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Abstract: Kriging has some problems such as ignoring sample values in giving weights to them,
reducing dependence structure to a single covariance function, and facing negative confidence
bounds. In view to these problems of kriging in this study to estimate Cu in the Iju porphyry Cu
deposit in Iran, we used a convex linear combination of Archimedean copulas. To delineate the spatial
dependence structure of Cu, the best Frank, Gumbel, and Clayton copula models were determined at
different lags to fit with higher-order polynomials. The resulting Archimedean copulas were able to
describe all kinds of spatial dependence structures, including asymmetric lower and upper tails. The
copula and kriging methods were compared through a split-sample cross-validation test whereby
the drill-hole data were divided into modeling and validation sets. The cross-validation showed
better results for geostatistical estimation through copula than through kriging in terms of accuracy
and precision. The mean of the validation set, which was 0.1218%, was estimated as 0.1278% and
0.1369% by the copula and kriging methods, respectively. The correlation coefficient between the
estimated and measured values was higher for the copula method than for the kriging method. With
0.0143%2 and 0.0162%2 values, the mean square error was substantially smaller for copula than for
kriging. A boxplot of the results demonstrated that the copula method was better in reproducing the
Cu distribution and had fewer smoothing problems.

Keywords: estimation; Archimedean copulas; kriging; variogram

1. Introduction

Geostatistical estimation through kriging has become a standard method in mining
engineering and earth sciences [1–5]. However, kriging weights given to samples are deter-
mined regarding the samples’ spatial configuration and a variable’s spatial continuity [6,7].
There are some problems with kriging, namely (1) it uses covariance, which describes spa-
tial continuity by a single function imposing simplification in the estimation process [6,8],
(2) it cannot give different weights to different sample values with the same spatial configu-
rations [9], and (3) it provides symmetric confidence interval for the estimates, which may
result in negative concentrations for small values [10]; however, the latter problem does
not arise in nonlinear kriging.

The application of copulas in conjunction with geostatistics would be an excellent
choice to solve the above-mentioned problems. A copula is a function that represents
the joint distribution of variables that are uniformly distributed on [0, 1] [11]. Copulas
have been used in different studies to evaluate a variable’s dependence structure through
models such as student-t, Gaussian, chi-square, Gumbel, Clayton and Frank [12–19]. A
spatial copula tackles the above-mentioned first and second problems by considering both
sample amounts and spatial dependence structure to assign weights to the conditioning
data. The confidence intervals generated by a spatial copula can take any shape and are not
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necessarily symmetric; therefore, appropriate estimates of the probability density function
of the variable under study would result in reasonable confidence intervals.

Spatial copula was first introduced by Bárdossy [20] for geostatistical estimation
of groundwater qualities based on the Gaussian and chi-square copulas. Because of
its simple structure and ease of use, the Gaussian copula has been the topic of many
studies [21,22]. However, like the other elliptical copulas such as the Student-t copula [23],
the Gaussian copula cannot deal with variables with asymmetric spatial dependence struc-
tures. Therefore, applying elliptical copulas in modeling a variable’s spatial dependence
structures could lead to unrealistic and simplified delineations [20,24,25]. The symmetric na-
ture of Gaussian copula has forced researchers to use new copula models such as chi-square
copulas [26]. However, these copulas are asymmetric with larger upper tails. Therefore,
chi-square copulas and their variants cannot handle dependence structures with smaller
lower tails [27]. To handle specific tails, some other studies proposed the Archimedean
family of copulas such as the Gumbel, Clayton, Frank, and Joe models. However, none of
these copulas can describe all possible structures. Therefore, the idea of combining them
to get new Archimedean copulas that are not necessarily symmetric and theoretically can
handle all types of asymmetric tails has become attractive [14,28–30]. Moreover, convex
combinations of Archimedean copulas can be used with vine copula [8,31–33]. Copulas
have provided flexible tools for describing a variable’s spatial dependence structure and
for giving promising results in geostatistical estimations [10,34]. Therefore, in this study,
due to the abovementioned advantages, the convex linear combination of Archimedean
copulas (CLCAC) was used in the estimation of Cu in the Iju porphyry Cu mine, Iran. By
running a split-sample cross-validation test, the results of geostatistical estimation through
copulas was compared to results of kriging.

This paper is structured as follows. The theory of geostatistical estimation through
copulas, the properties of Archimedean copula, and their convex linear combinations
are presented in the Methods section. A case study including geological setting, data
description, comparison of copula and kriging methods, and block modeling process are
given in the Case Study section. The conclusions are presented in the last section.

2. Materials and Methods
2.1. Copula

A copula, C, is a function that can be used to delineate the dependence structure of
variables, thus:

C : [0, 1]n → [0, 1] (1)

If one of the n random variables takes zero, the copula function takes zero as well.
According to Sklar [11], any n-variate distribution F(Z1, . . . , Zn) can be represented by its
margins, FZi (Zi), and n-dimensional C, thus:

F(Z1, . . . , Zn) = C
(

FZ1(Z1), . . . , FZn(Zn)
)

(2)

The transformation of a variable to standard uniform distribution makes the copula
independent of the margins. Standard uniform margins can be achieved through a simple
histogram transformation. For continuous margins, a copula is unique and can be written
in terms of mutual dependence structure regardless of margins. Therefore, the density of a
copula, c, can be achieved from the following derivative:

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
, (3)

and the conditional copula can be calculated as:

C(u1 U2 = u2, . . . , Un = un) =
∂n−1C(u1, . . . , un)

∂u2 . . . ∂un
× 1

c(u2, . . . , un)
, (4)
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2.2. Spatial Copula

Assume that Z is a second-order stationary random field sampled at
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points. Second-
order stationarity provides the following property for two sets of samples separated by a
vector, h:

P(Z(x1) < v1, . . . , Z(xk) < vk) = P(Z(x1 + h) < v1, . . . , Z(xk + h) < vk) (5)

where v1, . . . , vk are some possible values and Z(x1) is the value of Z at location x1. For
a single variable, the bivariate representation of a spatial copula at vector, h, takes the
following form:

Cs(h, u, u) = P(FZ(Z(x)) < u, FZ(Z(x + h)) < u) = C(FZ(Z(x)), FZ(Z(x + h))) (6)

2.3. Copula Modeling

The empirical copula of a variable can be achieved as:

Y(h) =
{

Fn
(
Z(xi), Z

(
xj
))∣∣ (xi − xj

)
≈ h or

(
xj − xi

)
≈ h

}
(7)

where Fn(z) is the empirical distribution function obtained from observations z1, . . . , z
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.
Various theoretical copulas, C∗, can be fitted to the empirical copula of Equation (7) to find
the best function for which the null hypothesis at a significance level, α, is not rejected.
The procedure can be implemented through a two-sample Kolmogorov-Smirnov test for
equality of functions [20], thus:

DK−S = sup
{
|C∗(u1, u2)− C(u1, u2)| (u1, u2) ∈ [0, 1]2

}
(8)

where u1 and u2 are the measured values of the two samples after standard uniform
transformation.

Fitting the copula associated with different lag separation vectors is equivalent to
fitting the bivariate distributions of the random field for these separation vectors. In general,
the fit does not guarantee the existence of a random field associated with such bivariate
distributions so that there may be a problem of internal consistency of the copula model,
which has been pointed out by Matheron [35] and has still not received an answer. This is a
counterpart of attempting to avoid a simplified spatial continuity model.

2.4. Combination of Archimedean Copulas

Assume that C(u1, u2) is an Archimedean copula presented as:

C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)), 0 ≤ u1, u2 ≤ 1 (9)

For Archimedean copulas, ϕ is the generator that is a convex decreasing function on
[0, 1] with ϕ(0) = ∞ and ϕ(1) = 0 [36–38]. The inverse function of ϕ is ϕ−1 : [0, ∞]→ [0, 1]
for which ϕ−1(0) = 1 and ϕ−1(∞) = 0. Any function with these mentioned properties can
be used as a generator. Table 1 presents some common Archimedean copulas such as the
Gumbel, Clayton, and Frank copulas and their properties. Each copula generator has one
parameter, θ, defined in a specific range. The lower and upper tails of copulas are denoted
by λL and λU , respectively. For a bivariate distribution, lower and upper tail dependences
refer to the degree of dependence in the corner of the lower-left quadrant and upper-right
quadrant, respectively.
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Table 1. Common Archimedean copulas and their properties.

Copula Name Generator
ϕθ(t) Parameter Range Copula Cθ(u1,u2) λL λU

Gumbel
CG(u1, u2)

(−lnt)θ θ ≥ 1 exp
{
−
[
(−lnu1)

θ + (−lnu2)
θ
] 1

θ

}
0 2− 2(

1
θ )

Clayton
CC(u1, u2)

t−θ − 1 θ ∈ [−1, ∞)\{0}
[
u1
−θ + u2

−θ − 1
]− 1
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2−
1
θ 0

Frank
CF(u1, u2)

−ln
(

exp(−θt)−1
exp(−θ)−1

)
θ ∈ R\{0} − 1

θ ln
[
1 + (exp(−θu1)−1)(exp(−θu2)−1)

exp(−θ)−1

]
0 0

It can be seen from Table 1 that the Gumbel and Clayton copulas are asymmetric with
upper and lower tails, respectively. None of these copulas is capable of describing all kinds
of spatial dependence structures on its own. However, the CLCAC provides a flexible
tool that can be fitted to an extensive range of structures [39,40]. The CGC, given as the
following formula, combines the copulas, thus:

CGC =


α1CG

h1
(u1, u2) + (1− α1)CC

h1
(u1, u2) i f h = h1

α2CG
h2
(u1, u2) + (1− α2)CC

h2
(u1, u2) i f h = h2

...
αlCG

hl
(u1, u2) + (1− αl)CC

hl
(u1, u2) i f h = hl

(10)

where CG
h1

and CC
h1

stand for the best Gumbel and Clayton copulas, respectively, that are
fitted to the empirical copulas at lag distance h1, and αi (i = 1, 2, . . . , l) is the weight given
to the first copula in the combination. Weights assigned to each copula in the combinations
can be found by testing a series of values in [0, 1] whereby a specific step size is applied or
they can be found by defining an objective function based on Kolmogorov-Smirnov test
and optimizing it using methods such as simulated annealing. By calculating the derivative
of Equation (10), the copula density and conditional density at the estimation points can
be obtained. By integrating the conditional density and calculating its median value, 2.5%
lower bound, and 97.5% upper bound, the estimated value and 95% confidence interval
can be obtained.

2.5. Steps of Prediction

After transforming data into standard uniform distribution through U(xi) = FZ(Z(xi)) = ui
and calculating CLCAC, the conditional copula density, cGC

αi
(u0 |u i), can be achieved at the

prediction point, x0. Weights given to the copulas, αi, depend on the separation distance
between the prediction location, x0, and sample locations, xi. Prediction through CLCAC
can be performed as follows:

(i) Transform the variable into uniform distribution through U = FZ(Z).
(ii) Choose lag distances and lag tolerance for calculating empirical copulas for them.
(iii) For each lag, estimate the best copula parameters and find their best combination.
(iv) To calculate copula density at distances other than lag distances, model copula param-

eters and weights given to them.
(v) For each conditioning sample, put its distance from the prediction point into the fitted

models of the previous step to get its density at the prediction point.
(vi) Compute conditional cumulative distribution function at the prediction point in order

to get weights given to the samples. Multiply sample values by their weights, sum up
the multiplication results and back-transform them into original data space.
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3. Case Study
3.1. Geology

The Iju area, within 30◦31′45′′ N to 30◦33′05′′ N and 54◦56′10′′ E to 54◦57′30′′ E
(Figure 1), is located 42 km NW of Shahre-Babak county, Kerman province, and 140 km
NW of the Sarcheshme Cu mine. The Iju deposit is situated on the SE part of the Urmia–
Dokhtar magmatic belt [41–43], which is characterized by numerous Cu deposits such as
the Chah-Firouze, Sarcheshme, Meiduk, and Chah-Messi (Figure 1).

The Iju deposit is situated in a mountainous area with Eocene–Paleocene pyroclastic
volcanic rocks intruded by Miocene quartz-diorite and tonalite [44] (Figure 1). Based on
field investigations and core sample analyses, quartz diorite and tonalite are respectively
intruded into the host rocks (Figure 1). Then, alteration and Cu mineralization has occurred.
Extensive phyllic alteration and surface occurrences of malachite, chalcanthite, jarosite, and
iron hydroxides minerals are evidence of Cu mineralization in the study area (particularly
in the southern part). Phyllic alteration with sericite, quartz, pyrite, and chlorite minerals
is widespread and detected in almost all of the drill holes in the central part of the study
area. In contrast, potassic alteration, characterized by the formation of secondary-biotite,
and K-feldspar veins, is limited and only observed in some drill holes in the southern
part. Propylitic alteration is widespread in the host volcanic and pyroclastic rocks. Argillic
alteration is detectable on and near the surface.
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Figure 1. Location and geological maps of the Iju deposit [45].

In the Iju deposit, Cu mineralization exists in the form of disseminations and stock-
works. Chalcopyrite is the main Cu mineral, often seen along with pyrite. Magnetite is
observed as veins and veinlets in the central part of the study area. Tiny amounts of gyp-
sum, anhydrite and molybdenite also exist in the study area. Due to the potassic, propylitic,
and extensive phyllic alterations, and the mineralization style, the Iju is classified as a
porphyry Cu deposit [44,46]. Four hydrothermal mineralization zones, namely leached,
oxidized, supergene, and hypogene, are found in the area. Thicknesses of the leached and
supergene zones vary between 10 and 50 m and between 5 and 50 m, respectively. There
are two high-grade Cu zones in the northern and southern parts of the study area, joining
with a low-grade central part. As shown in Figure 2, the main portion of the Iju resource is
associated with the hypogene zone, and this study was focused on this zone.
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Figure 2. A block model of the Iju deposit showing alteration and mineralized zones.

3.2. Data Description

Core samples from 39 drill holes (Figure 3) were used in the estimation process. The
average distance between adjacent drill holes and the average core length were 50 m and
2 m, respectively. Therefore, 5458 2 m composites with histogram and summary statistics,
respectively shown in Figure 4 and Table 2, were generated for further analysis. Due
to strong deviation from normal distribution, the data were first transformed into nor-
mal scores in the SGeMS program. Then, the spatial dependence structure of the normal
scores of Cu was assessed in the same program by plotting experimental variograms in
the downhole and different horizontal directions. The dependence structure of Cu did
not show any zonal anisotropy with variograms reaching the sill value of 1. The Cu data
showed geometric anisotropy with a maximum variogram range of 260 m in the down-
hole direction. Directional horizontal variograms demonstrated almost identical ranges
(175 m). Variograms of Cu were fitted with a nested model, including a nugget effect,
a short-range exponential structure, and a long-range spherical structure. Figure 5 and
Table 3, respectively, present the experimental variograms and fitted models, and model
variogram parameters used in the kriging method.
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Table 2. Summary statistics for 2-m composite values.

Variable Number Mean Variance Skewness Minimum Maximum

Cu 5458 0.1680 0.0250 2.37 0.0006 1.3884
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Table 3. Model variogram parameters.

Variogram Nugget Structure #1 Structure #2 C1 C2 Range 1 (m) Range 2 (m)

Horizontal
0.1 Exp Sph 0.15 0.75

7 175
Downhole 10 260

Spatial dependence evaluation through copulas was performed using a MATLAB code
developed by the first author. An omnidirectional evaluation was performed at 30 lags
considering lag distances and tolerance of 2 m and 1 m, respectively. Lagged scatterplots for
the variable were obtained at different distances and some of them are shown in Figure 6.
For each lag distance, the best Archimedean copula parameters (θ), which appropriately
delineate the dependence structure, were obtained (Figure 7). Moreover, various α weights,
between 0 and 1, considering a specific step size, were given to each copula in the Gumbel–
Clayton, Clayton–Frank, and Gumbel–Frank combinations to find their best portions
(Figure 8). The empirical points in Figure 8 were fitted by appropriate polynomial functions
to calculate copula parameters at other lags. From Figure 8, it can be seen that, at 60 m,
the α weight given to the Clayton copula in the Clayton–Gumbel combination starts from
0.1 and reaches 0.65. Therefore, the spatial dependence structure of Cu had a strong positive
tail at close distances and relatively strong negative tails at large lags. In some distances,
especially when h increases to infinity, the fitted model may result in unreasonable α values.
For such cases, the developed MATLAB code replaces negative values by zero and changes
large amounts to 1.
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3.3. Split-Sample Cross-Validation

Comparison of kriging and copula methods was performed by running a cross-
validation test based by dividing the data into two sets: (1) a modeling set with
4237 samples and (2) a validation set with 1221 points. Variograms and copula dependence
structures were evaluated based on the modeling set. Then, the obtained parameters were
used in the estimation process at the validation points. Estimation through both meth-
ods was performed using the same number of conditioning data (17 samples) to obtain
comparable results. Ordinary kriging was performed twice using the original values and
also based on normal scores. As expected, the normal score-based kriging performed
substantially better than kriging based on the original values. Therefore, hereafter, we
only demonstrate the results of the normal score-based kriging. The estimated values were
compared to the measured values to assess the accuracy and precision of the estimators
(Table 4). The copula method outperformed kriging based on having smaller mean squared
error, better mean reproduction, and a higher correlation coefficient between the estimated
and measured values. Because of having closer quartile values, the data distribution was
reproduced better in the copula estimates (Figure 9). The cross-validation results indicate
the importance of estimation through copulas for a highly skewed data such as the Cu
data. Kriging was significantly affected by a few large sample values and the L-shape
distribution, and it showed a tendency for over-estimation.

Table 4. Cross-validation results.

Estimation
Method

Measured
Mean

Estimated
Mean

Mean Squared Error
(Perfect Value Is 0)

Correlation
(Perfect Value Is 1)

Kriging
0.1218

0.1369 0.0162 0.42
Copula 0.1278 0.0143 0.51
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3.4. Estimation and Results

After the cross-validation test, the best copula and variogram parameters were used
in the block estimation process. A 3D geological model of the hypogene zone and a block
model including 16,724 blocks (25 m× 25 m× 12.5 m) were created (Figure 2). To reduce
the change of support problem, estimation was performed by dividing the main blocks into
27 equal size sub-blocks, running estimation at center points, and taking the average of the
estimated values [47–49]. The estimated block models, box plots of the block estimates, and
summary statistics of the results are, respectively, given in Figures 10 and 11, and Table 5.
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Table 5. Summary statistics for the data and the kriging and copula estimates.

Mean First Quartile Median Third Quartile Variance Min Max

Data 0.168 0.060 0.125 0.222 0.025 0.0006 1.388
Kriging 0.134 0.052 0.102 0.191 0.011 0.008 0.913
Copula 0.144 0.047 0.104 0.200 0.019 0.006 1.099

Except for the first quartile, other statistical properties of data such as the mean,
median, third quartile, minimum, maximum, and variance values were reproduced better
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in the copula estimates than in the kriging estimates. The variance of the kriging estimates
was 0.011 (%2), which was less than half of the data variance of 0.025. From this aspect,
the copula results with 0.019 (%2) variance showed potential for reducing the smoothing
problem of kriging. This issue is reflected by the minimum and maximum values of the
copula estimates, which were smaller and larger compared to the minimum and maximum
values of the kriged estimates, respectively.

Box plots of the estimation errors calculated for the results of both methods demon-
strated significantly smaller errors for the copula method (Figure 12). The mean of estima-
tion errors for the copula method was 1.80 compared to 4.82 of the estimation errors for the
kriging method. Except for a limited number of outliers, the estimation errors of the copula
method were lower than 3.13; however, 82% of the kriging estimation errors were larger
than 3.38.
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4. Conclusions

The problems of kriging (e.g., simplifying the dependence structure, lacking the ability
to consider sample values in assigning weights to them, and the possibility of producing
absurd confidence intervals) motivate the use of new methods such as spatial copula in
geostatistical applications. Therefore, in this study, the CLCAC was used to estimate
the copper grade in the Iju porphyry copper deposit and it was compared with kriging.
Due to the flexible tails of the CLCAC, the proposed method delineated successfully the
spatial dependence structure of the variable under study (namely Cu data). Comparison
of the kriging and copula estimates, through a split-sample cross-validation test, showed
advantages of the proposed method over kriging. The copula estimates had lower mean
squared error, higher correlation coefficient with data, better reproduction of mean, and
closer distribution to that data. The same advantages were also be seen in the block
estimation results of the copula and kriging methods. The copula estimation errors were
significantly smaller than the kriging estimation errors. Moreover, the copula estimates
had higher variance than the kriging estimates; thus, using a spatial copula mitigates the
smoothing problem of kriging.

The results of this study suggest that the copula approach is dramatically outper-
forming ordinary kriging. This issue can be a consequence of choosing the right dataset
with strong deviation from normal distribution and testing an advanced method against a
method (kriging) that is too simple to deal with the special challenges of that dataset.

In this study, univariate estimation was performed based on two-point statistics. How-
ever, it is known that methods relying on two-point information can be outperformed by
high order methods such as high-dimensional copulas, which use high order dependences.
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Therefore, the application of multivariate cases and high-dimensional copulas remains as a
future study.

Another point that remains as a future study is associated with integrating directional
anisotropy with the method. The copula approach applied in this study uses an omni-
directional model. However, one can upgrade the method by dividing a 3D space into
some equal size slices. Therefore, the spatial continuity of the variable under study can be
described directionally in each slice.
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