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Abstract: Ferromanganese (Fe-Mn) crusts are potential marine deposits for many high-tech metals
and are exciting proxies for recording the oceanic paleoenvironment. During their growth, phos-
phatization generally occurs, causing the remobilization and reorganization of the elements and
minerals in Fe-Mn crusts. Rare earth elements plus yttrium (REY), well-known critical metals for
many new and emerging technologies, as well as valuable geological proxies, are the important
critical metals in Fe-Mn crusts. The REY occurrence is closely influenced by the phosphatization
processes, which still remain discursive. In this study, the textures, structures, and REY geochem-
istry of the growth of an Fe-Mn crust sample (MP2D32A) from the Line Islands archipelago were
analyzed using multiple microanalysis methods. The analyzed Fe-Mn crust is mainly characterized
by the presence of laminated and concentric colloforms. Massive fine particles and some veins of
carbonate-rich fluorapatite (CFA) were observed in the old part of MP2D32A, demonstrating that this
sample underwent phosphatization. The phosphatized and non-phosphatized layers, as well as the
CFA veins, display distinctly different PAAS-normalized REY patterns. Higher REY contents in the
phosphatized layer than those in the non-phosphatized layer suggest the positive role of phosphati-
zation in REY enrichment. Moreover, the phosphatized layer contains higher REY contents than the
CFA, implying that the REY enrichment in the phosphatized layer is not only influenced by CFA and
Fe-Mn (oxyhydr)oxides but also other factors, such as the probable PO4

3− complexation induced
by Fe oxyhydroxides. The synergistical sorption of REY(III) and HPO4

2− ions on Fe oxyhydroxides
should facilitate REY enrichment during the phosphatization processes. These fundamental results
provide novel insights into the influence of phosphatization in REY geochemical behaviors in the
Fe-Mn crust.

Keywords: ferromanganese crusts; REY; phosphatization; carbonate-rich fluorapatite (CFA)

1. Introduction

Marine ferromanganese (Fe-Mn) crusts, as well as Fe-Mn nodules, are the most impor-
tant polymetallic deep-sea Fe-Mn deposits, which are generally composed of nanosized
Fe-Mn (oxyhydr)oxides [1,2]. The Fe-Mn crusts are formed globally due to precipitation
of these Fe-Mn (oxyhydr)oxides on the surface of seamounts, ridges, and plateaus at a
water depth of 400–7000 m [1,3,4]. These nanosized Fe-Mn (oxyhydr)oxides in the Fe-Mn
crusts are commonly precipitated from seawater and are clarified into three major types of
origin: hydrogenetic, diagenetic, and hydrothermal [5–7]. During Fe-Mn crust precipitation,
the Mn oxides commonly take negative charges whereas the Fe (oxyhydr)oxides possess
positive charges, giving rise to the accumulation of various charged metals (e.g., cobalt (Co),
nickel (Ni), rare earth elements plus yttrium (REY)) from the ambient seawater [3,8–10].
Therefore, the Fe-Mn crusts are the potential deposits of numerous critical metals for many
high- and green-technologies [4,11] and are further regarded as exciting proxies recording
paleoenvironmental variability (e.g., chemical and redox environments) [3,12–16].
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Generally, most of the Fe-Mn crusts underwent phosphatization [17–20], causing
changes in the elements and minerals of the primary crust precipitate [18], such as the
occurrence of carbonate-rich fluorapatite (CFA, Ca9.54Na0.33Mg0.13(PO4)4.8(CO3)1.2F2.48 [21])
in the old phosphatized part of the Fe-Mn crusts [16,18,22–24]. The Pacific Ocean is the
primary area (e.g., Magellan Seamounts and Line Islands archipelago) for the occurrence of
Fe-Mn deposits [3,16,25], where over 80% of Fe-Mn crusts around the world are found [26].
In the Pacific Ocean, there are two major episodes of phosphatization: late Eocene/early
Oligocene (39–34 Ma) and late Oligocene/early Miocene (27–21 Ma), as demonstrated
by the strontium and oxygen isotope measured in the CFA from nineteen Fe-Mn crust
samples collected from the Central Pacific [19,27]. In addition, three minor phosphatization
events might also happen at approximately 71, 31, and 15 Ma [19]. The fluctuations
in climate, sea level, CO2 fluxes, and bottom water circulation may drive the cycles of
enrichment and depletion of the phosphorus reservoir, leading to the phosphatization and
CFA precipitation [19]. For example, the phosphatized episode of the late Eocene/early
Oligocene (39–34 Ma) was characterized by the transition from a warm equitable climate
with sluggish oceanic circulation of the Cretaceous to middle Eocene, to a cool and more
arid climate with vigorous oceanic circulation in the Oligocene [19,28]. As a direct result of
phosphatization, hiatuses commonly occur during the growth of Fe-Mn crusts [18,19].

The occurrence of REY, which are not only high-tech metals but also useful proxies
in geological events [5], could be significantly altered after the Fe-Mn crusts underwent
phosphatization [16,18,20]. The phosphatization processes could lead to the remobilization
and reorganization of elements (e.g., REY) and minerals (e.g., Fe-Mn (oxyhydr)oxides) in the
Fe-Mn crusts [16,18,20]. For example, the suboxic conditions in the phosphate-rich seawater
caused greater REY enrichment in the older phosphatized layer compared with the younger
non-phosphatized layer in the Fe-Mn crusts [18,27]. Further, the enrichment of heavy rare
earth elements (HREE) can be even more notable [20]. However, the opposite conclusion
was drawn by [29], who reported a lower content of REY in the old phosphatized layer
than that in the young non-phosphatized layer. Hence, the influence of phosphatization on
REY occurrence in Fe-Mn crusts needs further clarification.

In this study, the REY geochemical characteristics of the non-phosphatized layer,
phosphatized layer, and CFA veins in the Fe-Mn crust (MP2D32A) from the Line Islands
archipelago were investigated using an electron probe microanalyzer (EPMA) and laser
ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). With the analysis of
the textural and structural characteristics of non-phosphatized and phosphatized layers,
the influence of phosphatization in REY geochemical characteristics in the MP2D32A
sample was discussed. The obtained findings are significant to the occurrence of REY in
phosphatized Fe-Mn crusts, the role of phosphatization in REY geochemical behaviors,
and the further use of REY in Fe-Mn crusts as proxies to investigate the environmental
variability of the ocean over millions of years.

2. Materials and Methods
2.1. Geological Setting and Sample

The studied Fe-Mn crust was collected from the Line Islands archipelago (169.62 W,
10.65 N, Figure 1) at a water depth of ~2000 m through the marine survey ship of Guangzhou
Marine Geology Bureau. Line Islands archipelago is one of the most widely known areas
where Fe-Mn crusts occur [26]. Importantly, Fe-Mn crusts in the Line Islands archipelago
are generally strongly influenced by phosphatization [18,19,25,27,30] and are appropriate
for investigating the influence of phosphatization in REY enrichment. The Line Islands
archipelago with a general northwest–southeast trend along its 4500 km length, which is
the result of hotspots (e.g., Crough, Marquesas, Tahiti) [31], is located in the central Pacific
Ocean [19,25]. The Line Islands archipelago is a collection of seamounts and volcanic ridges,
whose eruption ages generally range from 88 to 50 Ma [31]. The trends of the 87Sr/86Sr
versus 206Pb/204Pb indicate a similar mantle source [31,32].
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The phosphatization occurs in the old part of MP2D32A (Figure 1c), as demonstrated
by the elemental mapping using micro X-ray fluorescence (µ-XRF) and the observation
of a scanning electron microscope (SEM). Massive fine particles and some veins of CFA
were found in the old part of MP2D32A. Hence, a polished thin cross-section of MP2D32A
from the indicated rectangular area was analyzed using the SEM, EMPA, and LA-ICP-MS,
to obtain the characteristics of textures and structures as well as the chemical contents of
major elements and REY.
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Figure 1. (a) Sampling location. The red line in (a) indicates the Lower Circumpolar Deep Water
(LCDW) after [33]; (b) photographs of the sample and its cross-section; (c) elemental mapping of Mn,
Fe, P, and Ca within the red rectangle in (b).

2.2. Methods

The elemental mappings of Mn, Fe, P, and Ca shown by red rectangle in Figure 1 were
conducted using an M4 Plus µ-XRF instrument equipped with two XFlash Silicon Drift
Detectors and a current of 300 µA. The analyzed spot size was 20 µA with 3 mbar vacuum
applied.

The backscattered electron (BSE) images were obtained using TESCAN MIRA 3LMH
field-emission scanning electron microscope with an accelerating voltage of 15 kV.
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Line profiles of chemical compositions of the major elements and REY were obtained
by EPMA and LA-ICP-MS. A total 59 points (65 including CFA vein) were selected in the
line with an average interval of ~230 µm. The analyzed spots are shown in Figure S1. The
chemical composition of major elements was analyzed with a JEOL JXA-iSP-100 EMPA
equipped with five wavelength-dispersive spectrometers (WDS). Operating conditions for
quantitative WDS analyses were an accelerating voltage of 15 kV, a beam current of 10 nA,
and a spot size of 5 µm. Calibration was achieved by using natural and synthetic minerals
and oxides standards (e.g., Si, Mg, and Ca: diopside; Al: pyrope; K: orthoclase; Na: jadetite;
Ti: rutile; Mn: rhodonite; Fe: hematite; Co: CoO (synthetic)) and ZAF correction scheme.
The overall analytical uncertainty (including instrumental repeatability and calibration
errors) was typically <3% relative to elements at concentration levels of >3% m/m oxide.
The REY contents were measured by LA-ICP-MS with an NWR 193 laser ablation system for
laser sampling. An iCAP RQ ICP-MS instrument was used to acquire ion-signal intensities.
Helium was applied as a carrier gas. Argon was the make-up gas and mixed with the
carrier gas via a Y-connector before entering the ICP. The spot size and frequency of the
laser in the measurement were set to 30 µm and 6 Hz, respectively. The analysis was
conducted at or near the EMPA spot locations. In the calibration, SRM610, SRM612, and
BHVO-2G were applied as external standards, while the elemental total contents obtained
by EPMA were used as the internal standards. The EMPA data were only used for the
calibration of LA-ICP-MS data and were not discussed in this study.

Fourier transform infrared spectroscopy (FTIR) of the non-phosphatized layer in
MP2D32A was recorded by a Bruker Vertex 70 IR spectrometer. The specimens were
prepared by mixing 0.9 mg of powder sample and 80 mg of KBr, followed by pressing the
mixtures into pellets. A pure KBr pellet was measured as the background. All spectra were
collected over 64 scans in the range of 4000–400 cm−1 at a resolution of 4 cm−1.

3. Results
3.1. Textural and Structural Characteristics

Textural and structural characteristics in the Fe-Mn crust and its substrate of MP2D32A
are shown in Figure 2 and Figure S2, respectively. The Fe-Mn (oxyhydr)oxides in MP2D32A
mainly occur as horizontally laminated (Figure 2a) and concentric (Figure 2b) colloforms. At
the bottom of the Fe-Mn crust, the structures are complex, such as the parallel unconformity
in Figure 2c. The bottom of the Fe-Mn crust displays alternating dark and bright layers
with a thickness of submicron to microns, as identified by the high contrast in BSE images
(Figure 2c). In addition to these distinctly dark and bright submicron layers (SMLs), the
crust also exhibits indistinct growth submicron layers (Figure 2a,b,d). In these indistinct
SMLs, there are many CFA particles protruding from empty spaces and pores (Figure 2d)
and their interlayer (Figure 2e). Besides, many CFA particles and aluminosilicate minerals
exist between different structures altogether (Figure 2e). Moreover, CFA veins were also
observed (Figure 2f). These fine particles and veins of CFA are distributed at the bottom of
MP2D32A, indicating that the old part of MP2D32A underwent phosphatization processes.
The phosphatized layer is mainly composed of distinct and indistinct SMLs, whereas
the non-phosphatized layer primarily consists of columnar structures (Figure 2a) that are
constitutive of indistinct SMLs (Figure 2a,b). In addition, the substrate was primarily
composed of aggregations of platy clay minerals (e.g., smectite), rodlike phillipsite, and
CFA (Figure S2). The occurrence of smectite and phillipsite suggests the possible volcanic
tuffs as parent rocks of the substrate.

3.2. REY Geochemistry

The chemical composition of MP2D32A from surface to bottom was compiled in Table
S1, and the average contents of various elements in non-phosphatized and phosphatized
layers are shown in Table 1. The weight contents of Mn and Fe in the non-phosphatized
layer are 19.65–32.50 wt% and 7.34–19.65 wt%, respectively (Table S1). Their corresponding
average contents are 27.22 wt% and 12.33 wt%, respectively (Table 1). In the phosphatized
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layer, the Mn contents range from 19.58 wt% to 28.06 wt%, with an average of 23.60 wt%,
which is slightly lower compared with the non-phosphatized layer; the Fe contents vary
from 4.93 wt% to 14.09 wt% with an average of 10.48 wt%. Similarly, the phosphatized
layer shows lower Fe contents than the non-phosphatized layer (Table 1).
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The average contents of Co, Ni, and Cu in the non-phosphatized layer of MP2D32A
are 0.85 wt%, 0.56 wt%, and 0.08 wt%, respectively (Table 1). Based on the contents of
Mn, Fe, and Ni-Co-Cu (Table S1), a traditional ternary discrimination diagram was used
to identify the general formation mechanisms of Fe-Mn crusts [34–37]. This traditional
ternary discrimination diagram of MP2D32A is shown in Figure 3, which suggests that the
MP2D32A is primarily formed through hydrogenetic process.
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Table 1. Mean contents of major elements and REY in non-phosphatized layer, phosphatized layer,
and CFA vein in MP2D32A sample (LA-ICP-MS data in Table S1).

Elements Non-Phosphatized
Layer (n = 49)

Phosphatized Layer
(n = 10)

CFA Vein
(n = 6)

Mn (wt%) 27.22 23.60 -
Fe 12.33 10.48 -
Mg 1.12 1.06 -
Si 1.05 0.91 -
Al 0.20 0.19 -
P 0.38 1.96 -

Ca 2.51 5.87 -
K 0.24 0.27 -

Na 0.35 0.50 -
Ti 0.94 0.61 -
Co 0.85 0.51 -
Ni 0.56 0.55 -
Cu 0.08 0.10 -

La (ppm) 188.9 328.4 443.6
Ce 847.0 1053.4 166.4
Pr 32.1 61.4 35.2
Nd 144.5 299.7 148.7
Sm 29.5 63.1 21.4
Eu 7.3 16.5 6.4
Gd 40.2 99.8 36
Tb 4.9 11.5 5.1
Dy 30.6 74.1 41.8
Y 98.9 566.4 664.5

Ho 6.3 26.7 12.7
Er 17.7 46.9 43.3
Tm 2.6 6.5 7.1
Yb 17.8 40.4 52.7
Lu 2.7 6.3 9.3

REY 1470.8 2690.9 1694
LREE/HREE 5.69 2.55 3.95
CeN/CeN* 1 2.52 2.15 0.27

YN/YN* 2 0.57 1.24 2.28
EuN/EuN* 3 0.96 0.91 1.02

1 CeN/CeN* = 2 × CeN/(LaN + PrN) [5]; 2 YN/YN* = 2 × YN/(DyN + HoN); 3 EuN/EuN* = 2 × EuN/(SmN + GdN).

The profiles of weight contents of P, Ca, and REY, as well as the LREE/HREE ratios
and Ce and Y anomalies, in the MP2D32A show that the phosphatization occurred at
the bottom part of the Fe-Mn crust with a depth of ~12–14 mm (Figure 4). The average
contents of P and Ca in the non-phosphatized layer are 0.38 wt% and 2.51 wt%, respectively.
In the phosphatized layer, the average contents of P and Ca increase to 1.96 wt% and
5.87 wt% (Table 1), respectively. Similarly, the REY content, LREE/HREE ratio, CeN/CeN*,
and YN/YN* also display distinct differences between the non-phosphatized and phospha-
tized layers (Figure 4). The phosphatized layer shows higher REY contents and YN/YN*
and lower LREE/HREE ratios and CeN/CeN* than the non-phosphatized layer. It should
be noted that the phosphatized region was ascertained not only according to P and Ca
contents but also the Y and Ce anomalies in this study. The PAAS-normalized REY pat-
terns demonstrate that CFA displays positive Y and negative Ce anomalies and Fe-Mn
(oxyhydr)oxides exhibit negative Y and positive Ce anomalies (Figure 5). Although P
contents at a depth of 11.77 to 12.25 mm are low (Table S1), the distinct changes in Y and
Ce anomalies (i.e., decreasing CeN/CeN* value and increasing YN/YN* value) at the depth
of 11.77 mm indicate that phosphatized region is at the depth from 11.77 mm to 13.91 mm.
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The REY patterns of MP2D32A normalized by the Post Archean Australian Shale
(PAAS) are shown in Figure 5. The PAAS-normalized REY patterns in the non-phosphatized
layer are similar (Figure 5a), which display the positive Ce anomaly with the average
CeN/CeN* value of 2.52 and the negative Y anomaly with the average YN/YN* value
of 0.57 (Table 1). Compared with the non-phosphatized layer, the phosphatized layer
has different PAAS-normalized REY patterns (Figure 5b), which displays the positive Y
anomaly with the average YN/YN* value of 1.24 (Table 1). Although most of the data
from the phosphatized layer show a positive Ce anomaly (Figure 5b), the CeN/CeN* ratios
decrease with the increasing REY and P contents (Figure 4). Moreover, the measured plot
with the highest REY content shows a negative Ce anomaly (Figures 4 and 5b). In addition,
both non-phosphatized and phosphatized layers exhibit slight negative Eu anomalies with
similar average EuN/EuN* values of 0.96 and 0.91, respectively. The PAAS-normalized
REY patterns of the CFA veins (Figure 5c) exhibit HREE enrichment, likely causing the
decreasing LREE/HREE ratios in the phosphatized layer (Figure 4).

4. Discussion
4.1. Chemical Species of Phosphorus in MP2D32A Sample

P is an important element composing Fe-Mn crusts. Many Fe-Mn crusts commonly
underwent phosphatization [17–20] and generally contain CFA minerals, whose content
could be up to 30% in their old phosphatized parts [16]. Many fine particles and some veins
of CFA were observed in the phosphatized layer (Figure 2), revealing that authigenic CFA
is one type of P chemical species (i.e., mineral phase) in the MP2D32A sample.

Apart from the CFA, Fe-bound P is the principal carrier of solid phase P in oceans [38].
In seawater, the major species of dissolved P, i.e., HPO4

2− ions [38], can be effectively
adsorbed by the Fe oxyhydroxides through electrostatic attraction and surface complex-
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ation (e.g., monoprotonated bidentate, non-protonated bidentate, and outer-sphere com-
plexes) [39–41]. In the non-phosphatized layer of MP2D32A, there is no CFA mineral,
whereas the weight content of P ranges from 0.19% to 0.62% with an average of 0.38%. Mean-
while, the weight contents of P and Fe display a distinct positive correlation (Figure 6a), indi-
cating the possible PO4

3− complexed with Fe oxyhydroxides in the non-phosphatized layer,
which is demonstrated by the FTIR spectrum. The FTIR spectra of the non-phosphatized
layer and ferrihydrite complexed with PO4

3− ions at pH 7 are similar (Figure 7). The
HPO4

2− ions in seawater are adsorbed on ferrihydrite through the inner-sphere complex
with C2v symmetry (1075, 1035, and 945 cm−1) and outer-sphere complex with C3v sym-
metry (1100 and 970 cm−1) [40]. Therefore, the PO4

3− complexed with ferrihydrite should
be the main P species in the non-phosphatized layer. Given the high HPO4

2− ionic con-
centration in seawater during the phosphatization process [18], PO4

3− complexed with Fe
(oxyhydr)oxides, as well as CFA, should be one type of P species in the phosphatized layer
of the MP2D32A sample.
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4.2. Influence of Phosphatization in REY Enrichment

During the process of phosphatization, the suboxic P-rich seawater infiltrated the
crusts, leading to a partial redissolution of Fe-Mn (oxyhydr)oxides with the mobilization
of associated elements [18]. Meanwhile, the phosphatization processes also form vast
CFA particles (Figure 2d,e), which could enrich REY [42] and further influence the REY
occurrence in the Fe-Mn crusts. The higher REY contents in the phosphatized layer than
those in the non-phosphatized layer of MP2D32A (Table 1 and Figure 3) indicate that the
phosphatization facilitated the enrichment of REY.

Previous studies have shown that REY could be more enriched in the old phosphatized
crust layer than in the young non-phosphatized crust layer [18,27], corresponding to the re-
sults of this study. The positive role of phosphatization in REY enrichment is generally due
to the presence of CFA, which generally occurs as holocrystalline aggregates, phosphatized
biogenic carbonates, apatite interlayers and veinlets, and fine-dispersed particles [42–45].
For example, the total REY content could reach up to 6016 ppm in the CFA vein in Fe-Mn
crusts from the western Pacific Ocean [42]. However, the total REY contents of CFA veins
are lower than those in the phosphatized layer in MP2D32A (Table 1), implying that the
CFA seems to have no effect on REY enrichment in MP2D32A.

In the older phosphatized layer of MP2D32A, the Fe-Mn (oxyhydr)oxides, as well as
the CFA particles, are the main carriers of REY. In general, the dominant control factors for
the accumulating REY by Fe-Mn (oxyhydr)oxides are the mineral surface charge, concentra-
tion, and chemical speciation of REY(III) ions, the stability of surface complexes, the surface
oxidation reactions, the specific-surface area, and growth rates [17]. In seawater, the REY(III)
ions generally exist as carbonate complexes [46]. For example, a second-order carbonate
complex and a first-order carbonate complex are the predominant forms of HREE(III) ions
(i.e., HREE(CO3)2

–) and LREE(III) ions (i.e., LREE(CO3)+), respectively [46]. The nanosized
Fe oxyhydroxides (e.g., ferrihydrite and feroxyhyte) with a higher isoelectric point than
the pH value of seawater take positive charges [1,17], while the nanosized Mn oxides take
negative charges [1]. Hence, the two types of REY(III) complexes with opposite charges,
i.e., HREE(CO3)2

–) and LREE(CO3)+, would mainly interact with Fe oxyhydroxides and
Mn oxides, respectively [8]. Nevertheless, the average REY concentration (1470.82 ppm) in
the non-phosphatized crust layer is lower than that (2690.88 ppm) in the phosphatized crust
layer (Table 1), suggesting other factors, in addition to CFA and Fe-Mn (oxyhydr)oxides, in
REY enrichment in the phosphatized layer of MP2D32A.

Both in the non-phosphatized and phosphatized layers of MP2D32A, the REY contents
increase with increasing P contents (Figure 6c,d). The positive correlation between REY
and P suggests that the PO4

3– complexed with Fe oxyhydroxides, as well as CFA, may
play some role in REY accumulation in the Fe-Mn crust. In seawater, the major species of
dissolved P, i.e., HPO4

2– ions [38], can be effectively adsorbed by the Fe oxyhydroxides
through electrostatic attraction and surface complexation (e.g., monoprotonated bidentate,
non-protonated bidentate, and outer-sphere complexes) [39–41]. Previous studies demon-
strated the cooperative adsorption of cations and HPO4

2− ions on Fe oxyhydroxides to
facilitate cation accumulation [40,41], suggesting a high HPO4

2− ionic concentration and
positively charged REY(III) (e.g., LREE(CO3)+) ions in the seawater could be adsorbed
on Fe oxyhydroxides synergistically during the phosphatization process. This synergistic
adsorption process seems to be able to further facilitate the accumulation of REY(III) ions.
Additionally, the surface charge of Fe oxyhydroxides could decrease, retarding the accumu-
lation of negatively charged HREE(CO3)2

– ions. Given the multiple chemical species of
REY(III) ions with different charges in seawater, the complexation of HPO4

2− ions with Fe
oxyhydroxides probably results in REY fractionation in Fe-Mn crusts.

In comparison with LREE/HREE ratios, the Ce anomaly is strongly influenced by
phosphatization. The Ce/Ce* ratios decrease from the non-phosphatized layer to the
phosphatized layer and display a negative correlation with the REY concentration in the
phosphatized layer (Figure 4). Because Fe-Mn oxyhydroxides can adsorb the Ce(III) ions
and oxidize to Ce(IV) [47,48], the non-phosphatized layer generally shows positive Ce
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anomalies (Figure 4). Nevertheless, the CFA and Fe oxyhydroxides-complexed PO4
3–, both

of which likely possess similar REY geochemical characteristics with seawater (Figure 5),
display a strongly negative Ce anomaly. Hence, the Ce/Ce* ratios would decrease with the
increasing content of P and REY (Figure 4).

5. Conclusions

In this study, the REY geochemical characteristics of the non-phosphatized and phos-
phatized layer in the Fe-Mn crust (MP2D32A) from the Line Islands archipelago were
investigated. The obtained results show that the crust is characterized by laminated and con-
centric groups of colloforms, which are composed of distinct and indistinct growth layers
with a thickness of submicron to microns. Massive fine particles and veins of CFA demon-
strate that the MP2D32A underwent phosphatization processes. The REY content and the
PAAS normalized patterns between the phosphatized and non-phosphatized layers are dis-
tinctly different, indicating that phosphatization influences REY enrichment in MP2D32A.
Higher REY contents in the phosphatized layer than those in the non-phosphatized layer
and the CFA suggest the positive role of phosphatization in REY enrichment and imply that
the REY enrichment in the phosphatized layer is not only controlled by CFA and Fe-Mn
(oxyhydr)oxides but also other factors, such as the probable Fe oxyhydroxides complexed
PO4

3−. The synergistical sorption of REY(III) and HPO4
2− ions on Fe oxyhydroxides likely

facilitate REY enrichment during the phosphatization processes. These fundamental results
provide novel insights into the influence of phosphatization in REY geochemical behaviors
in the Fe-Mn crust.
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