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Abstract: The petrogenesis of A-type granites with different occurrences in the Nanling Range
remains unclear. In this study, a case study of the Jiuyishan complex massif and Xianghualing
intrusive stocks was conducted to determine this problem. The Jiuyishan complex massif is composed
of four units (Jinjiling, Pangxiemu, Shaziling and Xishan). These four units have similar zircon U-Pb
ages of approximately 153 Ma, with high Zr + Nb + Ce + Y contents (>350 ppm), high 10,000 Ga/Al
ratios (>2.6), and a high crystallization temperature, indicating A-type affinities. They show a gradual
change in lithology and geochemistry, implying a fractional crystallization process. These units
also have similar εNd(t) values (−8.2 to −5.8) and zircon εHf(t) values (−7.5 to −2.2) except for the
Shaziling MMEs (mafic microgranular enclaves) (−14.2 to 4.8), demonstrating their lower crustal
source. However, the Shaziling unit may have contributed mantle-derived magma based on the
geochemical data of its hosted MMEs. In comparison, the two Xianghualing intrusive stocks have
similar geochemical features but exhibit highly evolved features (high Rb, U, Y, Ta and Nb contents
and low Eu, Ba, Sr, P, Ti, Ca, Mg and Fe contents, with V-shaped REE distribution patterns). They
have different zircon U-Pb ages of approximately 160 Ma and 155 Ma. The two stocks also have
similar whole-rock εNd(t) values (−6.5 to −5.7) and zircon εHf(t) values (−7.6 to −2.7) and equally
illustrate a lower crustal source region. Combining with their vertical zonation, they may have
experienced remarkable fractional crystallization with possible assimilation processes. We propose
that the Jiuyishan complex and Xianghualing stocks have two distinct fractional crystallization
mechanisms during their formation. The Jiuyishan complex was formed by in situ crystal mush
fractionation, while the Xianghualing stocks were formed by flowage differentiation during magma
ascent or gravitational settling during magma solidification after emplacement. However, more than
one mechanism affected the fractional crystallization processes of these granitic rocks.

Keywords: Jiuyishan; Xianghualing; A-type granite; complex massif; intrusive stocks; fractional
crystallization mechanisms
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1. Introduction

The concept of A-type granite was first proposed by Loiselle and Wones [1], with the
three basic features being “Alkali, Anhydrous, and Anorogenic”. The granites that conform
to the initial definition of A-type granites typically have extremely high temperatures,
high alkali and low water content [2–6]. However, the “A-type” concept has already been
broadened, and granites with only high alkali features are also called A-type. In this case, a
large number of highly evolved granites, with high alkali contents but low crystallization
temperatures and a high water content, were also regarded as A-type granites [7–11]. Under
the circumstances, the relationships between the traditional A-type granites and highly
evolved A-type granites have still not been precisely and exhaustively researched.

A large number of A-type granites in the Nanling Range can be divided into two
occurrences [12,13]. The most developed occurrence is a complex massif, while the ma-
jority of complex massifs are composed of several large-scale A-type granitic batholiths
(>100 km2). Within the complex massif, each single pluton can be spatially and temporally
related or lithologically and geochemically linked [14–16]. The other occurrence is intrusive
stock. In such situations, A-type intrusive stocks are spatially isolated and usually highly
evolved, and vertical lithology zonation can be identified from the hidden bottom to the
exposed top of these stocks [17–21]. Despite several occurrences of A-type granitic rocks
in the Nanling Range, the different formation mechanisms between the complex massif
and intrusive stock are still poorly understood, especially the formation of correlated units
in complex massif and lithology zonation in intrusive stocks. The lack of such research,
particularly on their source, protolith and fractional crystallization mechanism, leaves an
obstacle to understanding the petrogenesis and metallogenic processes of A-type granites.

In the Nanling Range, multiple A-type granites with ages of 160–150 Ma have been
discovered with different occurrences [12,13,22]. Located in the western Nanling Range,
the Jiuyishan complex massif (composed of four units) and the Xianghualing intrusive
stocks (two isolated stocks) are two representative A-type granitic rocks with different
occurrences, and they are excellent objects to study their different formation mechanisms.
In this paper, a comparative study of petrology and geochemistry of these two occurrences
was carried out, including zircon U-Pb dating, whole-rock geochemistry and Sr-Nd-Hf
isotopes. We attempted to determine the petrogenesis of these two occurrences and the
relationship between different lithologies in different units. The case study can provide
better information for understanding the petrogenesis and metallogenic processes of A-type
granites.

2. Geological Background and Sample Description
2.1. Regional Geology

The South China block is combined with two Precambrian blocks, namely, the Yangtze
block in the northwest and the Cathaysia block in the southeast (Figure 1a). These blocks
amalgamated during the Neoproterozoic along the arc-shaped Jiangnan orogenic belt [23–25].
The South China block collided with the North China Craton in the north in the Triassic,
and continental collision formed the high-pressure metamorphic orogenic belt called the
Qingling-Dabie orogenic belt [26,27]. The Songpan-Ganzi block consists of several micro
blocks that were gradually amalgamated onto the South China block during the Triassic
after the Qingling-Dabie orogenic belt was formed [28,29].

The Nanling Range is located in the southwestern part of the Cathaysia block. The
exposed strata of the Nanling Range are almost completely from the Ediacaran to the
Quaternary, but the Silurian is absent (Figure 1b). The Ediacaran strata mainly consist
of sandstone and metasandstone and are only sporadically distributed. The Cambrian
strata consist of sandstone, metasandstone and slate and are distributed mainly around the
Jiuyishan district. The Ordovician strata consist of slate at the bottom and limestone on
the top, and they are covered by the Devonian and Carboniferous carbonate rocks, which
are the most widely developed strata in this area. The Permian and Triassic strata mainly
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consist of limestone, dolostone and shale. Only sporadic Jurassic to Quaternary strata is
exposed [30].
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map of the Nanling Range (Modified after Shu et al. [12]).

Fractures and folds are strongly developed in the Nanling Range (Figure 1b), with
several regional deep fractures that control the distribution of magmatic rocks. The deep
fractures are mainly NE-trending in the northern area but become NW-trending in the
southern area. However, folds are usually EW-trending and accompanied by magmatic
intrusions [12]. Granitic rocks, diorite and mafic rocks are widely distributed in this region
(Figure 1b). Early Paleozoic granites are commonly S- and I-type granites; they are less
abundant and formed large intrusions, corresponding to the Caledonian intracontinental
orogenic event in South China [31]. Early Mesozoic granites are also S- and I-type granites;
they are the least common and formed small intrusions, triggered by the amalgamation
of the North China Craton and the South China Block in the Triassic period [21]. Late-
Mesozoic granites are most commonly developed in this area, which are usually A-type
granites and accompanied with cotemporaneous basalts and diorites, corresponding to
the intraplate extension triggered by the roll-back of subducted paleo-pacific plates in the
Jurassic period [31].



Minerals 2023, 13, 605 4 of 30

2.2. The Jiuyishan Complex Massif

The Jiuyishan complex massif is located in the southwestern Nanling Range and
composed of five units (Figure 1b). Each unit is distributed from west to east with different
shapes and lithologies. The westernmost unit, called Xuehuading (Figure 2), is composed
of granodiorite, monzonitic granite, and biotite granite, with zircon U-Pb ages of between
432–412 Ma [31–33], and was formed much earlier than the other four units. Abundant,
dark enclaves were discovered in the Xuehuading unit. These MMEs are dark gray, with
sizes ranging from 5–10 cm. The MMEs commonly occur as lobate shapes and do not
show evidence of any reaction with the host magma, and were likely formed by mafic
mineral aggregation during magma ascent rather than mantle magma injection [31]. The
Xuehuading granite has protoliths of Paleoproterozoic metaigneous and metapelitic rocks,
with an I-type affinity [33].
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The Jinjiling unit is located to the east of the Xuehuading unit; no contact zone was
observed between them. The Pangxiemu unit intrudes inside the Jinjiling unit (Figure 2); no
quenching band can be observed, but pegmatite, quartz veins and greisens are developed
around the contact zone [34]. The Jinjiling unit has zircon U-Pb ages of between 159–153 Ma
and is composed of biotite granite with porphyritic textures [10,32,34]. The Jinjiling unit
has protoliths of lower-crustal granulitic metasedimentary rocks, exhibiting an A-type
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affinity [10]. The Pangxiemu unit has zircon U-Pb ages of between 153–146 Ma and is
composed of zinnwaldite granite [10,34]. The Pangxiemu unit has the same source region
as the Jinjiling granite and exhibits an A-type affinity with a much higher fractionation
degree [10].

The Shaziling unit is located between the Jinjiling and the Xishan volcanic-intrusive
complex with a strip shape (Figure 2), which is composed of granodiorite and monzogranite
with a porphyritic texture, with zircon U-Pb ages of between 157–153 Ma [32,35]. Abundant,
mafic enclaves also appear and show features of MMEs. These MMEs are commonly ovoid,
ellipsoidal and angular in shape, with sizes of several centimeters–meters. The MMEs have
sharp contacts with their host granite, but no obvious chilled borders have been observed.
The Shazling MME sample has a zircon U-Pb age of 152.1 ± 1.1 Ma and variable εHf(t)
values (−14.2 to 4.8), indicating mantle magma injection [35]. The Shaziling granite has
protoliths of lower crustal graywacke or pelite and exhibits an A-type affinity [35].

The Xishan volcanic-intrusive complex is located in the easternmost part of the Jiuy-
ishan complex massif (Figure 2) and is composed of three units: granitic rocks, volcanic
rocks and fayalite-bearing felsic (FBF) subvolcanic rocks. The granitic rocks occupied
the largest area of the Xishan complex; the volcanic rocks are exposed in two main areas
inside of the granitic rocks, with one exposed in the northwestern margin with a very
large area and another exposed in the middle of the granitic rocks with several sporadic
minor areas. The FBF subvolcanic rocks were developed in the southwestern part of the
granitic rocks with an oval-shaped area (Figure 2). The Xishan granite has zircon U-Pb
ages of between 156–154 Ma [2,32] and is composed of biotite granite and granite porphyry,
having protoliths of Paleoproterozoic metasedimentary and metaigneous rocks with an
A-type affinity [2,36]. The Xishan volcanic rocks are mainly dacites, rhyolites, tuffs and
fragmentary lavas, and have geochemical and isotopic features similar to the Xishan gran-
ites, indicating an A-type affinity [32]. The Xishan FBF rocks were formed via the mixing of
two batches of magma, which have two groups of zircons U-Pb ages: 152 Ma and 157 Ma.
The FBF rocks were formed under extreme conditions of high temperature, low–moderate
water contents, and low oxygen fugacity [3].

A dolerite dike developed inside the Jinjiling and Pangxiemu units with a zircon U-Pb
age of 153 Ma. It was formed by the partial melting of the garnet-bearing lithospheric
mantle, which experienced metasomatism of the underplating asthenospheric mantle
melts [37].

2.3. The Xianghualing Intrusive Stocks

Located in the northeast area of the Jiuyishan complex massif, the Xianghualing area
is composed of four small granitic intrusions (<5 km2) and four felsic dikes (Figure 3). The
Jianfengling and Laiziling stocks are the two largest intrusions in this area, and they are
generally referred to as the Xianghualing intrusive stocks. The Laiziling stock is located on
the north side of the area with an oval shape, while four nearly EW-trending felsic dikes
are distributed on its east side and west side. The Jianfengling stock is located on the south
side of this area with a nearly triangular shape; in its northwest part, a tiny stock called
Yaoshanli is present. The Tongtianmiao stock is on the top of the dome with a nearly oval
shape (Figure 3). Due to the local geographical conditions (high altitude without accessible
roads), Tongtianmiao and Yaoshanli are located in positions that are difficult to visit, so few
reports about them have been published.

The Laiziling and Jianfengling granites are highly evolved A-type granites with source
regions in the lower crust, and they have zircon U-Pb ages of between 156–150 Ma [9,12,19,38–40]
and 165–160 Ma [9,41], respectively. Both the Laiziling and Jianfengling granites show
vertical zonation and contain different lithologies from bottom to top: biotite granite at
the bottom, zinnwaldite granite in the middle, and topaz–albite granite and greisen at the
top [17,19,20,38,42–45].
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2.4. Sample Description

The Jinjiling unit is mainly composed of medium-to-coarse-grained biotite granite.
The samples of the Jinjiling biotite granite are massive and light-gray-to-whitish colored,
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with porphyritic textures (Figure 4a). The groundmass has particle sizes of approximately
2–10 mm, consisting of quartz (35%–40%), plagioclase (20%–25%), K-feldspar (25%–30%)
and biotite (~5%), with accessory minerals of zircon, titanite and ilmenite (Figure 4b). The
phenocrysts are mainly composed of plagioclase and K-feldspar, with particle sizes of
approximately 5–25 mm.
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Figure 4. Hand specimens and photomicrographs of the Jiuyishan and Xianghualing granites.
(a,c,e,g,i,k,m,o): Hand specimen of the Jinjiling biotite granite, Pangxiemu zinnwaldite granite,
Xishan biotite granite, Shaziling biotite granite, Shaziling granodiorite, Shazling MME, Jianfengling
zinnwaldite granite and Laiziling zinnwaldite granite, respectively. (b,d,f,h,j,l,n,p): Photomicrograph
of the above lithologies. (j) is under plane-polarized light while (b,d,f,h,l,n,p) are under cross-
polarized lights. Abbreviations: Amp—amphibole; Bt—biotite; Kfs—K-feldspar; Pl—plagioclase;
Qtz—quartz; Zwd—zinnwaldite.
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The Pangxiemu unit is composed of fine-to-medium-grained zinnwaldite granite
with particle sizes of approximately 0.5–3 mm (Figure 4c). The samples of the Pangxiemu
zinnwaldite granite are massive and light-pink-to-whitish colored, consisting of quartz
(35%–40%), plagioclase (15%–20%), K-feldspar (30%–35%) and zinnwaldite (~5%), with
accessory minerals of zircon and ilmenite (Figure 4d).

The Xishan unit is a volcanic-intrusive complex composed of granites, subvolcanic
and volcanic rocks. The samples of the Xishan granites are mainly composed of medium-
to-coarse-grained biotite granites with particle sizes of approximately 5–12 mm, and
they are massive and light-gray-to-whitish colored, with porphyritic textures (Figure 4e).
The groundmass is composed of quartz (30%–35%), plagioclase (20%–25%), K-feldspar
(30%–35%) and biotite (~5%), with accessory minerals of zircon, titanite and ilmenite
(Figure 4f). The phenocrysts are mainly composed of plagioclase and K-feldspar, with
particle sizes of approximately 10–30 mm.

The Shaziling unit comprises medium-to-fine-grained granodiorite and biotite granite,
with abundant MMEs developed inside the host rocks of biotite granite. The samples of
the Shaziling biotite granites are massive and light-gray-to-whitish colored (Figure 4g),
with particle sizes of approximately 1–5 mm, consisting of quartz (25%–30%), plagioclase
(20%–25%), K-feldspar (30%–35%), biotite (~10%) and minor amphibole. The accessory
minerals are mainly zircon, apatite, titanite and ilmenite (Figure 4h). The samples of the
Shaziling granodiorite are massive and light-gray-to-black colored (Figure 4i), with particle
sizes of approximately 0.5–3 mm, consisting of quartz (20%–25%), plagioclase (20%–25%),
K-feldspar (30%–35%), biotite (~10%) and amphibole (~5%) (Figure 4j). The MMEs are
black colored and fine-grained (Figure 4k), with particle size of approximately 0.1–0.5 mm,
consisting of mainly quartz, amphibole, feldspar and biotite (Figure 4l).

The Jianfengling and Laiziling intrusive stocks show vertical zonation of biotite granite
at the bottom, zinnwaldite granite in the middle, and topaz granite at the top. However, in
this study, only zinnwaldite granite samples were collected to perform a petrographic study.
The samples of the Jianfengling granites are fine-grained zinnwaldite granite with particle
sizes of approximately 0.5–2 mm; they are massive and light-gray-to-whitish colored
(Figure 4m), consisting of quartz (35%–40%), plagioclase (15%–20%), K-feldspar (30%–35%)
and zinnwaldite (~5%), with accessory minerals of zircon and ilmenite (Figure 4n).

The samples of the Laiziling granites are fine-grained zinnwaldite granite with particle
sizes of approximately 0.5–2 mm; they are massive and light-gray-to-whitish colored
(Figure 4o), consisting of quartz (35%–40%), plagioclase (20%–25%), K-feldspar (25%–30%)
and zinnwaldite (~5%), with accessory minerals of zircon and ilmenite (Figure 4p).

3. Analytical Methods
3.1. Zircon U-Pb Dating

Before the analysis, the zircon grains from the samples were separated using conven-
tional magnetic and heavy liquid techniques. Subsequently, they were hand-picked under a
binocular microscope at Langfang Integrity Geological Services Co., Ltd., Langfang, China.
Next, they were mounted into epoxy resin blocks and polished to obtain flat surfaces. The
cathodoluminescence (CL) imaging technique was used to visualize the internal structures
of individual zircon grains with a scanning electron microscope (SEM), which was housed
at Yujing Science and Technology Services Co., Ltd., Chongqing, China.

U-Pb geochronology of zircon was conducted by LA-ICP-MS at FocuMS Technology
Co., Ltd., Nanjing, China. The Teledyne Cetac Technologies Analyte Excite laser-ablation
system (Bozeman, MT, USA) and Agilent Technologies 7700× quadrupole ICP-MS (Ha-
chioji, Tokyo, Japan) were combined for the experiments. The 193-nm ArF excimer laser,
which was homogenized via a set of beam delivery systems, was focused on the zircon
surface with a fluence of 6.0 J/cm2. The ablation protocol employed a spot diameter of
35 µm at an 8-Hz repetition rate for 40 s (equating to 320 pulses). Helium was applied as
a carrier gas to efficiently transport the aerosol to ICP-MS. Zircon 91500 was used as an
external standard to correct instrumental mass discrimination and elemental fractionation
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during the ablation. Zircon GJ-1 was treated as a quality control for geochronology. The
lead abundance of zircon was externally calibrated against NIST SRM 610 with Si as the
internal standard, while Zr was the internal standard for other trace elements [47,48]. Raw
data reductions were performed offline using ICPMSDataCal software [47,49].

3.2. Whole-Rock Major and Trace Element Analysis

The whole-rock major and trace element compositions were analyzed at ALS Chemex,
Guangzhou, China. The samples were crushed in a sample crusher to pass through a
200-mm mesh before major element contents were measured using a Panalytical Axios
Max X-ray fluorescence (XRF) instrument with an analytical accuracy of between 1%–5%.
Trace element compositions were measured using ICP-MS (Perkin Elmer Elan 9000) with
an analytical accuracy greater than 5%.

3.3. Zircon Lu-Hf Isotope Analysis

Hafnium isotopic ratios of zircon were determined by LA-MC-ICP-MS at FocuMS
Technology Co., Ltd., Nanjing, China. The Teledyne Cetac Technologies Analyte Excite
laser-ablation system (Bozeman, MT, USA) and Nu Instruments Nu Plasma II MC-ICP-MS
(Wrexham, Wales, UK) were combined for the experiments. The 193-nm ArF excimer laser,
which was homogenized via a set of beam delivery systems, was focused on the zircon
surface with fluence of 6.0 J/cm2. The ablation protocol employed a spot diameter of 50 µm
at an 8-Hz repetition rate for 40 s (equating to 320 pulses). Helium was applied as a carrier
gas to efficiently transport the aerosol to MC-ICP-MS. Two standard zircons (GJ-1 and
91500) were treated as the quality controls for every ten unknown samples.

3.4. Whole-Rock Nd-Pb Isotope Analysis

High-precision isotopic (Nd, Pb) measurements were carried out at FocuMS Tech-
nology Co., Ltd., Nanjing, China. Geological rock powders were decomposed using
high-pressure PTFE bombs. Neodymium and lead were all purified from the same diges-
tion solution via two steps of column chemistry. The first exchange column combined
with BioRad AG50 W×8 and Sr Spec resin was used to separate Sr, REE and Pb from the
sample matrix. Neodymium was separated from the other REEs on the second column
with Ln Spec-coated Teflon powder. The Nd- and Pb-bearing eluates were dried down and
redissolved in 1.0 mL of 2 wt.% HNO3. Small aliquots of each elution were analyzed using
Agilent Technologies 7700× quadrupole ICP-MS (Hachioji, Tokyo, Japan) to determine the
exact contents of available Nd and Pb. A diluted solution (50 ppb Nd and 40 ppb Pb doped
with 10 ppb Tl) was introduced into Nu Instruments’ Nu Plasma II MC-ICP-MS (Wrexham,
Wales, UK) via the Teledyne Cetac Technologies Aridus II desolvating nebulizer system
(Omaha, NE, USA). Raw data of isotopic ratios were corrected for mass fractionation by
normalizing to 146Nd/144Nd = 0.7219 for Nd and 205Tl/203Tl = 2.3885 for Pb using the
exponential law. International isotopic standards (JNdi-1 for Nd and NIST SRM 981 for
Pb) were periodically analyzed to correct for instrumental drift. Geochemical reference
materials of USGS BCR-2, BHVO-2, AVG-2 and RGM-2 were treated as the quality controls.

4. Analytical Results
4.1. Zircon U-Pb Dating

The analytical results of zircon LA-ICP-MS U-Pb dating are presented in Supplemen-
tary Table S1, and CL images of representative zircons are shown in Figure 5. Zircons
from four units of the Jiuyishan complex which were picked for dating are transparent
and colorless and show distinct oscillatory zoning, indicating that they are magmatic zir-
cons [50,51]. A total of 38 zircons from the Jinjiling granite are concordant (>90%), and they
yielded a weighted mean 206Pb/238U age of 152.5 ± 0.7 Ma (MSWD = 0.95) (Figure 6). A
total of 15 zircons from the Pangxiemu granite yielded a weighted mean 206Pb/238U age of
153.8 ± 1.5 Ma (MSWD = 1.6) (Figure 6). A total of 20 zircons from the Shaziling granite
yielded a weighted mean 206Pb/238U age of 152.9 ± 1.0 Ma (MSWD = 0.039) (Figure 6).
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A total of 36 zircons from the Xishan granite yielded a weighted mean 206Pb/238U age of
153.0 ± 0.7 Ma (MSWD = 0.014) (Figure 6). A total of 19 zircons from the Shaziling MMEs
yielded a weighted mean 206Pb/238U age of 152.1 ± 1.1 Ma (MSWD = 0.31) (Figure 6). A
total of 18 zircons from the Pangxiemu dolerite yielded a weighted mean 206Pb/238U age of
153.1 ± 1.0 Ma (MSWD = 0.78) (Figure 6).
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Hf isotope sites, respectively.
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Figure 6. Zircon U-Pb concordia diagrams and weighted mean age diagrams. (a) Jinjiling bi-
otite granite; (b) Pangxiemu zinnwaldite granite; (c) Shaziling biotite granite; (d) Xishan biotite
granite; (e) Laiziling zinnwaldite granite; (f) Jianfengling zinnwaldite granite; (g) Shaziling MME;
(h) Pangxiemu dolerite.
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Zircons from the Laiziling and Jianfengling stocks which were picked for dating are
transparent and colorless and show distinct oscillatory zoning, but some grains harbor
dark areas, indicating that they are magmatic zircons but experienced different levels of
metamictization. A total of 22 zircons from the Jianfengling granite yield a weighted mean
206Pb/238U age of 159.9 ± 1.1 Ma (MSWD = 0.39) (Figure 6). A total of 16 zircons from the
Laiziling granite yield a weighted mean 206Pb/238U age of 155.5 ± 1.0 Ma (MSWD = 0.39)
(Figure 6). Moreover, inherited zircons are abundant in the Laiziling and Jianfengling
granites, the zircon U-Pb dating results of which are presented in Supplementary Table S2.
Most of these inherited zircons have good psephicity, bright CL images and concordant
ages ranging from 2500 Ma to 182 Ma (Figure 5).

4.2. Whole-Rock Major Elements

The whole-rock major and trace element analytical results are presented in Supple-
mentary Table S3. Samples of the Jinjiling biotite granites (n = 19), Pangxiemu zinnwaldite
granites (n = 14), Shaziling granodiorites and biotite granites (n = 12) and Xishan biotite
granites (n = 19) have moderate-to-high SiO2, Na2O and K2O contents; on the TAS dia-
gram, they all plot in the granite field (Figure 7a). They have moderate A/CNK values,
belonging to the metaluminoustoweakly peraluminous series (Figure 7b); they have high
Na2O + K2O-CaO contents and FeOT/(FeOT + MgO) values and mostly plot in the calc-
alkalic and ferroan series, respectively (Figure 7c,d).
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Figure 7. (a) TAS diagram (after Middlemost, [52]); (b) A/NK vs. A/CNK diagram (after Ma-
niar and Piccoli, [53]); (c) SiO2 vs. Na2O + K2O-CaO diagram (after Frost et al. [54]); (d) SiO2 vs.
FeOT/(FeOT + MgO) diagram (after Frost et al. [54]).

Samples of the Laiziling and Jianfengling biotite and zinnwaldite granites have high
SiO2, Na2O and K2O contents. On the TAS diagram, they all plot in the granite field
(Figure 7a). They have high A/CNK values and are weakly-to-strongly peraluminous
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(Figure 7b); they have high Na2O + K2O-CaO contents and FeOT/(FeOT + MgO) values
and mostly plot in the calc-alkalic and ferroan series, respectively (Figure 7c,d).

Moreover, samples from the Shaziling MMEs and Pangxiemu dolerite are also in-
troduced here. The Shaziling MMEs have low SiO2, Na2O and K2O contents; on the
TAS diagram, they all plot in the foid monzosyenite field (Figure 7a). The Pangxiemu
dolerite has low SiO2, Na2O and K2O contents; on the TAS diagram, they all plot in the
peridotegabbro field (Figure 7a).

4.3. Whole-Rock Trace Elements

The Jinjiling, Shazilig and Xishan granites have similar trace element distribution pat-
terns: they show moderate enrichment in Rb, Th, U, Ta, Nb, Zr and Hf and depletion in Ba,
Sr, P and Ti (Figure 8a,e,g). They also show similar rare-earth element (REE) distribution pat-
terns of a right-dipping shape (Figure 8b,f,h). They have strong LREE/HREE fractionation
and moderate negative Eu anomalies. The Pangxiemu, Jianfengling and Laiziling granites
also have similar trace element distribution patterns: they show extreme enrichments in
Rb, Th, U, Ta, Nb, Zr and Hf and depletions in Ba, Sr, P and Ti (Figure 8c,k,m). They show
similar rare-earth element (REE) distribution patterns that are flat V-shaped (Figure 8d,l,n).
They have slight LREE/HREE fractionation and extreme negative Eu anomalies.

The Shaziling MMEs have trace element distribution patterns that show slight enrich-
ment in Rb and U and depletion in Ba, Nb, Ta, Sr, P and Ti (Figure 8i). They show rare-earth
element (REE) distribution patterns of a right-dipping shape (Figure 8j). They have strong
LREE/HREE fractionation and weak Eu anomalies. The Pangxiemu dolerite has trace
element distribution patterns that show slight enrichment in Rb and Th and depletion
in Ba and Sr (Figure 8i). They show rare-earth element (REE) distribution patterns of a
right-dipping shape (Figure 8j). They have strong LREE/HREE fractionation and nearly no
Eu anomalies.

4.4. Zircon Lu-Hf Isotopes

The LA-MC-ICP-MS analytical results of the zircon Lu-Hf isotope compositions are
presented in Supplementary Table S4 and also shown in Figure 9. Zircons from the Jinjiling
granites have εHf(t) values ranging from −5.8 to −2.2, with an average of −4.2 (n = 10);
the two-stage model ages (TDM2) range from 1338 to 1563 Ma, with an average of 1467 Ma.
Zircons from the Pangxiemu granites have εHf(t) values ranging from −5.0 to −2.5, with
an average of −3.7 (n = 10); the two-stage model ages (TDM2) range from 1360 to 1516 Ma,
with an average of 1436 Ma. Zircons from the Shaziling granites have εHf(t) values ranging
from −7.5 to −4.7, with an average of −6.2 (n = 10); the two-stage model ages (TDM2) range
from 1498 to 1672 Ma, with an average of 1588 Ma. Zircons from the Xishan granites have
εHf(t) values ranging from −9.1 to −4.0, with an average of −6.0 (n = 20); the two-stage
model ages (TDM2) range from 1453 to 1770 Ma, with an average of 1580 Ma. Zircons from
the Shaziling MMEs have εHf(t) values ranging from −14.2 to 4.8, with an average of
−3.9 (n = 19); they have two-stage model ages (TDM2) ranging from 894 to 2097 Ma, with
an average of 1448 Ma.

Zircons from the Laiziling granites have εHf(t) values ranging from −7.6 to −2.7, with
an average of −4.5 (n = 16); the two-stage model ages (TDM2) range from 1423 to 1653 Ma,
with an average of 1484 Ma. The zircons from the Jianfengling granites have εHf(t) values
ranging from −7.1 to −3.8, with an average of −4.9 (n = 15); the two-stage model ages
(TDM2) range from 1370 to 1677 Ma, with an average of 1514 Ma.

4.5. Whole-Rock Sr-Nd-Pb Isotopes

The analytical results and referenced data of whole-rock Sr-Nd isotope compositions
are presented in Supplementary Table S5 and also shown in Figure 9. The analytical
results of whole-rock Pb isotopic compositions of the Jianfengling and Laiziling granites
are presented in Supplementary Table S6 and also shown in Figure 9.
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Figure 8. Primitive mantle-normalized trace element spider diagrams and Chondrite-normalized
rare-earth element distribution pattern diagrams. (a,c,e,g,i,k,m): Primitive mantle-normalized trace
element spider diagrams of the Jinjiling granites, Pangxiemu granites, Shaziling granites, Xishan gran-
ites, Shaziling MMEs (Pangxiemu dolerites), Jianfengling biotite granites (zinnwaldite granites) and
Laiziling biotite granites (zinnwaldite granites), respectively. (b,d,f,h,j,l,n): Chondrite-normalized
rare-earth element distribution pattern diagrams of the above lithologies. The Chondrite-normalized
and primitive mantle-normalized values are from Sun and McDonough [55].
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Figure 9. (a) Zircon ages vs. εHf(t) diagram; (b) zircon ages vs. whole-rock εNd(t) diagram (after
Shu et al. [12]); (c) whole-rock (87Sr/86Sr)i vs. εNd(t) diagram (after Zhao et al. [56]); (d) whole-rock
εNd(t) vs. zircon εHf(t) diagram (after Zhu et al. [57]); (e) whole-rock (206Pb/204Pb)i vs. (207Pb/204Pb)i

diagram (after Zhu et al. [57]); (f) whole-rock (206Pb/204Pb)i vs. (208Pb/204Pb)i diagram (after
Zhu et al. [57]).

The Jinjiling granites have εNd(t) values ranging from −8.2 to −6.3, with an average
of −7.1 (n = 17); the two-stage model ages (TDM2) range from 1389 to 1556 Ma, with an
average of 1472 Ma; and they have (87Sr/86Sr)i values ranging from 0.7126 to 0.7324. The
Pangxiemu granites have εNd(t) values ranging from −7.8 to −5.8, with an average of
−6.6 (n = 3); the two-stage model ages (TDM2) range from 1084 to 1513 Ma, with an average
of 1327 Ma; and they have (87Sr/86Sr)i values ranging from 0.7280 to 0.7325. The Shaziling
granites have εNd(t) values ranging from −7.4 to −6.8, with an average of −7.2 (n = 8);
the two-stage model ages (TDM2) range from 1542 to 1546 Ma, with an average of 1533 Ma;
and they have (87Sr/86Sr)i values ranging from 0.7160 to 0.7182. The Xishan granites have
εNd(t) values ranging from −7.7 to −6.6, with an average of −7.1 (n = 17); the two-stage
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model ages (TDM2) range from 1486 to 1571 Ma, with an average of 1523 Ma; and they
have (87Sr/86Sr)i values ranging from 0.7106 to 0.7181. The Pangxiemu dolerite has εNd(t)
values ranging from 3.4 to 3.8, with an average of 3.5 (n = 3); the one-stage model ages
(TDM) range from 776 to 815 Ma, with an average of 799 Ma; and they have (87Sr/86Sr)i
values ranging from 0.7068 to 0.7080.

The Laiziling granites have εNd(t) values ranging from −6.1 to −5.7, with an average
of −5.9 (n = 5); the two-stage model ages (TDM2) range from 1409 to 1439 Ma, with an
average of 1422 Ma; and they have (206Pb/204Pb)i, (207Pb/204Pb)i, and (208Pb/204Pb)i ratios
ranging from 18.317 to 19.149, 15.747 to 15.791 and 38.927 to 39.044, respectively. The
Jianfengling granites have εNd(t) values ranging from −6.5 to −6.0, with an average of
−6.1 (n = 5); the two-stage model ages (TDM2) range from 1437 to 1474 Ma, with an average
of 1448 Ma; and they have (206Pb/204Pb)i, (207Pb/204Pb)i, and (208Pb/204Pb)i ratios ranging
from 18.439 to 18.785, 15.764 to 15.775 and 38.885 to 39.078, respectively.

5. Discussion
5.1. Geochronology and Genetic Type

The zircon U-Pb dating results show that the Jinjiling (152.3 ± 0.7 Ma), Pangxiemu
(153.8 ± 1.5 Ma), Shaziling (152.9 ± 1.0 Ma) and Xishan (153.0 ± 0.7 Ma) units of the Jiuyis-
han complex massif have indistinguishable ages between 154 Ma and 152 Ma (Figure 6),
which are consistent within the error range. In addition, the zircon U-Pb dating of the
Shaziling MMEs and the Pangxiemu dolerite dike also yielded nearly the same ages of
152.1 ± 1.1 Ma [35] and 153.1 ± 0.9 Ma [37], respectively. Adjacent mafic rocks and MMEs
strongly support the injection of mantle-derived magma, and the indistinguishable ages
between the dolerite, MMEs and Shaziling granodiorite indicate the recharge of magma
chambers, which commonly occurred in large complex massifs with crystal mush sys-
tems [58]. In comparison, the Laiziling and Jianfengling intrusive stocks show different
emplacement ages. The zircon U-Pb dating result of the Laiziling stock yields an age of
155.5 ± 1.0 Ma, which is slightly earlier than the ages of the Jiuyishan complex massif,
which were between 154 Ma and 152 Ma. However, the zircon U-Pb dating result of the
Jianfengling stock yielded ages of 159.9 ± 1.1 Ma, which is nearly 5 Myr earlier than the
Laiziling stock. Although these two stocks have similar geochemical and isotopic composi-
tions, implying they have the same sources, the age gaps between them suggest two stages
of emplacement.

Although the definition of A-type granite has been broadened, compared to I- and
S-type granites, four units of the Jiuyishan complex and Jianfengling and Laiziling stocks
show common features: high SiO2 and Na2O + K2O contents and FeOT/MgO ratios but
low CaO, MgO and P2O5 contents, demonstrating A-type features [8]. Moreover, the
enrichment in HFSEs, Ga, Rb, Th and U and the depletion in Ba, Sr, Ti, P and Eu contents
are also geochemical features of A-type granites, regardless of the crystal fractionation
process [7,59]. In the diagrams of 10,000 Ga/Al vs. (K2O + Na2O)/Ca, Zr + Nb + Ce + Y vs.
FeOT/MgO (Figure 10a,b), SiO2 vs. Na2O + K2O-CaO and SiO2 vs. FeOT/(FeOT + MgO)
(Figure 10c,d), four units and two stocks all plot in the A-type field, and they plot in the
A2-type field in the diagrams of Nb-Y-Ce and Nb-Y-3 Ga (Figure 10c,d), indicating the
formation in an intraplate extensional environment. Petrography shows that four units and
two stocks have abundant alkali feldspars [10,42,44], which is an important mineralogical
indicator of A-type granite [5]. The Jinjiling (763–834 ◦C), Shaziling (782–878 ◦C) and
Xishan (775–918 ◦C) granites have relatively high formation temperatures—estimated
using the zircon saturation geothermometer—compared to the highly evolved Pangxiemu
(702–779 ◦C), Jianfengling (718–773 ◦C) and Laiziling (686–770 ◦C) granites, which is also
an important characteristic of A-type granite [60,61]. In summary, four units and two stocks
all have A-type affinities with ages between 160 Ma and 150 Ma.
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5.2. Petrogenesis of the Jiuyishan Complex Massif

Four units of the Jiuyishan complex massif have consistent zircon U-Pb ages and
obtained similar whole-rock εNd(t) values (−8.2 to −5.8) and zircon εHf(t) values (−7.5
to −2.2), indicating that they were formed from the same magmatic event with the same
source region. However, their relatively narrow range of εNd(t) and εHf(t) values can
preclude mixed magma of disparate end-members [64,65]. Four units have similar TDM2
ages of between 1338–1770 Ma, which suggests that they are recycled products of Mesopro-
terozoic and Paleoproterozoic crustal materials. However, their εNd(t) values are slightly
higher than the basement strata of the Nanling Range (Figure 9b,c), while their εHf(t)
values are also slightly higher than the zircons of the Nanling basement rocks. Thus, their
source region could be linked to more juvenile crustal materials when compared to the
Paleoproterozoic crustal basement. Previous studies suggest that A2-type granites in an
intraplate extensional environment possibly have lower crustal sources. Due to their high
temperature, low pressure and oxygen fugacity, most A2-type granites were formed by the
partial melting of lower crustal granulitic metasedimentary or metaigneous rocks [2,36]. In
this study, four units of the Jiuyishan complex have zircon εHf(t) values beyond the lower
crustal evolution line in South China (Figure 9a), which are plotted in the global lower crust
field in the εNd(t) vs. εHf(t) diagram (Figure 9d), demonstrating a lower crustal source
region with the incorporation of more juvenile materials.

Although an interpretation of lower crustal granulitic protoliths has been proposed,
few studies have illustrated the specific protoliths of these four units. Whole-rock geo-
chemical compositions can be a significant indicator for tracing magma sources of the
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low-degree-evolved granites [33,66], while the highly evolved granites have difficulty
tracing their initial magma compositions as well as their sources [67,68]. In the protolith
discrimination diagrams, the low-degree-evolved Shaziling granites mainly plot in the
field of metabasaltictometatonalitic sources (hybridization of high-Al olivine tholeiite with
metagraywacke), with a small number plotting in the field of metagraywackes (graywacke-
derived), indicating that they possibly have protoliths of metaigneous rocks and a minor
contribution of metasedimentary rocks (Figure 11a–c). Combining the previous stud-
ies, we consider that protoliths of lowercrustal granuliticmetabasaltic rocks with minor
metagraywacke input should be appropriate.
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Figure 11. Protolith discrimination diagrams of the studied granitic rocks: (a) CaO/(MgO + Fe2O3
T)

vs. Al2O3/(MgO+ Fe2O3
T) (in molar, after Altherr et al. [69]); (b) Al2O3 + MgO + FeOT + TiO2 vs.

Al2O3/(MgO + FeOT + TiO2) (after Patiño Douce, [70]). (c) Na2O + K2O + MgO + FeOT + TiO2 vs.
(Na2O + K2O)/(MgO + FeOT + TiO2) (after Patiño Douce, [70]).

Four units of the Jiuyishan complex massif show narrow whole-rock εNd(t) values and
zircon εHf(t) values similar to the lower crust [71]. Combined with no MMEs discovered
in the Jinjiling, Pangxiemu and Xishan granites, a magma-mixing process can be avoided
in these three units. The Shaziling granites and granodiorites also have similar εNd(t)
values and zircon εHf(t) values to their host rocks. However, abundant MMEs were
developed inside the host rocks with clear shapes and boundaries. Although their whole-
rock εNd(t) values were not analyzed, their major and trace elements exhibit intermediate
rock characters, and the zircon εHf(t) values from the MME samples have a wide range
of variations between −14.2 and 4.8. The highest zircon εHf(t) value of 4.8 is close to
the calculated εHf(t) value of 6.7 (εHf(t) = 1.55×εNd(t) + 1.21 if not decoupled [72]) from
the contemporary dolerite, which is considered to have originated from the enriched
mantle [37]. This evidence strongly supports that a mantle magma injection has occurred
in the Shaziling granitic magma. However, magma mixing cannot fully explain the process
because both the whole-rock εNd(t) values and zircon εHf(t) values of the Shaziling host
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granites are still consistent with the Xishan, Jinjiling and Pangxiemu granites. Due to the
fact that the MMEs are only discovered in a small part of the Shaziling pluton, rather than
commonly appearing in all the samples distributed in every part of the pluton, we preferred
a mantle magma recharge process, which triggered a local mixing.

Compared to the Shaziling MMEs, the Shaizling granodiorite host rock samples have
relatively consistent zircon εHf(t) values between −7.5 and −4.7. The lack of evidence in
the Shaziling host rocks, such as wall rock xenoliths, inherited zircons and variable whole-
rock εNd(t) and zircon εHf(t) values, could hardly prove a contamination or assimilation
of more mature crustal materials. The MMEs are proven to be formed by mantle magma
recharge, but the lowest zircon εHf(t) value of −14.2 indicates zircons from mature crustal
materials. This evidence proves that the crustal contamination may have occurred in the
mantle-derived magmas prior to the recharging process.

Four units of the Jiuyishan complex massif not only have consistent zircon U-Pb ages
but also similar whole-rock εNd(t) and zircon εHf(t) values. However, their major and
trace elements show a continuous evolutionary trend. The Shaziling, Xishan, Jinjiling and
Pangxiemu granites have gradually increased SiO2 contents, but decreased CaO, MgO,
Fe2O3

T, P2O5 and TiO2 contents (Figure 12a–i), which indicates that they experienced
the fractionation of amphibole, biotite, ilmenite, titanite, feldspar, titanite and apatite.
Moreover, increases in Rb, Nb, Ta, Y and U contents and decreases in Ba, Sr and Eu contents
are observed (Figure 8), indicating the fractionation of plagioclase and alkali feldspar
and the accumulation of crystallization of columbite, pyrochlore, thorite, monazite and
xenotime, which can partly be seen in the Pangxiemu granites as interstitial minerals or
mineral inclusions [34,73,74]. The intensive fractionation of feldspars is also proven by a
discovery that A-type granites have especially highly stable Ca isotope compositions, likely
the result of the rapid or extensive crystallization of plagioclase [75]. Whole-rock Zr/Hf,
Rb/Sr and K/Rb ratios commonly serve as efficient criteria to determine the influence of
fractional crystallization [6,76,77]. The Shaziling, Xishan, Jinjiling and Pangxiemu granites
have gradually increased Rb/Sr ratios, but decreased Zr/Hf and K/Rb ratios (Figure 13a,b).
For petrography observations, Shaziling has lithologies of granodiorite and biotite granite,
Xishan has biotite granite, Jinjiling has biotite granite and Pangxiemu has zinnwaldite
granite. All the evidence listed above indicates a fractional crystallization trend from the
Shaziling, Xishan, Jinjiling to Pangximu granites. The Pangximu granites with flat V-shaped
REE distribution patterns, which are also extremely depleted in Eu, Ba, Sr, P, Ti, Ca, Mg
and Fe contents but enriched in Rb, U, Y, Ta and Nb contents, are typical features of highly
evolved granites [10].

To better constrain the magma fractionation of the Jiuyishan complex massif, Rayleigh
fractionation crystallization modeling was carried out and Ba, Sr and Rb were selected
for modeling; the partition coefficients are presented in Supplementary Table S7. The
less-evolved Shaziling granodiorite sample (Rb = 204 ppm; Ba = 1385 ppm; Sr = 158 ppm)
was regarded as the initial magma, which has a mineral assemblage of 25% quartz +35% K-
feldspar +25% plagioclase +10% biotite +5% amphibole. The modeling result shows that the
Shaziling granites also experienced approximately 0%–30% fractionation; approximately
10%−40% fractionation is needed to form the Xishan granites, approximately 20%−70%
fractionation is needed to form the Jinjiling granites, and approximately 70%−90% frac-
tionation is needed to form the Pangxiemu granites (Figure 14a,b). However, this result
is unrealistic in nature. In a crystal mush system, the less-evolved granites are inferred
to represent a residual crystal mush comprising the cumulate crystals and a proportion
of highly fractionated interstitial melts, whereas the high-silica granites represent the
extracted, highly fractionated interstitial liquid from a crystal mush [15]. We therefore
suggest that the composition of the extracted liquid is the same as that of the most evolved
Pangxiemu granite sample, and the composition of the residual crystal mush approximates
the average composition of the Shaziling, Xishan and Jinjiling granites. According to this
model, approximately 60%−80% fractionation is needed to form the Pangxiemu granites
(Figure 14a,b).
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Therefore, we consider that four units of the Jiuyishan complex massif share the same
source region and protoliths in the lower crust. They experienced remarkable fractional
crystallization and local mantle magma recharge during their formation.

5.3. Petrogenesis of the Xianghualing Intrusive Stocks

Although the Laiziling and Jianfengling intrusive stocks have a 5 Myr age gap, they
have similar isotopic compositions of whole-rock εNd(t) values (−6.5 to −5.7) and zircon
εHf(t) values (−7.6 to −2.7), which are also similar to four units from the Jiuyishan complex,
indicating their close isotopic compositions of the source region, and they may have
analogous source regions in the lower crust. However, since the Laiziling and Jianfengling
stocks are highly fractionated, even though the biotite granites at the bottom show highly
evolved features [19,38], it is quite difficult to trace their protoliths via major and trace
elements. However, compared to the Pangximu granites, Laiziling and Jianfengling granites
have similar trace element features but much higher A/CNK values; this may be indicative
of a more metasedimentary source, and possibly lower-crustal granulitic metasedimentary
rocks.

The Laiziling and Jianfengling intrusive stocks contain different lithologies from the
bottom of the rock body to the top with gradual boundaries, indicating a continuous
fractional crystallization process [17]. Although topaz granite and greisen at the top of the
rock bodies were not collected in this study, zinnwaldite granite in the middle of the rock
bodies and biotite granite at the bottom all demonstrate highly evolved characteristics. Flat
V-shaped REE distribution patterns, with extremely depleted Eu, Ba, Sr, P, Ti, Ca, Mg and
Fe contents but enriched Rb, U, Y, Ta and Nb contents (Figures 8 and 15), are also observed
in the Laiziling and Jianfengling biotite and zinnwaldite granites. However, zinnwaldite
granites have relatively higher K, Al, Rb, Nb and Ta contents but lower Ti, Fe, Ca, Ba and
Sr contents (Figures 8 and 15), and fractionation from biotite to zinnwaldite granites can be
confirmed despite their similar major elements and REE distribution patterns.

The Jianfengling and Laiziling granites have remarkable depletions in Mg, Fe, Ca,
Ti and P, which may indicate the fractionation of amphibole, biotite, ilmenite, feldspar,
titanite and apatite. Moreover, the depletions in Sr, Ba and Eu and the enrichment in Rb
represent the fractionation of plagioclase and alkali feldspar. Incompatible elements tend
to be crystallized in late-evolved melts, which caused the highly evolved Jianfengling
and Laiziling granites to be enriched in Nb, Ta, Th, U, Hf, Y and crystallized columbite,
pyrochlore, thorite, monazite and xenotime, which can partly be seen as interstitial minerals
or mineral inclusions in the Jianfengling and Laiziling granites [22,40,42,44,45,78].
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An assimilation process might have occurred in the Laiziling and Jianfengling highly
evolved granites. We consider that these two intrusive stocks might have experienced an
assimilation process for the following reasons: (1) Previous studies proved that the highly
evolved granites commonly accompany AFC processes [66]. (2) A large dolomite xenolith
was found in the interior of the Laiziling stock [79], which was strongly altered by high tem-
perature hydrothermal, indicating it was captured earlier at the magmatic–hydrothermal
stage, and it might be assimilated in a small proportion within a local dimension. (3) Abun-
dant inherited zircons were discovered in the Laiziling and Jianfengling granites, which
were considered as captured zircons by the assimilation of concealed granites with older
ages [42]. (4) The Pb isotope of one Jianfengling granite sample exhibited an upper crustal
signature, indicating the incorporation of more mature crustal materials (Figure 9e,f), but a
post-magmatic alteration could also have caused the change in Pb isotopes.

In summary, the Laiziling and Jianfengling stocks also have a lower crustal source
region. During their formation, a remarkable fractionation crystallization process occurred,
accompanied possibly by an assimilation process.

5.4. Different Fractional Crystallization Mechanisms between the Jiuyishan Complex and the
Xianghualing Stocks

The mechanism of fractional crystallization remains controversial, especially in fel-
sic magmas. Multiple mechanisms have been proposed by previous studies, such as
gravitational settling, flowage differentiation and thermal diffusion or convective fractiona-
tion [68,80]. However, such mechanisms are based on mafic magmas, and felsic magmas
may not be suitable for these mechanisms [68]. However, some studies also argue that F
and other volatiles can remarkably reduce magma viscosity, with clear evidence showing
that abundant flow structures were found in field observations of granite systems and that
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flowage differentiation and gravitational settling can also occur as fractional crystallization
mechanisms of felsic magmas [17,18,80]

Recently, a crystal mush system has been proposed to explain the existence of granitic
rocks with spatially and temporally related, high-silica rhyolites: large silicic magma
chambers are widely perceived as upper crustal mush at a high crystallinity, and these
magma chambers are commonly placed into two closely spatio-temporally related crystal-
poor and crystal-rich units, respectively [15,58]. The crystal mush system can also be used
to interpret the formation of complex massifs. We consider four units of the Jiuyishan
complex massif as a crystal mush system for the following reasons: (1) The four units have
similar ages and are spatially connected. (2) A fractional crystallization trend was observed
from the Shaziling, Xishan, Jinjiling to Pangximu granites, and the Pangxiemu unit is highly
evolved. (3) Although the less evolved Shaziling unit is located in the central part of the
complex, between the Jinjiling and Xishan units, the northern part extends to the further
periphery (Figure 2), indicating that the actual distribution of the unexposed Shaziling
unit is the most peripheral. The exposed Shaziling unit may only represent a branch of
the magma chamber that inserts into the Jinjiling and Xishan units. (4) The Pangxiemu,
Jinjiling, Xishan and Shaziling units are distributed spatially from the top to the bottom
and from the central to the margin. A less evolved trend was observed among them, also
corresponding to the model of the crystal mush system. (5) The outermost Shaziling unit
experienced a mantle magma injection, representing the magma recharge of the magma
chamber. Due to the recharging or heating of mafic magmas with high temperatures, the
Shaziling granite is medium-to-fine-grained and lacks phenocrysts. Meanwhile, the Xishan
and Jinjiling granites are coarse-grained and enriched in feldspar phenocrysts, representing
crystal-rich residual mush. The highly evolved Pangxiemu granite is also fine-grained and
lacks phenocrysts, representing a crystal-poor extract melt.

The Laiziling and Jianfengling stocks have vertical zonation with different lithologies
from the bottom to the top. However, even though the deep drill hole samples at the bottom
are still biotite granites with highly evolved features, the low-degree-evolved unit cannot
be found. Liu et al. [80] considered that the vertical zonation of granitic rocks can be caused
by three mechanisms: (1) flowage differentiation during magma ascent; (2) gravitational
settling during magma solidification after emplacement; and (3) gravitational settling in
the magma chamber in situ. However, the last mechanism can be precluded because the
Laiziling and Jianfengling stocks have an age gap of 5 myrs, which means they cannot
share the same magma chamber and separately experience gravitational settling at the
same time. If they do not share the same large magma chamber, this means that these
adjacent stocks may have isolated small magma chambers. However, they have small,
exposed areas and their unfractionated cumulates cannot be found, indicating deep and
large concealed parts, and this is in conflict with the small magma chambers. Hence,
we consider that the vertical zonation of Laiziling and Jianfengling stocks is more likely
caused by flowage differentiation during magma ascent or gravitational settling during
magma solidification. Some researchers discovered that many highly evolved granites in
the Nanling Range have the phenomenon of vertical zonation, and most of them are small
intrusive stocks. They consider that the vertical zonation of these stocks is mainly caused
by gravitational settling during magma solidification after emplacement [18], and multiple,
later acidic dikes evolved from more fractionated magma can cut the previously emplaced
stocks [38,78,81]. Some authors also argue that granitic dikes were formed by long-distance
magma emplacement because magma ascends from deep to shallow, usually in the form
of dikes [82]. Multiple acidic dikes were found to have developed around the Laiziling
stocks, which also verified these theories: they were either formed by evolving from more
fractionated magma or long-distance magma emplacement.

Although a series of studies have been proposed to prove the different fractional
crystallization mechanisms between the Jiuyishan complex and the Xianghualing stocks,
previous studies have considered that the formation of granitic rocks was not only con-
trolled by one mechanism, but a combined action of multiple mechanisms [77]. A simple
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model can be proposed to demonstrate the formation of the Jiuyishan complex massif
and Xianghualing intrusive stocks (Figure 16). Although no vertical zonation has been
observed in four units of the Jiuyishan complex massif, the initial magma that formed
their magma chamber can also experience flowage differentiation. In comparison, the
Laiziling and Jianfengling stocks can also be formed via the re-intruding of the highly
evolved extract melt of a preformed crystal mush system in a hidden magma chamber. In
summary, fractional crystallization of the Jiuyishan complex massif is mainly controlled by
an in situ crystal mush fractionation, while the Xianghualing intrusive stocks are mainly
controlled by flowage differentiation during magma ascent or gravitational settling during
magma solidification after emplacement. However, more than one mechanism can act on
the fractional crystallization processes of granitic rocks.
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6. Conclusions

(1) The Jiuyishan complex massif and Xianghualing intrusive stocks are A2-type
granites with ages between 160 and 150 Ma.

(2) The Jiuyishan complex massif has a source region that is linked to the lower crustal
granulitic metabasaltic rocks; they experienced fractional crystallization and mantle magma
recharge during their formation.

(3) The Jianfengling and Laiziling intrusive stocks also have similar source regions in
the lower crust; they experienced remarkable fractionation crystallization, accompanied
with possible assimilation.
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(4) The fractional crystallization mechanism of the Jiuyishan complex massif was
mainly controlled by in situ crystal mush fractionation, while the Xianghualing intru-
sive stocks were mainly controlled by flowage differentiation during magma ascent or
gravitational settling during magma solidification after emplacement.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13050605/s1. Supplementary Table S1. Zircon LA-ICP-MS
U-Pb dating results. Supplementary Table S2. Inherited zircon LA-ICP-MS U-Pb dating results
of the Jianfengling and Laiziling granites. Supplementary Table S3. Zircon LA-MC-ICP-MS Hf
isotopic compositions. Supplementary Table S4. Whole-rock major (wt%) and trace (ppm) element
compositions. Supplementary Table S5. Whole-rock Sr and Nd isotopic compositions. Supplementary
Table S6. Whole-rock Pb isotopic compositions of Jianfengling and Laiziling granites. Supplementary
Table S7. Used partition coefficients of elements between mineral and melt in Rayleigh fractionation
crystallization modeling.
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