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Abstract: The accurate prediction of coal structure is important to guide the exploration and devel-
opment of coal reservoirs. Most prediction models are interpreted for a single sensitive coal seam,
and the selection of sensitive parameters is correlated with the coal structure, but they ignore the
interactions between different attributes. Part of it introduces the concept of the geological strength
index (GSI) of coal rocks in order to achieve a multi-element macroscopic description and quantita-
tive characterization of coal structure; however, the determination of coal structure involves some
uncertainties among the properties of coal, such as lithology, gas content and tectonic fracture, due to
their complex nature. Fuzzy inference systems provide a knowledge discovery process to handle
uncertainty. The study shows that a type-2 fuzzy inference system (T2-FIS) with multi-attribute
fusion is used to effectively fuse pre-stack and post-stack seismic inversion reservoir parameters
and azimuthal seismic attribute parameters in order to produce more accurate prediction results for
the Hengling block in the Shanxi area. The fuzzy set rules generated in this paper can provide a
more reliable prediction of coal structure in the GSI system. The proposed system has been tested on
various datasets and the results show that it is capable of providing reliable and high-quality coal
structure predictions.

Keywords: coal structure prediction; GSI system; multi-attribute fusion; fuzzy inference systems

1. Introduction

Coal structure indexes the internal structural characteristics of coal reservoirs under
the action of tectonic stress. The fractional anisotropy of coal structure can directly reflect
the differential distribution characteristics of the coalbed methane (CBM) selection area
and is an important parameter for coal reservoir quality evaluation [1]. Using continuous
logging parameters to predict coal structure is a valuable tool for geologists and mining
engineers. By understanding the sensitivity between logging parameters and coal structure,
it is possible to make reasonable predictions about the most suitable mining areas and to
enhance hazard warning capabilities in the high fracture areas of coal mines, such as gas
protrusions and roof collapses [2,3].

Although an increasing number of sensitive logging reflections have been identified,
experimental results from different core analyses [4] have demonstrated their limited
predictive relevance. Shi et al. (2020) [5] intended to develop a quantitative coal structure
identification model based on the kernel Fisher discriminant method through the idea of
dimensionality reduction, which was applied to CBM in the Qinshui Basin. Mou et al.
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(2020) [6] developed a new method to predict index sensitivity by using tectonic coal
stress concentrations. Zhang et al. (2021) [7] used a combination of logging curves and
structural curvature to estimate the coal structure index of the degree of damage and
predicted it by multiple linear regression methods. Some studies have calculated coal
structure vulnerability indices by integrating two tools, the analytic hierarchy process
and geographic information systems. These studies have identified some early warning
values for water-inrush hazard areas for roughly classified coal structure results [8]. Other
studies have implemented an elastic impedance inversion method for the fluid factor
and brittleness coefficient, using both as effective pore-fluid bulk moduli to estimate coal
structural distribution [9,10]. However, the use of multiple solutions for the inversion
reduces the accuracy of the predictions, whereas they become more accurate with the
addition of rich logging parameters, but the well extrapolation process still requires the
inversion of seismic waves in order to solve for the relevant parameters, resulting in a
certain error accumulation [11,12].

The Geological Strength Index (GSI) is a rock quality evaluation tool, formally pro-
posed by Evert Hoek et al. (1997) [13], which has been widely used to assist in predicting
coal structures. It is based on a numerical scale that assesses various parameters, such as
lithology, stratigraphy, and structural complexity. However, the GSI chart relies on visual
examination and if the number of core samples examined is insufficient, there may be an
increase in subjective uncertainty [14]. Fuzzy inference systems (FISs) offer a more reliable
method of predicting coal structures in a way that approximates human reasoning and
decision-making, taking into account the uncertainty of the data. Fuzzy Logic Systems
(FLSs) offer a non-traditional approach to perceptual modeling and have been successfully
applied in the fields of control, information retrieval and system modeling, etc. The related
singleton fuzzification works have been widely implemented to build predictive models of
coal structures [15–19] and have been integrated into mainstream engineering software,
such as Geolog, MATLAB and Python [20–22]. Compared to its type-1 fuzzy set (T1-FS)
counterpart for rock parameters, the interval type-2 fuzzy logic system (IT2-FLS) in this
study shows better performance in four areas, i.e., uncertainty simulation, rule base volume,
control surface smoothness and adaptability.

In this paper, the high-resolution reservoir inversion results and fracture seismic
attribute information are used to fuzzy fuse multiple attributes according to the GSI chart.
The integrated attributes depend on the rule number and training results of the fuzzy
model, which can effectively and accurately predict subsurface reservoir structures. In the
data mining process, we inherit the methods used to obtain previous results and realize the
data-driven sample acquisition based on the data, which saves the cost of human labeling.
The training set is combined with the information fusion capability of the fuzzy system,
which, in turn, improves the prediction accuracy of the coal body structure. Therefore,
this study uses IT2-FLS combined with GSI in order to provide a theoretical basis for the
accurate prediction of coal structure by multi-attribute fusion.

2. Geological Setting

The South Hengling Block is located on the eastern synclinorium of the Qinshui Basin
and covers an area of 3.9 km2 (Figure 1). The area is part of the North China Fault Block and
is subject to east-west extrusive stresses in the basin tectonics, with well-developed trap
columns, folds and fault structures. By the end of 2022, the Hengling Block had significant
exploration potential with new proven coal-bed methane reserves of 7707 million cubic
meters [23]. The district has two development strata. One is the No. 15 coal seam of the
Carboniferous Taiyuan Formation located above the weathering and stripping surface of
the Ordovician. The thickness of the seam ranges from 106.30 m to 158.69 m and averages
123.71 m (Figure 2b). The buried depth of the stable mineable coal seam is greater than
1500 m, with a coal thickness of 4.35 m–7.08 m and an average of 5.18 m. It contains one
to three layers of interbedded gangue, mainly cleat and granular coal, locally developed
primary structural coal, of which the macro coal rock type is mainly semi-bright coal, with
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a small amount of bright coal on top. The coal type is mainly anthracite. The other set
of continuous deposits is the No. 3 coal seam in the central part of the Shanxi Formation,
buried around 1410 m–1580 m deep, with a stratigraphic thickness ranging from 26.92 m to
66.80 m and averaging 49.22 m (Figure 2a). The No. 3 coal seam is thinner and partially
mineable, with a thickness of 0.54 m–2.59 m and an average of 0.9 m. It contains zero to
one layers of interbedded gangue, dominated by fractured-fractured-grained coal, which is
semi-bright coal. The types are anthracite and lean coals. The specific assignment of the
two sets of mineable coal seams in the study area is given in Table 1.
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Table 1. List of mineable coal seam characteristics.

Srata No.
Thickness (m)

Min-Max
Average

Distance (m)
Min-Max
Average

Structure Mineability
Lithology

Note
Roof Floor

Shanxi
Formation 3 0.54–2.59

0.90
24.8–48.5

37.8 Simple Partially
mineable

mudstone, sandy
mudstone,
siltstone,

carbonaceous
mudstone

sandy
mudstone,
mudstone

Gangue 0–1 layers

Taiyuan
Formation 15 4.35–7.08

5.18
86.2–126.5

97.8 More complex Mineable
area-wide

mudstone,
siltstone,

coarse-grained
sandstone

mudstone,
sandy

mudstone
Gangue 1–3 layers
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Figure 2. The 1:50 logging curves and lithologic interpretations of Coal Seam No.3 (a) and Coal Seam
No.15 (b).

Figure 3 shows the typical seismic profile of a survey line in the work area. The
spectrum analysis revealed that the spectrum of seismic data in the study area decreased
with increasing depth, and the spectrum showed a double-peaked phenomenon. The
curves with different colors in the figure represent five layer sequence interfaces, from top
to bottom, K10, T3, T8, T11 and T15 interfaces, and this paper only focuses on the study of
the T3 and T15 layer sequence interfaces.

The T3 section is the Shanxi Group stratum where the No. 3 coal seam was located,
with a main frequency of about 45 Hz and a seismic resolution of about 18 m. There are
obvious differences in wave impedance between the No. 3 coal seam and its top and bottom
plate of surrounding rocks, forming a strong energy, prominent waveform and continuous
traceable reflection wave. The section T15 stratum is the Taiyuan Group stratum where
the No. 15 coal seam was located. The main frequency reduced to 25 Hz and the highest
resolution of inversion was about 25 m. The weathering crust at the top interface of this
section of coal seam was in unconformity contact with the overlying strata, forming a weak
reflection wave energy and poor continuity, and most of the profiles present a composite
wave pattern with poor continuity. In summary, the geological conditions in this area are
relatively complex.
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Figure 3. A typical common depth point (CDP) seismic profile of a survey line in the work area. The
blue arrows represent the location of the area where the double-peaked phenomenon corresponds to
the two sets of coal seams. The curves with different colors represent five layer sequence interfaces,
from top to bottom, K10, T3, T8, T11 and T15 interfaces.

3. Methods
3.1. Logging the Multi-Parameter Interpretation Model

According to the description of the Chinese national standard GB/T 30050-2013
document [24], the classification of coal structure is roughly divided into four types of
structures, including primary, cataclastic, fragmentation and mylonitized structures. This
criterion has been combined with GSI in order to quantify the strength of the indicator
factors for different structures [25]. The industrial consensus is to use wireline logs to
extract the physical parameters of the coal body in order to effectively quantify the coal
structure [26,27]. The method relies on multi-parameter logging datasets and lots of
experience accumulated by engineers, but the non-uniqueness of seismic attribute inversion
makes it difficult to apply to 3D seismic prediction work [28]. By analyzing the descriptive
information of the drilled coal cores in the geological survey report for the well fields that
have been surveyed, information about the relevant coal structure can be mined and the
type of coal structure can be judged based on the modified quantitative GSI chart.

It can be seen from the petrophysical analysis of the two sets of coal seams in the
concentrated area (Figure 4) that the density, caliper log and deep laterolog values of the
coal seams are low, but due to the damage suffered by the coal structure, which makes the
coal gangue entrained with some radioactive material, it may have abnormally high values
of gamma and spontaneous potential. To some extent, the petrophysical quantity plates can
provide insight into the statistical distribution law related to the coal seam. By referring to
information from the neighboring areas [29], it was determined that the following logging
multi-parameter prediction model for coal structure was established using gamma, density,
deep laterolog, interval transit time and caliper curves:

GSI = 0.17Gr + 105rho− 1.9 ln(Rd)− 0.12AC− 0.25CAL− 61 (1)

where GSI is the structural GSI value of the coal body, Gr is the gamma value, rho is the
bulk density, Rd is the resistivity, AC is the interval transit time and CAL is the caliper
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curves. By establishing an empirical formulation of the regression equation shown in
Equation (1), the rich multi-parameter logging data is converted into a descriptive and
quantitative characterization of the coal seam. As shown in the Figure 5, the true and
fitted values match well, and the multi-parameter prediction model yields highly accurate
predictions and enables a better understanding of the characteristics and trends of the data.
Therefore, the GSI values obtained from this model will be used as the output data of the
fuzzy training system in the next subsection.
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Figure 4. Cross plots of P-wave velocity with GR: gamma (a,g), SP: spontaneous potential (b,h),
DEN: density (c,i), CAL: caliper log (d,j), LLD: deep laterolog (e,k) and CNL: compensated neutron
log (f,l) in the petrophysical analysis, where (a–f) belong to coal seam No. 3 and (g–l) belong to coal
seam No. 15.
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Figure 5. Comparison of the actual GSI value and the fitted GSI value.

The comprehensive evaluation curve of the coal structure on the well was obtained
by fitting the GSI of the characteristic parameters from the logging data. It can be seen
from Figure 6 that the GSI values of the shallow coal body structure are generally larger
than 50, which belong to the primary structure and fractured structure. The GSI value
of the deep-seated coal structure is generally less than 30, which belongs to the fractured
structure and vesicular structure. This is related to the changes in coal by geological
conditions during the formation process. With an increase in depth, the composition,
structure and properties of coal will also change. Specifically, as the depth of the coal seam
increases, factors such as pressure, temperature, and pore water chemical environment will
change, and these changes will cause physical and chemical reactions in the coal, such as
compaction, metamorphism and cracking of the coal. These reactions can cause the organic
matter, minerals and pore structure of coal to change and form a more complex structure.
In addition, deeper coal seams are usually subject to higher ground and tectonic stresses,
which can also lead to fracture and deformation of the coal and the formation of more
complex structures.

It should be noted that the establishment of the empirical formula needs to consider
the influence of several factors, such as coal seam characteristics, geological conditions and
logging instrument performance. The reliability and accuracy of the empirical formula are
also affected by the amount of sample data, feature selection and model training, so it is
necessary to focus on data quality and model tuning during the process of establishing the
empirical formula. Furthermore, the GSI values obtained from this polynomial model can
be used as the output training set for the fuzzy logic system.

3.2. Construction of Geological Strength Index (GSI) with Type-2 Fuzzy Logic

The popularity of the early GSI was to build a bridge of communication between
the experimentally measured strength parameters of rock masses and the deformation
characteristics of rock outcrops [30]. It has been shown that the GSI chart can quantify
the degree of tectonic deformation as a quantitative classification indicator, which gives
measurability to descriptive language that relies on visual methods to obtain words with
unclear meanings, such as bulky, well-interlaced, partially disturbed, etc. Within the limits
of the GSI chart, this artificial deblurring process will yield results with little variation,
depending on the understanding and experience of different people. However, the artificial
deblurrer is not universally applicable for seismic wavefield signals from non-outcropping
rock blocks. The research and application of type-one fuzzy logic in the mathematical
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manipulation of perception began as early as 1965 [31]. IT2-FLS, as an extension of type-one
and generalized type-two fuzzy logic, can add additional fuzzy set freedom and training
performance, and is currently the most widely used system. The IT2-FLS consists roughly
of five parts (Figure 7a), of which the clear input–output data pairs are:

(xi; y), i = 1, 2, . . . , N, (2)

where xi = (x1, x2, · · · , xn) ∈ Rn and y ∈ R, N represents the number of categories at the
input and n represents the number of samples in each category. Equation (2) represents the
multiple-input single-output model.
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Figure 7. Structural design of IT2-FLS (a) with the membership functions design (b). Taking the
Trapezoid IT2-FS as an example, nine points (a, b, c, d, e, f, g, i, h) can be used to represent an IT2 FS,
the blue dashed line is the center of gravity of the IT2 FS, x represents the upper FS limit, x represents
the lower FS limit, and the gray part sandwiched by the upper and lower limits is the footprint of
uncertainty (FOU).

A fuzzifier is a set of membership functions (MFs) that maps the input variable xi
between 0 and 1, denoted as:

Ai =
∫

xi∈DAi

∫
u∈Jxi⊆[0,1]

µAi (xi, u)/(xi, u), (3)

where Ai is a fuzzy set with a membership level of µAi (xi, u). u ∈ [0, 1] is called a secondary
membership variable with a definition domain Jxi = [µxi (xi), µxi (xi)] ⊆ [0, 1], which is
called the footprint of uncertainty (FOU) of Ai (Figure 4b). The width size of FOU is
directly related to the imparted uncertainty [32], whereas xi and xi represent the upper and
lower bounds of the data set, respectively. There are three types of MFs commonly used
in IT2-FLS (Figure 7b) and the choice of MFs is not rigid and often depends on the actual
application of the fuzzy system being implemented. For example, Gaussian MFs with
wider coverage are often chosen for nonlinear signal response approximation simulations,
whereas linear MFs are more suitable for applications such as data space quantization and
pattern recognition classification.

The role of the rule base is to extract the influence of the rule between the output
variable (y) and the input variable (xi). The Mamdani rule was the first rule proposed [33],
and the Takagi–Sugeno–Kang (TSK) model was transformed into multiple linear subsystem
fits based on Mamdani [34]. These two IF–THEN rules are expressed as follows:

Mamdani : IF xi1 is A(l)
i1 and . . . and xin is A(l)

in , THEN y is B(l) (4)

TSK : IF xi1 is A(l)
i1 and . . . and xin is A(l)

in , THEN y is p(l)T
x + pl

0 (5)

where l = 1, 2, . . . , M denotes the rule index number, M represents the maximum number

of rules, A(l)
ij , B(l) and pl

0 are all interval fuzzy sets, B(l) =
[
b(l), b

(l)
]

denotes the centroid of
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Mamdani rule, p(l) =
(

p(l)
1 , p(l)

2 , · · · , p(l)
n

)T
is the weight factor of the TSK rule and, when

p(l) = (0, 0, · · · , 0)T , the TSK rule is equivalent to the Mamdani rule. For the convenience
of calculation, the Mamdani rule was chosen in this paper.

The inference engine is designed to calculate the firing interval of the lth rule, di-
vided into:

B(l) =

[
µ

x(l)1
(x1)×T · · · ×T µ

x(l)n
(xn), µ

x(l)1
(x1)×T · · · ×T µ

x(l)n
(xn)

]
≡
[
b(l), b

(l)
]

(6)

where ×T is the minimum t-norm operation, or:

B(l) =

[
µ

x(l)1
(x1) ∗T · · · ∗T µ

x(l)n
(xn), µ

x(l)1
(x1) ∗T · · · ∗T µ

x(l)n
(xn)

]
≡
[
b(l), b

(l)
]

(7)

where ∗T is the product t-norm operation. The role of B(l) is to center on the weighted aver-
age of the rule output data. Both of the firing intervals have a wide range of applications,
and the distinction in terms of performance is not very obvious. Therefore, either of the
two inference engines can be chosen.

A type reducer is a technical module used to defuzzify the fuzzy set, and in this paper,
is the central-of-sets type reducer was chosen, defined as:

y = ∪
b(l) ∈ B(l)(x, u)

y ∈ R

M
∑

l=1
B(l∗)

c b(l)

M
∑

l=1
b(l)

=
[
yle f t, yright

]
(8)

where B(l∗)
c is the center of the output fuzzy set B(l), determined according to the follow-

ing definition:
m

∏
j=1

µ
A(l∗)

ij

(
xij
)
≥

m

∏
j=1

µ
A(l)

ij

(
xij
)

(9)

Here, yle f t and yright are defined as:

yle f t =

L
∑

l=1
B(l∗)

c b
(l)

+
M
∑

l=L+1
B(l∗)

c b(l)

L
∑

l=1
b
(l)

+
M
∑

l=L+1
b(l)

(10)

yright =

R
∑

l=1
B(l∗)

c b(l) +
M
∑

l=R+1
B(l∗)

c b
(l)

R
∑

l=1
b(l) +

M
∑

l=R+1
b
(l)

(11)

Finally, the defuzzifier was used to obtain a clear output:

y =
yle f t + yright

2
(12)

IT2-FLS can replace the textual description language in the traditional GSI system
chart when considering the combinations of different MFs (Figure 8). This study benefits
from the availability of a free open-source MATLAB/Simulink toolbox developed by
Taskin et al. (2015) [35], which makes it possible to extend the findings of this study to
practical applications.
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this range.

As shown in Figure 8, the process of embedding an aggregated fuzzy system into a GSI
system first requires the identification of the parameters used to calculate the GSI, including
the lithology parameters and the fracture development degree parameters. Then, each
parameter should be converted into linguistic variables by fuzzification techniques in order
to obtain a fuzzy set for each parameter. Next, all the fuzzy sets need to be input into the
aggregated fuzzy system for processing in order to calculate the final geological strength
index. This process requires the use of hierarchical analysis to determine the weights
of each input parameter. The output of the aggregated fuzzy system will be mapped to
the corresponding position of the GSI system in order to obtain the final GSI value. By
embedding the aggregated fuzzy system into the GSI table, more accurate and reliable GSI
values can be obtained, which helps to better predict the coal structure.

3.3. Multi-Attribute Data Mining Based on Fuzzy Sets

The main coal-bearing rock systems in this area are the Shanxi and Taiyuan formations,
of which the Shanxi Formation is a deltaic sedimentary system, the upper part of the
Taiyuan Formation is a deltaic sedimentary system and the lower part is a barrier coastal
sedimentary system. The sedimentary microphases developed in the Shanxi Formation are
mainly interdiversion depressions, diversion channels and peat bogs, etc. The sedimentary
microphases developed in the upper part of the Taiyuan Formation are mainly submerged
diversion channels and interdiversion bays, and the sedimentary microphases developed
in the lower part of the Taiyuan Formation are mainly barrier islands, lagoons, sand
pings, mud pings, mixed pings, open terraces and peat bogs (Figure 9), whose lithology
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is directly related to the preservation of CBM. However, the various logging parameters
in the 3D work zone were difficult to obtain by inversion, so we needed to mine the data
comprehensively within a limited number of attribute parameters.

Minerals 2023, 13, x FOR PEER REVIEW 12 of 21 
 

 

determine the weights of each input parameter. The output of the aggregated fuzzy sys-

tem will be mapped to the corresponding position of the GSI system in order to obtain the 

final GSI value. By embedding the aggregated fuzzy system into the GSI table, more ac-

curate and reliable GSI values can be obtained, which helps to better predict the coal struc-

ture. 

3.3. Multi-Attribute Data Mining Based on Fuzzy Sets 

The main coal-bearing rock systems in this area are the Shanxi and Taiyuan for-

mations, of which the Shanxi Formation is a deltaic sedimentary system, the upper part 

of the Taiyuan Formation is a deltaic sedimentary system and the lower part is a barrier 

coastal sedimentary system. The sedimentary microphases developed in the Shanxi For-

mation are mainly interdiversion depressions, diversion channels and peat bogs, etc. The 

sedimentary microphases developed in the upper part of the Taiyuan Formation are 

mainly submerged diversion channels and interdiversion bays, and the sedimentary mi-

crophases developed in the lower part of the Taiyuan Formation are mainly barrier is-

lands, lagoons, sand pings, mud pings, mixed pings, open terraces and peat bogs (Figure 

9), whose lithology is directly related to the preservation of CBM. However, the various 

logging parameters in the 3D work zone were difficult to obtain by inversion, so we 

needed to mine the data comprehensively within a limited number of attribute parame-

ters. 

 

Figure 9. Profile of sedimentary connecting wells of coal samples from coalbed methane blocks in 

Hengling. 

In this study, a seismic phase-controlled nonlinear chaos inversion technique [10] was 

used, which has great advantages for the identification of thin coal seams. As shown in 

Figure 9. Profile of sedimentary connecting wells of coal samples from coalbed methane blocks
in Hengling.

In this study, a seismic phase-controlled nonlinear chaos inversion technique [10] was
used, which has great advantages for the identification of thin coal seams. As shown in
Figure 10a, a comparison of the post-stack inversion profile of well S-2 with a logging
curve shows that the reservoir characteristics of the profile were obvious, with low-velocity
coal seams (dark blue), high-velocity limestone (red), medium- to high-velocity sand
(yellow) and mud shale (light blue), and the inversion profile is very effective in identifying
lithology. The pre-stack inversion profile (Figure 10b) on the S-2 well corresponded well
to the gas-bearing properties, with high values of full hydrocarbon detection. The two
3D data volumes were entered into the IT2-FLS as rock block characterization parameters
(Figure 11b,c).

We also calculated the coherent and curvature data volumes for the coal-rock link-
age in the GSI chart (Figure 11d,e). In order to fully employ the wide azimuthal stacked
forepath set data obtained from the Offset Vector Tile (OVT) domain processing, we ap-
plied the optimal surface voting crack detection technique of Wu et al. (2018) [36] to the
azimuthal seismic information because the azimuthal information added by OVT helps in
the extraction of the 3D spatial seed points. As shown in Figure 12d, we can observe the
fracture growth with six different elements of orientation information, and we can combine
the multi-directional fracture characteristics (Figure 12a–c) to obtain the integrated fracture
parameter of the OVT domain (Figure 11f). This new fracture attribute parameter is more
recognizable than the traditional fracture attribute parameter feature, so we input this
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parameter into the IT2-FLS as a comprehensive indicator of the current status of coal-rock
linkage (SCL).
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Figure 10. (a) Post-stack nonlinear impedance inversion profile and (b) Lamé coefficient multiplied
density profile. The logging curves in the figures are the P-wave velocity and hydrocarbon detection
curves, respectively. The graphical identification is coal rock. The locations of the post-stack and
pre-stack inversion profiles are shown in the lower right corner, respectively.
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Figure 11. (a) Seismic pure wave volume, (b) post-stack impedance volume, (c) pre-stack Larmé
coefficient times density volume, (d) coherence volume, (e) curvature volume and (f) optimal surface
voting volume for OVT domains with integrated multi-directional information.
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Figure 12. (a) Seismic pure wave volumes, (b) curvature volumes, (c) coherent volumes and (d) opti-
mal surface voting volumes for six orientations in the OVT domain.

Finally, we combine the surface quality conditions (SQCs) in the GSI table of IT2-FLS
with inverse physical parameters, such as p-wave velocity, density and the Lamé coefficient,
and the current SCL with seismic property indices, such as the seismic coherence cube,
curvature and OVT domain optimal voting volume, etc. Combined with our current
published methods [37], we can achieve multi-attribute 3D data mining of target lithologies.
The method is inspired by seismic data collected with drilling logs, and extracts annotation
information and interpretation results along the well trajectory, which effectively solves
the most time-consuming process of creating and collecting labels in a huge amount of
seismic data.
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4. Application of Fuzzy Logic Multi-Attribute Fusion

Considering the coal structural system, the task of this study was to investigate the
structural spreading of the coal mass in the target area using a multi-attribute 3D seismic
fusion method. The fuzzy output y is the multi-parameter predictive coal structure model
of the logging wells calculated by regression Equation (1), and the input (x) is the factors
that may affect the coal structure. We selected five attributes (xi = (x1, · · · , x5)), including
seismic impedance, Larmé×density, Vp/Vs ratio, curvature and OVT optimal surface
voting volumes, and obtained the input data pairs ((xi; y), i = 1, 2, . . . , 5) by automatically
acquiring the coal rock locations of each data set by the program. In order to show the 3D
structure of coal rocks, we only kept the parameters related to coal rocks for each group of
attributes (Figure 10). The structure of the inversion volume related to lithology is shown in
Figure 13a–c, and the development of multi-directional fractures is shown in Figure 13d–f.
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Figure 13. Multi-attribute presentation of coal structure based on data mining. These are the post-
stack impedance volume (a), pre-stack Larmé×density volume (b), pre-stack Vp/Vs volume (c),
coherent volume (d), curvature volume (e) and OVT optimal surface voting volume (f), respectively.
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According to the IT2-FLS-GSI chart, we covered five fuzzy sets (A5
i ) in each inverse

body attribute and four fuzzy sets (A4
i ) in the crack detection attribute, and used the

collected data corresponding to the training set (Dtrain) to obtain the complete fuzzy rule
base. The fuzzy sets (B(l)

c , l ∈ {1, · · · , K}) only need to be selected from the centers of
the predefined fuzzy sets (

{
B1, . . . , BK}). The defuzzified GSI prediction model (y) was

obtained (Figure 14), which can be quantified to represent the GSI values of the input data
pairs (x). As seen in Figure 14a, the multi-attribute fuzzy fusion GSI model and the logging
multi-parameter GSI model both have the same prediction trend and smoother output,
whereas the error size of both is maintained between ±20. Adding or subtracting rules or
changing the MFs will have some effect on the error, and achieving accurate results requires
constant fine-tuning and pruning of the model. Based on the rule base, we plotted the visual
appearance of the fuzzy prediction model. Both are generally consistent in appearance,
but the results from the secondary tests show that the continuous fuzzy prediction model
(Figure 14b) is more accurate than the piecewise fuzzy prediction model (Figure 14c). After
applying to the whole working area, Figure 15a shows the predicted structure of coal mass
No.3, with a higher content of primary coal in the southeast and west. Figure 15b shows
the predicted structural section of coal mass No.15. It can be seen that the central and
northwestern parts of the study area have a lower GSI, more tectonic coal content and
softer coal quality.
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Figure 14. (a) GSI and error analysis of fuzzy system prediction, where the pink area represents the
confidence interval, the black line is the GSI calculated by the logging multi-parameter regression
equation, the black dashed line is the T1-FS prediction result and the green and red dashed lines are
the results of two trials of piecewise and continuous types of IT2-FS, respectively; (b) continuous
fuzzy prediction model; and (c) piecewise fuzzy prediction model.
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5. Discussion

In this paper, a type-two fuzzy logic prediction model was proposed to compare with
the coal structure interpreted using logging data. The overall coal structure prediction
results of the study area were basically consistent with the core-taking description, with a
matching degree of more than 75%. According to the description of the coal structure of the
actual coal core, it was found that the northwestern part of coal seam No.15 in the study
area had a lower GSI, which indicates more tectonic coal content and softer coal quality,
whereas the eastern part had a higher GSI value, indicating more primary structural coal
content and harder coal quality. Coal seam No. 3 was mainly dominated by crushed grain
coal, followed by fractured coal, in which the GSI values were higher in the southeast and
west, and the content of primary coal was higher. The predicted results of this study can be
used as the basis for further exploratory work in this area.

From the predicted results in Figure 15, in connection with the geological structure
of the work area in Figure 1b, it can be seen that there was a certain correspondence
between the location of large faults in the geological structure and the high value of GSI.
Generally speaking, the activity of the fault will lead to fragmentation and deformation of
the surrounding rocks, and a certain stress field will also be formed. All of these factors will
have an impact on the mechanical properties of the surrounding rocks. Therefore, when
the area with high GSI values happens to be located near a large fault, this may indicate
that there is a high concentration of stress in the area, which leads to an increase in the
mechanical strength index of the rock. Therefore, the influence of geological formations on
high GSI values should be fully considered when planning and designing projects in order
to reduce the risk of possible geological hazards.

Different types of coal structures affect the development of CBM through pore struc-
ture differences. Xu et al. (2019) [38] concluded that fractured-fragmented and primary-
fragmented coals are favorable for gas adsorption percolation, but the former has more
developed adsorption pores, whereas fractured-fragmented coals are subjected to strong
tectonic stress, which leads to the destruction of pore structure and are thus unfavorable
for CBM storage and transportation. The results of the analysis of the coal structure of
coal seam No. 3 and coal seam No. 15 in this area show that fractured coal and fractured
grain coal are mainly developed in this area, which is presumed to be favorable for the
production of coalbed methane.
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However, this study is based on limited sample data and does not take into account
possible spatial heterogeneity. Therefore, future research should use more data and more
samples in order to verify these predicted results, and should consider the impact of
spatial heterogeneity.

6. Conclusions

This paper introduces a multi-attribute fusion coal structure prediction method based
on a type-two fuzzy logic inference system, and combines the quantification capability
of GSI, which can be useful for predicting semantic uncertainty. The multi-attribute data
source in the fuzzy logic system inherits the content of the previous related results, which
improves the accuracy of the data source and the convenience of the data mining process.
We also make full use of the multi-directional nature of the seismic data in the OVT domain
in order to achieve the fine portrayal of fracture detection, and these datasets provide strong
support for fuzzy logic-based multi-attribute fusion. Through practical applications in the
study area, we focused on the effective use of data, such as 3D inversion data volumes and
seismic attribute volumes, thus solving the problem that conventional prediction methods
cannot be carried out in well-free areas and achieving quantitative discrimination of coal
structure. This study is beneficial for further work on the reservoir evaluation of CBM. For
example, it is important to further investigate the relationship between coal structure and
permeability, gas content and formation pressure.
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