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Abstract: Late Paleozoic–early Mesozoic intrusive rocks are distributed widely along the northern
margin of the Qaidam Basin in the northern Tibetan Plateau. To constrain the tectonic evolution,
we carried out petrological, chronological, and geochemical studies of the Chahannuo gabbros. LA-
ICP-MS Zircon U–Pb dating yields an age of 255.0 ± 0.9 Ma for the gabbros, which confirms the
existence of Indosinian tectono-magmatic activity on the northern margin of the Qaidam Basin. The
Chahannuo gabbros have low whole-rock SiO2, Fe2O3 contents, and high Al2O3 contents, which
suggests a calc-alkaline affinity. In addition, the gabbros have high MgO, Cr, and Ni contents and
Mg#, similar to those predicted of the regional basaltic melts, and indicating that they were affected
mainly by fluid from the subducted slab. The Chahannuo gabbros are characterized by arc-like trace
element patterns, with enrichment in LREE and LILE, and depletion in HREE and HFSE. No obvious
negative Eu anomalies also indicate that no significant magmatic differentiation has occurred. The
low Nb/La ratio and Ti content in gabbros samples suggests that the Chahannuo gabbros were
partially contaminated by the crust during their formation. The Chahannuo gabbros have high
incompatible element ratios (Rb/Sr, Th/Nd, and Th/La), which are closer to the category of enriched
mantle. Combing our data with previous data from contemporaneous magmatism in the region,
we suggest that the Chahannuo gabbros formed in a continental arc environment related to the
northward subduction of the Paleo-Tethyan oceanic plate.

Keywords: northern margin of Qaidam Basin; Indosinian; gabbros; zircon U–Pb dating; geochemistry

1. Introduction

The northern margin of the Qaidam Basin is a multicycle orogenic system located
on the northern margin of the Tibetan Plateau (Figure 1) [1–3]. The Caledonian and Hi-
malayan tectonic movements had a significant impact on the tectonic evolution process
of the northern margin of Qaidam. The Precambrian metamorphic basement in the north-
ern margin of Qaidam is mainly composed of the Paleoproterozoic Dakendaban Group
and the Middle Neoproterozoic tonalite monzogranitic gneiss. In the middle and late
Neoproterozoic, the northern margin of Qaidam underwent the breakup of the Rodinia
supercontinent and the opening and expansion of the South Qilian Ocean. From ca. 540 to
446 Ma, the South Qilian Ocean subducted northward to the Qilian Block, and the northern
margin of Qaidam was in the stage of ocean subduction, island arc, and back arc basin
evolution. The stage of ocean basin closing and continental deep subduction was during ca.
445–420 Ma. At ca. 420–400 Ma, subduction, exhumation, and orogeny began, followed
by post-orogenic compression, extension, and denudation. The molasse of the Devonian
Wasiushan Formation marks the end of the Caledonian orogeny [4–12]. However, the
geologic history of the northern margin of the Qaidam Basin and the neighboring orogens
during the late Hercynian–Indosinian still remains poorly constrained, due to the paucity of

Minerals 2023, 13, 651. https://doi.org/10.3390/min13050651 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13050651
https://doi.org/10.3390/min13050651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-3808-955X
https://doi.org/10.3390/min13050651
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13050651?type=check_update&version=1


Minerals 2023, 13, 651 2 of 15

tectonothermal signatures preserved during a magmatic [7,13–18]. Some researchers have
suggested that the tectonic setting of the Qaidam Basin during the late Paleozoic–Mesozoic
involved the northward subduction and collision of the Anyimaqen–Mianlue Ocean [15,19],
some have suggested break-off of the Paleo-Tethyan slab in the post-collision stage [20,21],
and others have proposed the northward subduction and collision of the Qinling–Qilian
tectonic belt [13,22].

The northern margin of the Qaidam Basin, representing the junction between the
Qinling–Qilian and East Kunlun tectonic belts, is a key area for studying the late Hercynian–
Indosinian geotectonics and evolution of the Paleo-Tethys [23]. The object of this study
are the Chahannuo gabbros, located in the most well exposed area of the Carboniferous–
Triassic rocks from the eastern part of the northern margin of the Qaidam Basin. Here, we
report original petrological, zircon U–Pb ages, and whole-rock geochemical data of the
Chahannuo gabbros to provide insights into the late Paleozoic–early Mesozoic tectonic
evolution of the northern margin of the Qaidam Basin.
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2. Regional Geological Setting

The northern margin of the Qaidam Basin is located on the northern side of the Qaidam
Block. The western end is truncated by the AltynTagh strike-slip Fault and the eastern
end by the Wahongshan Fault. To the north, the basin is separated from the South Qilian
orogenic belt by the Qinghai Nanshan Fault [26–29]. Tectonically, it consists of several units
that strike E–W (Figure 1). From south to north, the northern margin of the Qaidam Basin
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can be divided into an early Paleozoic subduction zone, the Oulongbuluke Block, and the
Zongwulong tectonic zone [1,15,26,28,30,31].

The early Paleozoic Qaidam subduction zone exposed rocks that date from the Pro-
terozoic to the late Paleozoic, including the Dakendaban Group, the Shaliuhe Group, the
Tanjianshan Group, and the Yaniushan Formation [5,26,32]. The Oulongbuluke Block is
composed mainly of the Dakendaban Group, the Delingha Complex, the Wandonggou
Group, and the Nanhua–Sinian Quanji Group. The northeastern part of the Oulongbuluke
Block underwent high amphibolite to granulite facies metamorphism and melting at depth
during the early Paleozoic [33–37], and many early Paleozoic and late Paleozoic–Mesozoic
intrusive rocks were exposed [9,11,14,38]. The Zongwulong tectonic belt is composed
mainly of the Dakendaban Group, the Carboniferous Zongwulong Group, the Early–
Middle Triassic Junzihe Group, Indosinian granite, and island arc volcanic rocks [15,39].

Strong magmatic activity in the northern margin of the Qaidam Basin, mainly consisted
of intermediate-acid rocks. The late Hercynian–Indosinian igneous rock mainly consisted of
late Permian–middle Triassic gabbros and calc alkaline I-type granite, and a small amount
of late Triassic A-type granite. The surrounding rock are mainly amphibolite, gneiss,
migmatite, granulite, quartz schist, phyllite, and marble, and no obvious metasomatism
and thermal metamorphism is found at the contact boundary. In the adjacent western
Qinling and eastern Kunlun regions, Triassic intermediate-acid volcanic rocks and granite
are widely developed, and together formed the igneous rock belt closely related to the
evolution of the Paleo-Tethys Ocean. In the western Qinling, there are mainly calc alkaline-
high potassium calc alkaline granodiorite and Late Triassic basalt, andesite, dacite, and
rhyolite. The arc-type granite closely related to subduction is developed in the East Kunlun
region, mainly consisting of a combination of monzogranite and potassium feldspar granite.

Gabbros samples were collected from the Chahannuo area in the eastern part of the
Oulongbuluke Block (Figure 2). The Chahannuo gabbros (Figure 3a,b) are exposed over
~6 km2 and were emplaced into Neoproterozoic–early Paleozoic gneisses. They consist
of plagioclase, pyroxene, and amphibole (Figure 3c,d). The main accessory minerals are
apatite, zircon, and titanite. Plagioclase crystals are subhedral to euhedral, 1–3 mm in
length, and show a poikilitic texture. Plagioclase is occasionally sericitized. The pyroxene
crystals are 0.5–3 mm in length, and exist as a subhedral granular texture.
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3. Analytical Methods
3.1. Major and Trace Elements

In the geochemical analysis, samples were crushed and milled to ~80 µm and surface
alteration was removed. Before testing, acid digestion of samples in Teflon bombs was
conducted. The instruments used were X-ray fluorescence (XRF; 1500) and ICP-MS (El-
ement II), respectively. These measurements were conducted at the Institute of Geology
and Geophysics, Chinese Academy of Sciences. USGS and Chinese national rock (BCR-2,
GSR-1, and GSR-3) were used as test standards. The analytical precision and accuracy of
the major elements were better than 5% and for most of the trace elements were better than
2%. The detailed analytical procedures were described in [40].

3.2. Zircon U–Pb Dating

LA-ICP-MS zircon U–Pb experiments were conducted at the State Key Laboratory of
Continental Dynamics, Northwest University, Xi’an, China. The zircons were separated by
flotation and electromagnetic methods. Handpicking of zircons occurred under a binocular
microscope, and they were mounted in epoxy resin, using standard heavy liquid and
magnetic techniques to separate them, and the sample mount was polished. The FEI
PHILIPS XL30 SFEG instrument was used to document the internal zircon structures by
cathodoluminescence. Test conditions: with 2 min scanning time at 15 kV and 120 nA. This
method assisted with the interpretation of the U–Pb data [41,42].

Zircon U–Pb dating was performed using an ICP-MS (Agilent 7500a) and an excimer
laser ablation system (193 nm, GeoLas 200 M, Lambda Physic). The NIST SRM-610 standard
glass was used as standard minerals for instrument calibration. The external reference
materials and internal standard for zircon dating and element analyses were He stream
and 29Si, respectively. The isotopic ratios and element concentrations of zircons were
calculated using the Glitter software (ver. 4.0, Macquarie University), and concordia ages
and diagrams were obtained using Isoplot/Ex (ver. 2.94) [43].
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4. Results
4.1. Whole-Rock Geochemistry

The whole-rock major and trace element contents are listed in Table 1. The Chahannuo
gabbros have low SiO2 (51.16–53.01 wt.%), P2O5 (0.03–0.34 wt.%), TiO2 (0.40–0.99 wt.%),
and total Fe2O3 (6.43–8.92 wt.%) contents, and high Al2O3 (9.09–13.38 wt.%) contents
(Table 1). On a total alkali versus silica (TAS) classification diagram (Figure 4a), they plot in
the gabbroic diorite field. In the Nb/Y vs. Zr/TiO2 diagram, the sample falls into the basalt
region (Figure 4b). The low total alkali contents (ALK = 2.15–4.65 wt.%) and Rittmann
index values (σ = 0.56–2.49) indicate that the Chahannuo gabbros are subalkaline. On a
K2O versus SiO2 diagram (Figure 4c) and AFM diagram (Figure 4d), the samples plot along
the subalkaline series and show a calc-alkaline affinity.
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Table 1. Major (wt.%) and trace element (ppm) data for Chahannuo gabbros.

Sample CHR01 CHR02 CHR03 CHR04 CHR05 CHR06 CHR07 CHR08 CHR09 CHR10

SiO2 52.48 52.01 52.68 53.01 51.26 51.16 51.66 52.36 51.28 51.68
TiO2 0.52 0.46 0.41 0.41 0.53 0.56 0.54 0.40 0.76 0.99

Al2O3 10.02 10.66 12.04 11.43 9.09 9.16 9.81 13.25 13.70 13.38
TFe2O3 7.42 7.38 6.43 6.92 8.82 8.78 7.66 6.38 8.92 8.82

MnO 0.12 0.12 0.11 0.13 0.14 0.14 0.12 0.12 0.16 0.16
MgO 14.01 14.19 11.87 12.36 15.20 15.05 14.59 10.85 9.34 8.28
CaO 11.03 9.71 11.69 10.22 10.13 10.43 10.29 11.23 10.23 10.23

Na2O 1.86 1.93 2.49 2.42 1.26 1.31 2.04 2.53 2.47 2.93
K2O 0.94 1.41 0.92 0.85 0.89 0.91 1.07 0.99 0.64 1.72
P2O5 0.05 0.03 0.04 0.05 0.03 0.03 0.04 0.05 0.12 0.34
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Table 1. Cont.

Sample CHR01 CHR02 CHR03 CHR04 CHR05 CHR06 CHR07 CHR08 CHR09 CHR10

LOI 1.68 2.07 1.25 2.33 2.61 2.41 2.30 1.62 2.12 1.37
TOTAL 100.13 99.97 99.93 100.13 99.96 99.94 100.12 99.78 99.74 99.90

FeO 5.61 5.09 4.38 5.02 6.18 5.78 5.61 4.38 5.75 5.89
Mg# 78.90 79.20 78.53 77.96 77.34 77.25 79.05 77.11 67.47 65.03

A/NK 3.58 3.19 3.53 3.50 4.23 4.13 3.15 3.76 4.41 2.88
A/CNK 0.72 0.82 0.80 0.85 0.74 0.72 0.73 0.90 1.03 0.90
A/MF 0.47 0.49 0.66 0.59 0.38 0.38 0.44 0.77 0.75 0.78
C/MF 0.51 0.45 0.64 0.53 0.42 0.44 0.46 0.65 0.56 0.60

Sc 38.50 32.76 36.88 33.38 39.08 39.00 36.94 32.32 35.29 29.90
Co 48.93 52.70 39.99 36.16 66.29 63.78 55.03 37.64 37.33 37.32
Ni 154.54 167.53 121.13 101.36 179.90 170.90 194.38 87.10 46.31 69.62
Cu 7.20 23.34 32.62 12.95 42.42 39.97 19.92 12.75 18.26 17.34
Zn 56.65 62.17 48.64 54.68 71.74 67.22 64.19 53.17 77.48 88.26
Ga 10.26 10.58 12.34 11.20 11.15 10.94 10.86 13.50 14.25 15.63
Rb 52.31 69.38 54.20 43.47 39.24 39.45 50.59 45.34 24.76 43.91
Sr 163.44 182.00 212.21 362.05 118.31 115.57 143.77 211.87 214.89 422.45
Y 16.94 15.92 15.35 16.28 16.45 17.04 17.66 13.34 16.08 22.54
Zr 35.94 32.50 30.54 35.09 29.86 28.87 34.27 29.71 65.79 58.64
Nb 3.97 3.41 3.92 3.54 3.81 3.88 3.99 2.93 4.31 6.84
Mo 0.10 0.09 0.23 0.10 0.18 0.10 0.15 0.18 0.10 0.22
Sn 1.66 1.86 1.30 1.30 1.39 1.47 1.64 1.11 1.02 3.74
Cs 2.69 1.66 3.49 1.99 1.47 1.45 2.33 2.54 1.58 0.89
Ba 171.56 324.76 224.24 172.29 146.06 146.80 189.40 145.08 105.49 537.32
La 11.45 12.49 13.97 14.71 10.47 10.22 11.55 11.45 10.15 32.24
Ce 23.90 24.93 26.46 28.18 21.99 21.74 24.19 21.94 20.44 61.01
Pr 3.05 3.06 3.09 3.32 2.87 2.85 3.03 2.56 2.57 7.60
Nd 12.43 12.12 11.86 12.97 12.49 12.52 13.27 10.28 11.24 31.65
Sm 3.00 2.80 2.67 2.83 2.77 3.07 3.16 2.41 2.82 7.04
Eu 0.66 0.67 0.61 0.70 0.66 0.64 0.68 0.62 0.74 1.98
Gd 3.09 2.96 2.65 2.73 3.25 3.17 3.31 2.72 2.92 6.91
Tb 0.58 0.54 0.49 0.52 0.56 0.58 0.59 0.46 0.57 1.07
Dy 3.05 3.25 2.83 2.91 3.27 3.36 3.49 2.56 3.09 5.15
Ho 0.67 0.60 0.57 0.61 0.65 0.68 0.71 0.52 0.65 0.89
Er 1.85 1.71 1.56 1.65 1.89 1.89 1.94 1.55 1.84 2.35
Tm 0.28 0.26 0.25 0.30 0.28 0.29 0.30 0.23 0.29 0.33
Yb 1.73 1.72 1.63 1.96 1.83 2.02 1.89 1.59 1.89 2.24
Lu 0.29 0.27 0.24 0.27 0.27 0.28 0.30 0.22 0.27 0.32
Hf 1.21 1.12 1.05 1.22 1.09 1.15 1.32 1.13 1.62 1.96
Ta 0.38 0.35 0.39 0.39 0.35 0.33 0.37 0.33 0.30 0.40
Pb 3.85 8.54 6.17 5.61 3.21 3.13 4.59 4.52 13.01 7.29
Bi 0.27 0.29 0.21 0.17 0.12 0.11 0.24 0.11 0.23 0.11
Th 3.98 4.98 6.60 6.69 4.04 3.66 5.59 4.48 2.28 6.56
U 0.87 0.78 0.99 0.84 0.71 0.65 0.75 0.76 0.31 1.57
δEu 0.66 0.71 0.70 0.77 0.67 0.62 0.64 0.74 0.79 0.86

∑REE 66.02 67.38 68.87 73.67 63.25 63.32 68.42 59.10 59.50 160.75
LREE 54.47 56.08 58.65 62.71 51.25 51.04 55.88 49.26 47.97 141.50
HREE 11.55 11.30 10.22 10.96 12.00 12.27 12.54 9.84 11.53 19.25

The chondrite-normalized rare earth element (REE) and primitive mantle-normalized
immobile trace element patterns of the samples are illustrated in Figure 5. All of the samples
have similar REE and trace element patterns, indicating that they have the same magmatic
source. The total amount of rare earth elements (REE) in the sample was relatively low,
where LREE content ranged from 49.26 ppm to 141.50 ppm, HREE content ranged from
9.84 ppm to 19.25 ppm, and the LREE/HREE ratio was from 4.16 to 7.35. The enrichment
of LREE and weak fractionation of middle and heavy REEs (Figure 5a) was similar to
typical island arc magmas [46]. There were only weak negative Eu anomalies in the
gabbros, indicating that weak plagioclase separation crystallization occurred during the
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rock evolution process. On a primitive mantle-normalized trace element spider diagram,
the samples showed enrichment in large ion lithophile elements (LILEs; e.g., Sr, Rb, Ba, U,
and K) and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti; Figure 5a),
which are similar to those of island arc magmas [47,48].
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Figure 5. Chondrite-normalized rare earth element distribution patterns (a) and primitive mantle-
normalized trace element spider diagrams (b); normalization values are from [49,50].

4.2. Zircon U–Pb Age

Zircon U–Pb results are listed in Table 2. Most zircon grains from the Chahannuo
gabbros are colorless to pale brown, euhedral to subhedral, and 100–200 µm long with shape
ratios of 1:1–2:1 (Figure 6). Most grains display clear oscillatory and concentric zoning, and
many grains show convoluted and truncated zoning. These features, together with their
high Th/U ratios (mostly > 0.4), indicate a magmatic origin [51–56]. To ensure the accuracy
of the ages, analysis points were selected within the oscillatory zones. Most analyses plot
on or near the concordia, yielding a weighted mean 206Pb/238U age of 255.0 ± 0.9 Ma (late
Permian; Figure 7).
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Table 2. U–Pb isotopic composition of zircons in Chahannuo gabbros.

Spots Pb Th U Th/U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
Concordance(ppm) (ppm) (ppm) Ratios 1δ Ratios 1δ (Ma) 1δ (Ma) 1δ

CHR.01 31.42 160 178.49 0.90 0.29234 0.00972 0.04152 0.00033 260 7 262 2 0.97
CHR.02 54.56 317.79 311.78 1.02 0.31248 0.00711 0.04124 0.00027 276 5 261 2 0.98
CHR.03 37.03 240.97 219.14 1.10 0.31727 0.00823 0.03981 0.00029 280 7 252 2 0.91
CHR.04 64.37 233.28 376.31 0.62 0.28439 0.00654 0.04027 0.00026 254 5 255 2 0.97
CHR.05 33.93 249.66 198.45 1.26 0.2979 0.00999 0.04023 0.00034 265 6 254 2 0.97
CHR.06 67.15 531.73 391.01 0.80 0.27972 0.00649 0.04035 0.00026 250 5 255 2 0.98
CHR.07 35.82 168.68 209.90 0.80 0.28304 0.01055 0.04008 0.00036 253 6 253 2 0.99
CHR.08 63.87 313.97 371.60 0.84 0.29304 0.00762 0.04034 0.00029 261 5 255 2 0.95
CHR.09 43.60 183.06 250.63 0.73 0.29614 0.00894 0.0408 0.00032 263 5 258 2 0.97
CHR.10 121.44 1088.82 709.90 1.53 0.300 0.00541 0.0401 0.00023 266 5 253 1 0.98
CHR.11 48.95 324.03 282.97 1.15 0.27736 0.00853 0.04048 0.00032 249 7 256 2 0.99
CHR.12 75.16 382.32 440.99 0.87 0.28429 0.01015 0.03969 0.00028 254 6 251 2 0.94
CHR.13 97.80 395.41 572.08 0.69 0.29764 0.00613 0.03995 0.00025 265 5 253 2 0.95
CHR.14 62.27 449.23 358.50 1.25 0.29824 0.00822 0.04057 0.0003 265 5 256 2 0.94
CHR.15 50.52 242.88 293.62 0.83 0.29687 0.0094 0.04017 0.00033 264 6 254 2 0.94
CHR.17 52.27 286.78 301.36 0.95 0.27754 0.00894 0.04042 0.00033 249 6 255 2 0.99
CHR.19 51.68 301.35 298.25 1.01 0.29736 0.01121 0.04033 0.00038 264 7 255 2 0.95
CHR.23 101.60 595.31 588.97 1.01 0.28238 0.00695 0.04003 0.00028 253 5 253 2 0.99
CHR.25 122.96 546.39 704.46 0.78 0.29882 0.00617 0.04046 0.00025 265 5 256 2 0.99
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5. Discussion
5.1. Crustal Contamination

Crustal contamination often occurs during magmatic evolution and emplace-
ment [57–59]. The Chahannuo gabbros have low Ce/Pb (1.57–3.90), Nb/U (3.89–13.80),
and Nb/Ta (8.87–16.94) ratios, which are lower than those of MORB, OIB, and chondrites
(Ce/Pb = 25 ± 5, Nb/U = 47 ± 7, Nb/Ta = 19.9 ± 0.6), but closer to the Ce/Pb, Nb/U, and
Nb/Ta ratios of continental crust (4, 10, and 12–13, respectively) [60–62]. These features
indicate the addition of crustal components.

The Chahannuo gabbros also have lower Nb/La (0.21–0.38) and Nb/Ce (0.11–0.21)
ratios than the primitive mantle (1.02 and 0.4, respectively), average crust (0.69 and 0.33,
respectively), and average lower crust (0.83 and 0.39, respectively) [49]. This suggests that
the mafic magma did not form by mixing between crustal and mantle material. In addition,
a large amount of crustal contamination will increase the LILE, Si, K2O, and Na2O contents
and Nb/Ta ratios, and decrease the Mg, Ni, P2O5, and TiO2 contents [59,63]; however, the
Chahannuo gabbros are characterized by low Si contents and Nb/Ta ratios and high Mg
and Ni contents, suggesting that they were partially contaminated by the crust during
their formation.
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The Ti element is not easily affected by alteration in geological processes, and negative
Ti anomaly is usually considered as one of the characteristics of continental
crust [59–61]. Therefore, negative Ti anomaly is often used as one of the indicators to
determine whether mantle-derived magma has been contaminated by crust source. The
content of TiO2 in the Chahannuo gabbros is very low, showing weak negative anomalies
in primitive mantle-normalized immobile trace element patterns. It also indicates that it is
partially contaminated by the crust.

5.2. Petrogenesis and Magmatic Source

Mafic rocks, including gabbros, are usually derived from the lithospheric mantle
or asthenospheric mantle [63,64]. In the Nb/Y vs. Zr/TiO2 diagram, all samples of the
Chahannuo gabbros fall into the basalt area, indicating that the primary magma of gabbros
is basaltic magma. Some high field strength element ratios of the igneous rock chemical
composition can be used to indicate the magma source area, because it is not easily affected
by later hydrothermal alteration and metamorphism. This study shows that the Zr/Ba,
La/Nb, and La/Ta values of the basalt source from the asthenosphere mantle are greater
than 0.2, less than 1.5, and less than 22, respectively. The above ratios of basalt source from
the lithospheric mantle are less than 0.2, greater than 1.5, and greater than 22, respectively.
The average Zr/Ba, La/Nb, and La/Ta values of gabbros samples are 0.19, 3.35, and 17,
respectively, suggesting that the magma source is from the lithospheric mantle [65]. The
Chahannuo gabbros samples have high incompatible element ratios, the Rb/Sr, Th/Nd,
and Th/La ratios are 0.25, 0.37, and 0.37, respectively, which are closer to the category
of enriched mantle. The primary magma of the Chahannuo gabbros is enriched in MgO
(8.28–15.20 wt.%), Ni (45.31–194.38 ppm), and has high Mg# (65–79), which indicates that
the gabbros are derived mainly from the partial melting of mantle rocks [66]. However,
the Chahannuo gabbros are enriched in LREEs and LILEs (e.g., Sr, Rb, Ba, U, and K) and
depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti), which may have been caused by
contamination by continental crustal material or metasomatism by subduction-derived
fluid or melt [67,68]. As discussed above, the degree of contamination of the Chahannuo
gabbros by crustal materials is low; therefore, metasomatism by subduction-derived fluid
or melt is the most likely explanation for the arc-like geochemical characteristics of the
Chahannuo gabbros.

The Chahannuo gabbros have high Th/Yb ratios (1.21–4.05), suggesting that they
were affected by a subduction component [69]. Different subduction components produce
arc magmas with different geochemical characteristics [70–73]. Magmas formed by fluid
metasomatism often have higher LILE (e.g., Rb, Ba, and Sr), P, and U contents and thus
have higher Ba/Nb, Ba/Th, and Sr/Th ratios [70–73], whereas magmas formed by melt
metasomatism often have higher LREE and Th contents and Th/Ce ratios [74–78]. The
Chahannuo gabbros have high Ba/Th (25.75–81.87) and Sr/Th (29.29–94.06) ratios and
low Th contents (6.69–228) and Th/Ce ratios (0.11–0.25). In addition, during subduction,
hydrous fluid will generally inhibit the crystallization of plagioclase, which results in
negative Eu anomalies in the residual melt [79]. There are no clear negative Eu anomalies
in the Chahannuo gabbros, suggesting that the fractional crystallization of plagioclase was
limited. Trace element ratios (e.g., Th/Yb, Ba/La, Sr/La, and La/Yb) may indicate the
input of hydrous fluid or subducted sediments. The Chahannuo gabbros samples have
a narrow range of Th/Yb (1.21–4.05) and La/Yb (5.38–14.41) ratios and a wider range
of Ba/La (10.39–26.01) and Sr/La (11.30–24.62) ratios. These data imply a large input
of hydrous fluid to the mantle source area [80–82]. On the Th/Yb–Ba/La and Sr/La–
La/Yb diagrams (Figure 8), the Chahannuo gabbros plot along a trend controlled by fluid
metasomatism. In summary, the genesis of the Chahannuo gabbros is related to subduction-
related metasomatism by hydrous fluid, suggesting that mafic magma may come from the
partial melting of the enriched mantle.
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5.3. Tectonic Environment and Geological Significance

The following hypotheses about the tectonic setting of the Indosinian magmatism
on the northern margin of the Qaidam Basin have been proposed. The magma was
formed during: (1) the northward subduction and collision of the Anyimaqen–Mianlue
Ocean [18,19]; (2) a post-collision stage related to subduction of the Paleo-Tethyan oceanic
plate [20,21]; (3) subduction and collision of the West Qinling and Qilian massifs [13,22].

The composition of rocks can be used to constrain the tectonic environment. The TiO2
content of basalts formed in different tectonic environments varies. The TiO2 content of
island arc basalt is ~0.98 wt.%, whereas those of the ridge tholeiitic basalt, island tholeiitic
basalt, and intraplate are 1.5 wt.%, 2.63 wt.%, and 2.23 wt.%–2.90 wt.%, respectively. In
terms of trace elements, compared to the intraplate alkaline basalt, the Nb and Ta contents
of island arc basalt are very low, at 1.7 × 10−6–2.7 × 10−6, and 0.1 × 10−6–0.18 × 10−6,
respectively. Moreover, the element ratios of basaltic rocks in different environments also
varies. Generally, intraplate basalts and mid-ocean-ridge basalts are relatively rich in TiO2
and HFSE, and the element ratios have the following characteristics: Nb/La > 0 8, La/
Ta < 15, Th/Ta < 3, Ta/Yb < 0.1. The Chahannuo gabbros have low TiO2 contents (0.54 wt.%),
high Al2O3 contents, and higher Na2O than K2O contents. They are also enriched in LILEs
(Rb, K, Sr) and depleted in HFSEs (P, Ti, Nb). On REE distribution diagrams, the LREEs are
enriched and the HREEs are depleted, which is different from those of N-MORB, E-MORB,
and OIB. The geochemical characteristics of Chahannuo gabbros are similar to those of
typical island arc calc-alkaline basalt. In addition, the element ratios of Chahannuo gabbros,
such as La/Nb (average 3.35), Nb/La (average 0.31), La/Ta (average 37.90), Th/Ta (average
13.37), Ta/Yb (average 0.20), are similar to gabbros formed in the active continental margin
arc [63]. On the tectonic discrimination diagrams (Figure 9), the Chahannuo gabbros fall
into the calc-alkaline volcanic rock and active continental margin regions, suggesting that
they may have formed in an active continental margin environment.
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Research shows the Mesozoic igneous rock in the study area is part of the continental
margin volcanic arc of the Qaidam Basin, the Early–Middle Triassic sediments are the fore-
arc basin sedimentation, and the Gonghe deep-sea basin located in the east began to rise at
the end of the Middle Triassic and completely disappeared in the Late Triassic. The West
Qinling Mountains were mainly turbidity current deposits during the Early Middle Triassic,
and transformed into shallow marine-continental deposits during the Middle Late Triassic,
gradually deepening from north to south. Therefore, it is believed that there are still oceanic
or deep-sea basins in the Early Middle Triassic of the Qinling–Qilian–East-Kunlun region,
and the continental collision orogeny has not yet started [7]. The A-type granite related
to orogenic extension and the I-type granite that formed after the early Indosinian in the
eastern section of the northern margin of the Qaidam Basin suggest that the formation
of the early Indosinian granite may not be related to a collisional environment [14]. The
chronology and geochemistry of the Middle–Late Triassic quartz diorite porphyry and
quartz porphyry on the northern side of the Anyimaqen subduction zone also suggest that
they were formed in a continental arc environment [85].

In recent years, a large number of Late Permian–Middle Triassic magmatic rocks
related to oceanic subduction have been found on the northern margin of the Qaidam
Basin [9,10,39,86–88], including the Shaykgolai granite (240 ± 2 Ma) and granodiorite
(249 ± 3 Ma), the Chahanhe granodiorite (240 ± 2 Ma), the Chahannuo granodiorite
(242 ± 2 Ma), and a quartz diorite (252 ± 1 Ma) on the northern margin of the Qaidam
Basin. In addition, these igneous rocks have similar geochemical characteristics with the
contemporaneous active continental arc igneous rock in the East Kunlun Mountains and the
West Qinling Mountains, characterized by enrichment of LREE and LILE (Rb, K, Cs), and
depletion of HREE and HFSE (Nb, Ta, Ti) [19,89]. This study indicates that the Indosinian
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magmatic belt in the northern margin of Qaidam and adjacent areas formed in a continental
arc environment during the subduction of the Paleo-Tethyan oceanic plate.

6. Conclusions

1. Zircon U–Pb dating for Chahannuo gabbros yields a 255 ± 1 Ma age, which indicates
that it is formed in the late Permian;

2. Chahannuo gabbros are characterized by enrichment in light rare earth elements and
large ion lithophile elements, and depletion in heavy rare earth elements and high field
strength elements, suggesting they represent subduction-related arc magmatic rocks;

3. The northern margin of the Qaidam basin was an active continental margin in the late
Permian to early Triassic. Chahannuo gabbros formed in a continental marginal arc
environment related to the northward subduction of the Paleo-Tethyan oceanic plate.
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