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Abstract: The growth history of the Tibetan Plateau provides a valuable natural laboratory to under-
stand tectonic processes of the India–Asia collision and their impact on and interactions with Asian
and global climate change. However, both Tibetan Plateau growth and Asian paleoenvironments
are generally poorly documented in pre-Pliocene times and reflect limited temporal coverage for
different parts of the plateau. In this paper, the 238 m thick Cenozoic sediments in the Hongzhuang
section of the Xunhua Basin were tested and analyzed via paleomagnetic and environmental mag-
netic methods. The formation age was determined, and the evolution history of the regional climate
environment was analyzed. The magnetostratigraphy study shows that the sediments record a
continuous sequence of geomagnetic polarity changes from C5ACn to C10r, which spans an interval
of approximately 30~14.3 Ma from the early Oligocene to the middle Miocene. The magnetic suscep-
tibility of the Hongzhuang section is basically similar to the deep-sea oxygen isotope fluctuation,
indicating that the monsoon climate change indicated by the magnetic susceptibility is affected by
global temperature. It is worth noting that at ~27 Ma and ~15 Ma, there is a negative correlation
between magnetic susceptibility and deep-sea oxygen isotope, and magnetic susceptibility lags
behind the increase in deep-sea oxygen isotope. Combined with the change in the sedimentary rate
curve, we explain the asynchrony between the magnetic susceptibility and the deep-sea oxygen
isotope around ~27 Ma and ~15 Ma. As the uplift of the plateau leads to the enhancement of the East
Asian summer monsoon, the soil formation in the region is strengthened, resulting in an increase
in magnetic susceptibility. At the same time, the rapid uplift of the plateau caused the erosion of
the surrounding mountains to strengthen, and the input of near-source materials may promote the
increase in magnetic susceptibility.

Keywords: Xunhua basin; early Oligocene–middle Miocene; aeolian red clay; magnetic susceptibility;
paleoenvironment; East Asian monsoon

1. Introduction

The timing of the growth of the Tibetan Plateau has profound implications for un-
derstanding the mechanics of continental deformation and associated regional and global
climatic changes in the Cenozoic. Climate studies have suggested that the appearance of
the monsoonal system in East Asia and the onset of central Asian desertification may be
related to Cenozoic Tibetan Plateau uplift and withdrawal of the Paratethys Sea [1,2]. The
environmental effects of plateau uplift and its impact on Asian monsoon and Asian inland
aridification, development, and the corresponding driving mechanism are crucial issues in
the field of paleoclimate research [3–5]. The influence of plateau uplift on the formation of
Asian monsoons and the aridification of Asian inland has been widely recognized; however,
there are great differences in the process and age of plateau uplift, leading to different views
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on the scope and intensity of its impact on the surrounding environment [5–10]. To further
constrain the surface uplift history of the Qinghai-Tibet Plateau and its relationship with the
Asian climate change, more precise age constraints on the plateau growth and paleoenviron-
mental evolution from different parts of the plateau are still required. There are also many
viewpoints on the evolution process and the formation mechanism of Asian monsoons
and Asian inland droughts. At the same time, the deep-sea oxygen isotope clearly records
changes in global temperature since the Cenozoic era, and many climate change events
have occurred. From the warm period without ice sheet at both poles to the cold period
with ice sheet at both poles today, global temperature fluctuations have decreased [11–14].
At the same time, a strong geological tectonic event also occurred on the northeastern
margin of the Qinghai-Tibet Plateau during the Oligocene to the Miocene [15–17]. Studies
have shown that during this period, multi-stage northeastward accretion events occurred
in the northeast margin of the Tibet Plateau. Pares et al. believe that plateau uplift during
the Oligocene period has affected the northeast margin of the Qinghai-Tibet Plateau [18],
and a rapid uplift event in the northeast margin of the Qinghai-Tibet Plateau from 20 Ma
to 25 Ma [16]. By comparing the isotopes in the sediments of the surrounding basins, it is
found that the Laji Mountain began to uplift rapidly at 16~11 Ma [19]. The uplift of the
Tibetan Plateau has increased the complexity of climate change while global temperature
fluctuations have declined. In the past ten years, domestic and foreign scholars have
established the magnetic polarity chronology framework of sediments in some basins in the
northeastern Qinghai-Tibet Plateau via magnetic stratigraphy. On this basis, the uplift pro-
cess and climate change in the plateau are discussed through sedimentary records [20,21].
Here, we report a well-dated sedimentary record from the Hongzhuang section of Xunhua
Basin at the northeastern margin of the Tibetan Plateau (Figure 1a,b). It deposited a set of
continuous red clay sediments from the early Oligocene to the middle Micene, and the area
is located in the East Asian monsoon area, the Central Asian arid area, and the northeastern
margin of the Qinghai-Tibet Plateau. The intersection area provides a complete climate
evolution process. In this study, we present a detailed magnetostratigraphy and magnetic
susceptibility the sedimentary record of the Xunhua Basin in order to better understanding
of the Oligocene to Miocene tectonism and paleoenvironments of the northeastern margin
Tibetan Plateau.
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Figure 1. (a) Location, main geological and geographical characteristics, and main atmospheric cir-
culation system of the study area in the Xunhua Basin. (b) The main mountains, faults, and strata 
characteristics around the Xunhua Basin (modified after [22]). (c) View of the study section (solid 
black lines indicate vertical joints). (d) Loess column. (e) Vertical Joints (the black dotted line indi-
cates vertical joints). (f) Palaeosol. (g) Gypsum vein. 
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the east and the arid continental interior to the west (Figure 1a,b). Affected by tectonic 
uplift, a compressional basin based on the Cretaceous ancient basin was formed. The 
Xunhua Basin and the Xining Basin on the north side are separated by the Laji Mountain. 
The east side is opposite to the Linxia Basin, and the west side is the Dehenglong Uplift 
and the Jianzha Basin. The main faults around the basin include the northern margin fault 
zone of West Qinling, Jishishan fault zone and Lajishan fault zone. Xunhua Basin is lo-
cated in a climate-sensitive area, which is a transition area between the eastern monsoon 
region and the arid region of Central Asia. The basin is located in mid latitudes, in a semi-
arid region in which the mean annual temperature is ~8.5 °C and the mean annual precip-
itation is 264 mm, of which ~75% falls as monsoonal rain during the summer. 

Figure 1. (a) Location, main geological and geographical characteristics, and main atmospheric
circulation system of the study area in the Xunhua Basin. (b) The main mountains, faults, and strata
characteristics around the Xunhua Basin (modified after [22]). (c) View of the study section (solid
black lines indicate vertical joints). (d) Loess column. (e) Vertical Joints (the black dotted line indicates
vertical joints). (f) Palaeosol. (g) Gypsum vein.



Minerals 2023, 13, 671 4 of 17

2. Geological Setting and Section Lithology

The Xunhua Basin is located on the northeastern Tibetan Plateau in a climatically
sensitive area, representing the transitional zone between the monsoonal coastal region
to the east and the arid continental interior to the west (Figure 1a,b). Affected by tectonic
uplift, a compressional basin based on the Cretaceous ancient basin was formed. The
Xunhua Basin and the Xining Basin on the north side are separated by the Laji Mountain.
The east side is opposite to the Linxia Basin, and the west side is the Dehenglong Uplift
and the Jianzha Basin. The main faults around the basin include the northern margin fault
zone of West Qinling, Jishishan fault zone and Lajishan fault zone. Xunhua Basin is located
in a climate-sensitive area, which is a transition area between the eastern monsoon region
and the arid region of Central Asia. The basin is located in mid latitudes, in a semi-arid
region in which the mean annual temperature is ~8.5 ◦C and the mean annual precipitation
is 264 mm, of which ~75% falls as monsoonal rain during the summer.

The Cenozoic strata of Xunhua Basin and surrounding basins were divided in detail;
however, no unified division standard has been formed. The strata from the Oligocene
to the Miocene were divided from old to new into Pingguo Formation, Anda Formation,
Charang Formation, Lower Dongshan Formation and Herga Formation [23]. In Linxia basin,
Xiaomin et al. divided the strata from the Oligocene to the Miocene from the old to the new
ones into Tara Formation, Zhongzhuang Formation, Shangzhuang Formation, Dongxiang
Formation and Liushu Formation [24]. In Xunhua Basin, Zhang Kexin et al. redivided the
strata from old to new into Tara Formation, Xianshuihe Formation Linxia Formation and
Jishi Formation [25]. By comparing the lithology and strata with the surrounding basins,
this paper adopts the division standard of Zhang Kexin et al. to divide the Cenozoic strata
of Hongzhuang section from old to new into Tara Formation, Xianshuihe Formation.

The Hongzhuang section is located near Hongzhuang Village (35◦48′40” N, 102◦33′24” E),
approximately 10 km southeast of the main urban area of Xunhua County (Figure 1b). The
thickness of the whole section is 240 m, and the stratum is roughly horizontal. The Cenozoic
strata are continuous and well-exposed, and are in angular unconformity contact with the under-
lying Cretaceous Hekou Formation. This section consists of the Cretaceous Hekou Formation,
the Paleogene Tala Formation and the Neogene Xianshuihe Formation (Figure 2). According
to field observation, Hongzhuang section is mainly composed of red clay, which can be
divided into three lithologic subfacies from bottom to top (240–0 m): (1) 240–238 m, which
is a purple sandy conglomerate of the early Cretaceous Hekou Formation. (2) 238–106.8 m,
which is the alternating deposition of the Oligocene Tala Formation eolian red clay and
fluvial sandy conglomerate, including a small amount of gray gravel deposition and
gray black mudstone. The conglomerate is well-rounded and mainly composed of fine
gravel. The eolian clay debris developed loess columns, vertical joints developed well,
and gullies developed along the vertical joints (Figure 1d,e), which is very similar to the
sedimentary characteristics of palaeosol on the Chinese Loess Plateau (Figure 1f), and these
sedimentary characteristics have been confirmed to be the result of eolian genesis [26].
However, Figure 1f shows a poorly developed paleosol in the Miocene compared to the
Quaternary paleosol. (3) 106.8–0 m, it is the alternating deposition of eolian red clay and
fluvial–lacustrine facies in the Miocene Xianshuihe Formation. The lower part is mainly
eolian deposits, and the grain size of the sediments gradually becomes coarser and coarser
upwards, turning into fluvial–lacustrine deposits. At 54 m, a thin layer of gypsum and
eolian red clay began to appear (Figure 1g).
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Figure 2. Hongzhuang section lithology and sedimentary facies.

3. Materials and Methods

On the Hongzhuang section, approximately 1177 powder samples were collected
every 20 cm for the measurement of rock magnetism. Additionally, 983 orientated block
samples with a size of 10× 10× 10 cm3 were collected at 20 cm intervals for paleomagnetic
measurements. No samples were obtained in the gravel layer with a total thickness of
approximately 35 m.

According to experimental requirements, the Bartington MS2 magnetic susceptibility
(producing areas: BARTINGTON Company, London, UK) instrument was used to mea-
sure the low frequency (470 Hz) and high frequency (4700 Hz) of the powder magnetic
susceptibility samples dried at low temperature. Frequency susceptibility is calculated by
the difference in mass susceptibility (χfd = χlf − χhf) and the percentage content of mass
susceptibility ((χlf − χhf)/χlf × 100%). The paleomagnetic samples were processed into
cubes of 2 × 2 × 2 cm3. The thermal demagnetization of the test sample was carried out
in a TD-48 thermal demagnetization furnace produced by American Satellite Corporation
(ASC) for approximately 19 steps. The thermal demagnetization spacing is 50 ◦C below
500 ◦C, the demagnetization temperatures of 500~600 ◦C are 525 ◦C, 550 ◦C and 585 ◦C,
the demagnetization spacing above 600 ◦C is 20 ◦C, and the highest demagnetization tem-
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perature is 680 ◦C. The residual magnetic samples were measured on a 2G-760U channel
superconducting magnetometer (producing areas: the United States). The demagnetization
results were analyzed using Zijderveld’s orthogonal graph method [27], and the direction
of characteristic remanence was calculated using Kirschvink’s least squares fitting tech-
nique [28]. The above tests were carried out in the magnetic shielding space (less than
300 nT) of the Environmental Magnetic Laboratory of the Institute of Earth Environment,
Chinese Academy of Sciences. Data processing uses CorelDRAW 2019, PMage31b2 and
Origin 2022 versions.

4. Results
4.1. Magnetostratigraphy

The natural remanent magnetization(NRM) of the samples in the Hongzhuang profile
ranges from 4.5 × 10−4 to 7.5 × 10−5 A/m, and Figure 3 is a partial representative thermal
demagnetization map. Most samples exhibit simple demagnetization behaviour. Between
100 ◦C and 150 ◦C and between 150 ◦C and 200 ◦C, many samples exhibit a significant
decrease in magnetization accompanied by a change in the remanence direction that
probable indicates the removal of a secondary remanent magnetization (SRM)carried by
goethite and titanomagnetite, respectively (Figure 3d–f). In addition, most of the samples
exhibit a low unblocking temperature component that is removed at 250 ◦C (Figure 3).
Above this temperature, a characteristic remanent magnetization (ChRM) is clearly isolated
and decays almost linearly to the origin. Two distinct and rapid reductions in magnetization
were observed in most samples, at approximately 585 ◦C and 660–680 ◦C, indicating the
presence of magnetite and haematite, respectively, and which are the major ChRM carriers
(Figure 3) [29]. It is worth noting that some samples show a significant rapid decline trend
at 200 ◦C, 300 ◦C and 640 ◦C. According to the Curie temperature of related minerals,
we believe that it may indicate the presence of titanomagnetite, pyrrhotite or greigite,
and maghemite [30–33].

In the process of establishing the magnetic stratigraphic column, at least four con-
secutive points in the orthogonal diagram are used to ensure that the maximum angular
deviation direction (MAD) of the characteristic remanence is less than 15◦, so as to calculate
the direction of the characteristic remanence. The anomalies and transition points with a
VGP absolute value of less than 45◦ were removed. Among the 983 paleomagnetic samples
tested, 863 samples (88%) provided a reliable characteristic remanence direction, and the
paleomagnetic polarity was determined by the characteristic remanence direction. The
test results show that the profile records the time scale correlation between the established
Hongzhuang section magnetic polar column and the standard polar column at 28 positive
polarity and 28 negative polarity, and records the continuous magnetic polarity sequence
of C5ACn~C10r (Figure 4) [34]. Using the age limit of the magnetic stratigraphic column,
the deposition rate of the strata near the polarity reversal is inferred, and the age span of
the profile can be calculated to be 30~14.3 Ma. The relationship between stratigraphic age
and sedimentary depth is well-fitted, which proves the effectiveness of the magnetic polar
column of the Hongzhuang section (Figure 5).
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Figure 3. Representative thermal demagnetization diagrams of oriented paleomagnetic samples
from Hongzhuang section (directions are the original data in geographical coordinates). (a) Thermal
demagnetization curve and orthogonal vector plot (negative polarity) of the sample at 223.5 m.
(b) Thermal demagnetization curve and orthogonal vector plot (positive polarity) of the sample
at 168.4m. (c) Thermal demagnetization curve and orthogonal vector plot (negative polarity) of
the sample at 105 m. (d) Thermal demagnetization curve and orthogonal vector plot (positive
polarity) of the sample at 79.6 m. (e) Thermal demagnetization curve and orthogonal vector plot
(negative polarity) of the sample at 47.5 m. (f) Thermal demagnetization curve and orthogonal
vector plot (positive polarity) of the sample at 7.4m. The temperature steps used are 25 ◦C, 50 ◦C,
100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C, 450 ◦C, 500 ◦C, 525 ◦C, 550 ◦C, 570 ◦C,
585 ◦C, 600 ◦C, 620 ◦C, 640 ◦C, 660 ◦C, 680 ◦C. The solid (open) symbol represents the vertical
(horizontal) projections, and the intensity unit is mA/m. J0 is the NRM; Py = pyrrhotite, Gr = greigite;
Go = goethite; TM = titanomagnetite; MH = maghemite; M = magnetite; H = hematite.
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4.2. Magnetic Susceptibility

Figure 6 shows that the low-frequency magnetic susceptibility (χlf) of Hongzhuang
section fluctuates between 2.9 × 10−8 and approximately 32.3 × 10−8 m3/kg, and the high-
frequency magnetic susceptibility(χhf) fluctuates between 2.9 × 10−8 and approximately
31.5 × 10−8 m3/kg, and the overall fluctuation trend and microscopic trough peaks are
very similar. At the same time, there are obvious high value areas near 27 Ma, 24 Ma and
15 Ma, and there is a step-like rapid downward trend around 23.8 Ma (Figure 6a,b). Com-
pared with the good corresponding relationship between χhf and χlf, the corresponding
relationship between frequency magnetic susceptibility (χfd) and the percentage content
of frequency magnetic susceptibility (χfd%) and low frequency magnetic susceptibility
(χlf) is not obvious, and the percentage content of frequency magnetic susceptibility (χfd%)
and frequency magnetic susceptibility (χfd) is relatively low, the change trend is not ob-
vious, and some values approach or equal to zero (Figure 6c,d). This indicates that the
content of superparamagnetic particles affecting the magnetic strength of the Hongzhuang
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section is very small [29]. However, from the piece-wise linear fitting plot of low fre-
quency susceptibility (χlf) and frequency susceptibility percentage content (χfd%), it can
be seen that there are obvious differences in the contribution rate of superparamagnetic
particles in different periods (Figure 7). The linear fitting relationship between magnetic
susceptibility and frequency magnetic susceptibility at approximately 27 Ma and 15 Ma
(Figure 7b,d) is significantly improved compared with other stages (Figure 7a,c,e). It shows
that the contribution rate of superparamagnetic particles increased significantly in these
two periods. It can also be found in Figure 6a,c that the frequency magnetic suscepti-
bility and magnetic susceptibility increase synchronously at approximately 27 Ma and
15 Ma. Superparamagnetic particles are closely related to soil formation. The higher the
temperature and humidity of the climate, the longer the duration, the more fine-grained
ferromagnetic minerals are formed. On the Chinese Loess Plateau, the frequency magnetic
susceptibility of paleosol is higher and the frequency magnetic susceptibility of loess is
lower and shows a positive correlation with the change in magnetic susceptibility [36]. The
frequency magnetic susceptibility, which has a clearer indication of paleoclimate, can not
only reflect the large-scale climate change similar to the magnetic susceptibility record,
but is also sensitive to the weak climate fluctuation that cannot be clearly indicated by
the magnetic susceptibility [37]. It is considered to be an ideal proxy index to reflect the
intensity of soil formation. Therefore, we believe that the increase in correlation coefficient
R2 and frequency magnetic susceptibility at approximately 27 Ma and 15 Ma represents the
increase in superparamagnetic particles and the enhancement of soil formation.
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5. Discussion

The change in magnetic susceptibility of the loess–paleosol sequence in the Loess
Plateau of China has been shown to reflect the intensity of the East Asian monsoon and can
be used as a quantitative index for the inversion of paleoprecipitation [38,39]. However,
under different climatic conditions, the characteristics of environmental magnetic parame-
ters are very different. Due to the high water content in the soil, the magnetic minerals of
the strongly developed paleosol are transformed into weak magnetic minerals, resulting
in a decrease in magnetic susceptibility [40]. The eolian sediments in the Xining basin
have weak pedogenesis due to local climate drought, which makes frequency susceptibility
low and stable [41]. More research evidence has shown that the magnetic susceptibility
of surface soil sediments is controlled by changes in regional precipitation. The magnetic
characteristics of sediments in different climatic zones are also different [42,43]. When the
annual precipitation in the region is less than 300 mm, the superparamagnetic particles
produced in the sediments are less due to the low soil formation, and the contribution rate
of coarse debris magnetic particles to the sediments is larger. When the annual precipitation
in the region is greater than 300 mm, the magnetic susceptibility of the surface sediments
will increase with increasing precipitation, and soil formation will also increase, show-
ing the increase in frequency magnetic susceptibility (the increase in superparamagnetic
magnetic particles in the sediments). However, when the precipitation reaches more than
1000 mm, the situation has changed. Due to excessive precipitation, the water content of
the sediment is too high, so the magnetic minerals in the sediment undergo a reduction
reaction, which reduces the magnetic strength of the sediment [44–46]. At the same time,
the effect of temperature on soil formation is also very obvious. When the temperature
is low, the soil formation is low, and the superparamagnetic magnetic particles produced
in the sediment are less. When the temperature is high, the opposite is true [47,48]. In
summary, magnetic susceptibility and other related environmental magnetic indicators are
controlled by regional annual precipitation and regional temperature.

The magnetic strength of sediments is not only controlled by the annual precipitation
in the region, but also related to the amount of magnetic minerals input from the sediment
source. During the active period of the structure, the terrain height difference changes
drastically, and the sediments are quickly brought to the sedimentary basin for deposition,
which brings a large amount of magnetic material input, and its ferromagnetic material
cannot be fully oxidized, resulting in more magnetite with stronger magnetic strength in
the sediments. In the period of relatively stable structure, the sediment has undergone a
sufficient oxidation process before reaching the sedimentary area, resulting in the formation
of hematite with relatively weak magnetic strength [49]. The above research shows that
the tectonic uplift also controls the magnetic susceptibility. Recent studies of magnetic
stratigraphy and paleostratigraphy in the Qaidam Basin show that two intense tectonic
deformations occurred during the Oligocene to Middle Miocene [50–52]. Zhang Kexin et al.
found a large number of unconformity surfaces in the plateau and surrounding basins
around 25 Ma, indicating the dramatic uplift of the plateau during this period [25]. Yin et al.
believe that the East Kunlun orogenic belt was rapidly uplifted around 29 to 24 Ma [53].
Pares et al. believe that the plateau uplift during the Oligocene period has affected the
northeastern margin of the Qinghai-Tibet Plateau [18]. The uplift event at approximately 20
to 25 Ma recorded at the Xining basin and the rapid denudation event in the source area of
Linxia basin was recorded by the apatite fission track at approximately 14 Ma [16,54]. The
uplift of the Tibetan Plateau will lead to the increase in land–sea thermal contrast, which
will promote the increase in monsoon precipitation in China. In particular, the northward
and outward expansion of the Tibetan Plateau has been proved to strengthen the intensity
of the East Asian summer monsoon and make it deep into the inland [55,56]. Based on
the above points, the change in magnetic susceptibility is closely related to the East Asian
summer monsoon and the uplift of the Qinghai-Tibet Plateau.
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As shown in Figure 8, the deposition rate, low-frequency magnetic susceptibility
and frequency magnetic susceptibility of the Hongzhuang section are compared. In or-
der to facilitate the comparison, we added the deep-sea oxygen isotope change curve
(Figure 8a) [14] and the magnetic susceptibility curve of the aeolian sediments in the
Zhuanglang area(Figure 8b) [26]. The deposition rate of the study area at approximately
27 Ma, 22 Ma and 15 Ma is obviously accelerated (Figure 8e), which is interpreted as a series
of expansion events in the northeast direction of the Tibetan Plateau. By comparing the
magnetic susceptibility (Figure 8d) with the deep-sea oxygen isotope (Figure 8a), it can be
seen that except for the time periods around 27 Ma and 15 Ma, both the overall change trend
and the local micro-fluctuations show a good correspondence, showing a good positive
correlation. It can be explained that the intensity of the East Asian summer monsoon is
mainly controlled by global temperature. It is worth noting that the negative correlation
between magnetic susceptibility and deep-sea oxygen isotope and the phenomenon that
magnetic susceptibility lags behind the increase in deep-sea oxygen isotope appear at
approximately 27 Ma and 15 Ma, respectively (Figure 8). Combined with Figure 7, it can be
seen that the fitting relationship between magnetic susceptibility and frequency magnetic
susceptibility at approximately 27 Ma and 15 Ma is significantly better than other time
periods, indicating that the soil formation in the two periods is strong, especially at approx-
imately 15 Ma. The magnetic susceptibility of the profile and Zhuanglang red clay showed
a significant upward trend, showing a good positive correlation, and the latter’s research
has confirmed that the East Asian monsoon was significantly enhanced at approximately
16 Ma, and the formation time of the East Asian monsoon was approximately 25 Ma or
earlier [26]. The magnetic susceptibility at approximately 15 Ma (Figure 8) obviously lags
behind the increase in global temperature; however, it increases synchronously with the
deposition rate. We believe that the increase in magnetic susceptibility during this period
is mainly due to the expansion and uplift of the plateau, which leads to the enhancement
of the East Asian summer monsoon [57]. The global temperature was at a low level around
27 Ma; however, the deposition rate accelerated significantly during this period, and the
plateau uplifted, which should strengthen the East Asian summer monsoon. However, the
soil formation is slightly lower than that of 16 Ma. We believe that the slightly lower soil
formation in this period is due to the low global temperature. However, the contribution
rate of superparamagnetic particles around 27 Ma and 15 Ma is still lower than that of
aeolian sediments in the Loess Plateau [58]. We believe that this is due to the acceleration
of denudation by the uplift of the plateau, resulting in an increase in the input of magnetic
minerals in the source area, increasing the proportion of coarse-grained magnetic minerals,
making the contribution rate of superparamagnetic particles low. In summary, this paper
believes that the magnetic susceptibility fluctuation in this area during the tectonic gentle
period is mainly controlled by the global temperature, and the magnetic susceptibility
fluctuation in this area during the tectonic active period is controlled by the East Asian
summer monsoon enhancement and the input of coarse-grained magnetic minerals caused
by the plateau uplift.
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6. Conclusions

The rock magnetism of 238 m aeolian red clay and fluvial and lacustrine sedimentary
samples in Hongzhuang section is studied and analyzed, and the following conclusions
are obtained:

(1) Magnetostratigraphy results show that the Cenozoic sedimentary sequence of the
Xunhua Basin in the northeastern margin of the Tibet Plateau records a continuous
geomagnetic polarity sequence from C5ACn to C10r. Therefore, the interval span of
this section is 30–14.3 Ma from the early Oligocene to the middle Miocene.

(2) The enhancement events of the East Asian summer monsoon at approximately 27 Ma
and 15 Ma are mainly controlled by the uplift of the Tibetan Plateau. The East Asian
summer monsoon is mainly controlled by global temperature in 30~14.3 Ma.

(3) Rock magnetic analysis reveals that the reason for the increase in magnetic susceptibil-
ity of sediments is because of the increase in superparamagnetic particles caused by
soil formation and the input of near-source magnetic materials resulted in the uplift
of mountains around the Xunhua basin, while the plateau expanded to the northeast.
The climate in this area is controlled by the combination of the global temperature
and the Plateau uplift.
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