contemporary mafic rocks, dioritic enclaves,
and felsic rocks in the surrounding areas composed a characteristic hyperbolic mixing line
(Figure 12), which confirms the major role of a two-component mixing process. To further
evaluate the possibility of magma mixing, both Laohushan hornblendite xenoliths (repre-
sented by an enriched mantle source) and Quwushan granodiorites (represented by a lower
crustal source) were chosen as mixing end-members in the geochemical simulation. The
modeling results show that the Caowa high Ba-Sr quartz diorites accord with the formation
of crustal and mantle melt mixing, and the mixture proportion was approximately 6:4
(Figure 12b), which was consistent with the Sr-Nd isotope simulation results (Figure 6a).
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intermediate-acid rocks are from [13,66,67]. See Figure 4 for other data sources.
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In summary, the petrogenesis of Caowa high Ba-Sr intrusion can be explained by
a two-stage model: firstly, a low-degree partial melting of enriched lithospheric mantle
metasomatized by subduction-related fluids generated initial magmas with high Ba-Sr
signatures, and then underplating of this high Ba-Sr basaltic melt triggered partial melting
of the ancient lower continental crust and subsequent crust–mantle interaction.

5.2. Tectonic Implications

It is generally accepted that the Early Paleozoic NQOB is a typical subduction–
accretionary orogenic belt, marking the tectonic evolution of the Proto-Tethys Ocean [1,2,27].
Although both Proto-Tethys Ocean subduction-related and syn-collision/post-collision
tectonic settings have been proposed, the subduction polarity and final closure of the
Proto-Tethys Ocean are still controversial. The models of the subduction polarity issue
include southward subduction [71], northward subduction [5,8], and bidirectional sub-
duction [31,72]. However, considering the current tectonic geographical pattern and the
distribution of Early Paleozoic MORB-type ophiolites, arc volcanic rocks, and SSZ-type
ophiolites in the NQOB from south to north, northward subduction of the Qilian Proto-
Tethys Ocean was basically authenticated, and the closure time of the Qilian Proto-Tethys
Ocean was earlier than 440 Ma [5,7,8]. It should be noted that these previous studies
concerning the Proto-Tethys evolution have focused on the western part of the NQOB. As
for the eastern part of the NQOB, the former evolution process may be “acclimatized” [13],
and the closure time of the Qilian Proto-Tethys Ocean maybe earlier than the western part
of the NQOB.

Yu et al. (2015) considered that the generation of crustal-derived low-Mg adakitic
granitoids (461–440 Ma) from the Eastern NQOB reflects crustal thickening in response to
a continent–continent collision [10]. As mentioned above, the Caowa high Ba-Sr dioritic
intrusion examined in the Nanhuashan area of the Eastern NQOB was not generated in
the partial melting of crustal thickening, which should display high Gd/Yb ratios and
leave a residue with garnet. In addition, the distributions of the 448 ± 5 Ma Laohushan
ophiolite (the Northern ophiolite belt, Figure 1b) and 446 ± 3 Ma Baiyin arc volcanic rocks
indicate that the Eastern NQOB probably underwent a new oceanic crust development
and subduction during the Late Ordovician [5,8,66]. Combined with the new discovery
of boninitic blueschists and associated greenschists from the Laohushan area in Eastern
NQOB by Fu et al. (2022) [26], which records the intra-oceanic subduction initiation at
492–488 Ma, we assume that there may be no continent–continent event occurring there
before the Late Ordovician.

The Late Ordovician Caowa high-Ba-Sr quartz diorites studied here are located in the
eastern part of the NQOB (Figure 1). As discussed above, these rocks generated through
interaction of partial melts derived from subduction-related metasomatized lithospheric
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mantle and ancient lower continental crust. Therefore, we propose that they are probably
formed in a Late Ordovician oceanic crust subduction-related arc setting. The distribution
of these rocks occurring to the northeast of the Baiyin arc and the Laohushan ophiolite belt
and the southern margin of Alxa block (Figure 1b) indicates that they were related to the
northward subduction of the North Qilian oceanic crust formed in a back-arc basin rather
than the paleo-Qilian ocean (maybe a main ocean of Proto-Tethys in the Qilian orogenic
system). Consequently, we suggest that, affected by the northward subduction of the
Qilian Proto-Tethys Ocean, the Laohushan oceanic crust of the North Qilian back-arc basin
was subducted during the Late Ordovician, which induced extensive metasomatism of
lithospheric mantle by subduction-related fluids and subsequent crust–mantle interaction
during the Late Ordovician (Figure 13).
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