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Abstract: The Taqian–Zhuxi–Fuchun metallogenic belt in northeastern Jiangxi Province contains
significant ore deposits that are closely associated with the Gaohushan granites. The Gaohushan
granites predominantly consist of two-mica granites and have been dated using zircon U-Pb isotopic
dating to be 129.4 ± 1.9 Ma (MSWD = 3.8). These granites have high SiO2, ranging from 73.79%
to 76.04% and low CaO and MgO contents (ranging from 0.24% to 0.59% and from 0.03% to 0.1%,
respectively). The Gaohushan granites also exhibit high FeOT/MgO ratios from 9.00 to 27.55 with
an average of 17.55. The total alkali contents (Na2O + K2O) range from 7.08% to 8.43%, and the
K2O/Na2O ratios range from 1.07 to 2.00 with an average of 1.47. These rocks are peraluminous series
with A/CNK ratios (or ASI index) ranging from 1.19 to 1.47 and an average of 1.30. The Gaohushan
granites have low rare earth element (REE) contents (∑REE = 2.33~23.50) with strongly negative
Eu anomalies (δEu from 0.02 to 0.32) and a distinctive differentiation between heavy rare earth
elements (HREEs) and light rare earth elements (LREEs) (LREE/HREE = 1.99~7.79). The normalized
distribution pattern of REE in Gaohushan granite exhibits a right-dipping feature classified A-type;
these rocks range from 1.06 to 2.71. The spider diagram shows that these rocks are characterized
by depletion of Ba, Th, La, Sr, Nd, and Ti and enrichment of Rb, U, Ta, Nb, and P. The Gaohushan
granites are classified as A-type granite and were emplaced during an anorogenic extensional event
that occurred in the late Yanshannian period, driven by mantle-derived magma underplating. It
is these granites or their analogues that have the potential for hosting tungsten, tin, niobium, and
tantalum deposits, making them a promising target for mineral exploration.

Keywords: northeastern Jiangxi province; Gaohushan granitoids; A-type granite; zircon U-Pb dating;
prospecting potential

1. Introduction

The Qin–Hang belt in South China is the collision suture zone between the Yangtze
block and the Cathaysia block during the Late Proterozoic period [1,2]. Although the
southwest section of the belt remains controversial [3–5], the location and characteristics
of the Jiangshan–Shaoxing fault zone in the northeast section have been widely verified,
particularly the fault zone in northeastern Jiangxi province (Figure 1a) [6–8]. During the
middle to late Jurassic period, this belt experienced intense magmatic activity and the
formation of several polymetallic deposits including copper, gold, tungsten, tin, lead,
and zinc. These deposits have given rise to a large intra-plate polymetallic metallogenic
belt in the Qin–Hang region [9–12]. In recent years, several world-class deposits have
been discovered in this belt, including the Dexing porphyry Cu deposit and the Zhuxi
skarn Cu-W deposit [13,14]. These polymetallic deposits are closely associated with the
intermediate-acid magmatism and tectonic activity in the Qin–Hang belt. Therefore, the
study of granites in this region can provide valuable information for mineral prospecting
in the area.
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Figure 1. (a) Geological map of Gaohushan area in the northeastern Jiangxi province. (b) Qin-Hang
metallogenic zone. (c) Geological map of Gaohushan area in the northeastern Jiangxi province.1:
Cretaceous; 2: Late Carboniferous–Triassic; 3: Neoproterozoic Shuangqiaoshan Group; 4: Neopro-
terozoic Qingbaikou strata; 5: Yanshanian granite; 6: Yanshanian granodiorite; 7: Jinningian granite;
8: reverse fault and strike-slip fault; 9: tectonic window; 10: gold deposit; 11: sampling location; 12:
granitoid pluton age; 13: county; 14: city; 15: mountain.
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The Gaohushan pluton is situated at the northeastern margin of the Taqian–Zhuxi–
Fuchun metallogenic belt. The Taqian–Zhuxi–Fuchun metallogenic belt is located between
Taqian in Leping city, northeast of Jiangxi Province, and Fuchun county in Wuyuan city. It
is located in the eastern part of the Pingxiang–Leping depression belt and is a component
of the depression belt, with a total length of approximately 121 km. This belt is known for
its intense magmatism, which includes mafic-ultramafic and intermediate-acid magmatic
rocks, with intermediate-acid magmatic rocks being dominant. The major periods of
magmatic activity include the Jinning period in the early Mesoproterozoic, the Hercynian
period in the late Paleozoic, and the Yanshanian period in the early to late Mesozoic, with
the Yanshanian period being the most prominent. The latest Yanshannian period can be
divided into three stages: early Yanshanian (ca. 160~170 Ma), middle Yanshanian (ca.
140~150 Ma), and late Yanshanian (ca. 120~130 Ma) [15,16]. Adjacent magmatic rocks near
the Gaohushan pluton include Duanxin pluton (two-mica granite, 131.2 ± 1.9 Ma) [17],
Wolonggu pluton (Mesozoic granite, 133.0 ± 1 Ma) [18], Yaoli pluton (biotite Mesozoic
granite, 132.0 ± 1.9 Ma) [19], Jincun pluton, Taoling pluton and Ehu pluton (Mesozoic
granite, 121.7 ± 2.9 Ma) [20] with distribution in E-W direction (Figure 1b). There is
still controversy surrounding the petrogenesis of these plutons, particularly regarding
the relationship between tectono-magmatism and the metallogenic process in the belt.
Therefore, we are focusing on the Gaohushan pluton and conducting precise geochemical
and zircon U-Pb dating analyses to elucidate its petrogenesis and its relationship with
mineral deposits.

2. Regional Geological Setting

The Gaohushan region is in the northeastern part of Jiangxi Province, at the south-
eastern margin of the Yangtze plate. It falls within the Jiangxi section of the Qin–Hang
belt, which is located between the Yangtze and Cathaysian blocks. The region is part of
the Taqian–Zhuxi–Fuchun secondary metallogenic belt, which is known for its Cu–Au–Pb–
Zn–Nb–Ta mineralization in the Jiangnan orogenic belt. The Gaohushan region is in the
northwestern stratigraphic zone of the northeastern Jiangxi deep fault belt, at the eastern
end of the Pingxiang–Leping depression belt within the Jiangnan ancient island arc belt
(Figure 1c). It is situated between the Jiuling and Wannian uplifting zones, forming a
tectonic framework of “one depression sandwiched between two uplifts” [1]. The strata
in this region are characterized by their unique geological features and have attracted
significant research attention [21]. The northeastern Jiangxi Province is dominated by a
low-grade greenschist metamorphic facies flysch formation consisting of argillaceous and
sandy fine-grained clastic rocks with minor volcanics. This flysch formation, together
with other contemporaneous strata, forms a major part of the Jiangnan orogenic belt and
provides important constraints on the tectonic evolution of this region, which has had
significant implications for the entire South China region since the Neoproterozoic [22].

The NE-trending deep fault zones, such as the Yiyang–Dexing and Yifeng–Jingdehen–
Qimen fault zones in northeastern Jiangxi province, exerted significant control on magma
intrusion and gold mineralization in the ductile shear belt northwest of these intrusions [23].
Shallow metamorphic sedimentary rocks of the Neo–Proterozoic Shuangqiaoshan Group
are widely distributed in the region [24]. The Carboniferous to Triassic marine carbonate
rocks, coal-bearing formations, and clastic rocks of marine-terrigenous facies, as well as
the Jurassic and Cretaceous red sedimentary basins, are zonally distributed in a northeast
direction. The region also contains a series of large-scale granitic rocks that intruded into
the Shuangqiaoshan Group and outcropped in the area, such as the Jinningian Shi’ershan
A-type granite and the Early Cretaceous Ehu S-type granite [20,25]. These smaller granitic
plutons in this region include Gaohushan, Wolonggu, Yaoli, Jincun, Taoling and other
intrusions, as well as a small amount of diorite porphyrite and quartz diorite dikes. The
Gaohushan granitic pluton is distributed along the direction of NNE along the fault zone.
The Gaohushan pluton is in short strip shape with an outcrop of ~5 km in length and 2 km
in width (Figure 1b).



Minerals 2023, 13, 588 4 of 16

3. Petrography

The Gaohushan pluton is mainly composed of two-mica granite, which is like the
adjacent Wolonggu and Youli plutons. The Gaohushan pluton intruded the metamorphic
basement of the Neoproterozoic Shuangqiaoshan Group and was cut by a NE-trending
thrust fault. The two-mica granite of Gaohushan exhibits a medium-fine grained granitic
texture. The Gaohushan two-mica granite mainly consists of quartz (~40%), K-feldspar
(~25%), plagioclase (~20%), muscovite (~5%) and biotite (5%), with minor accessory phases,
e.g., magnetite, zircon, apatite (<5%). The K-feldspar shows Carlsbad twin crystal. The
plagioclase shows polycrystalline twin crystal. Both the K-feldspar and plagioclase show
weak sericite alteration, while the biotite shows weak chloritized alteration (Figure 2).
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Figure 2. Hand specimens and microscopic photos of the Gaohushan granite in the northeastern
Jiangxi province. (a) Rock hand specimen; (b) mineral assemblage under orthogonal polarizer;
(c) muscovite and biotite; (d) Qtz: quartz; Bt: biotite; Ms: muscovite; Kfs: feldspar; Pl: plagioclase.

4. Analytical Methods
4.1. Zircon U-Pb Dating

One sample of the Gaohushan granite (Sample No. GHSH) was collected and used
for zircon U-Pb dating by laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS). The geographical coordinates of this sample are 29◦29′59′′ N, 117◦51′57′′ E
(Figure 1). Firstly, the sample was ground to ~60 mesh, then zircons were selected by
conventional manual panning and magnetic separation methods. These zircons with better
crystal shape were picked under a binocular microscope. These zircons were fixed in
a target with colorless epoxy resin, then ground and polished. The reflected light and
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cathodoluminescence (CL) photomicrographs of these zircons were carried out at the
Beijing SHRIMP Center. Zircon U-Pb dating was analyzed by the LA-ICP-MS at the State
Key Laboratory of Continental Dynamics, Northwest University. Zircon age calculation
and diagram drawing were performed using the ISOPLOT program [26].

4.2. Whole Rock Major and Trace Elements

The sample fragmentation was performed at the Geological and Mineral Investigation
Research Laboratory in Langfang City, Hebei Province. The samples were ground to
200 mesh. The major and trace element analyses of the whole rocks were conducted at the
Key Laboratory of Western Mineral Resources and Geological Engineering of the Ministry
of Education, Chang’an University.

For major element analysis, approximately 0.9 g of devolatilized or ignited sample was
mixed with lithium borate flux (~9.0 g, 50% Li2B4O7-LiBO2) and fused in an auto fluxer at
a temperature of approximately 1100 ◦C. The resulting molten glass disk was then cooled
and analyzed using the Japanese LAB CENTER XRF-1800 X-ray fluorescence spectrometer.
The analytical precisions for the major elements are as follows: SiO2 (0.8%), Al2O3 (0.5%),
Fe2O3 (0.4%), MgO (0.4%), CaO (0.6%), Na2O (0.3%), K2O (0.4%), MnO (0.7%), TiO2 (0.9%),
and P2O5 (0.8%).

The trace element concentrations, including rare earth elements (REE), were deter-
mined using an American X-7 inductively coupled plasma mass spectrometer. Prior to
analysis, the samples were placed in Teflon screw-cap bombs and digested in a mixture of
1.0 mL high-purity hydrofluoric acid (HF) and 1.5 mL high-purity nitric acid (HNO3) using
closed beaker digestion for two days. The resulting dissolved samples were then diluted to
50 mL with 2% nitric acid (HNO3) before analysis. The analytical precision of the method
was generally better than 5%.

5. Results
5.1. Zircon U-Pb Geochronology

Most zircons in (Sample No. GHSH) exhibit a transparent or light yellow, prismatic,
and euhedral morphology. These zircons range from 50 to 200 µm in diameter. The
cathodoluminescence (CL) photos show that these zircons have a typical magma oscillatory
zoning, indicating their magmatic origin (Figure 3). Some zircons (e.g., zircon grain of 02)
have relict core. The zircon U-Pb dating results are listed in Tables S1 and S2. Twenty-five
zircons have high Th and U contents, ranging from 38 to 381 ppm and from 88 to 3088 ppm,
respectively. Most zircons have higher Th/U ratios than 0.1 (except for zircon grains of
10, 14, and 20), also implying a magmatic origin. According to the chondrite normalized
REE distribution patterns of zircons (Figure 4), they show strong fractionation between
LREE and HREE, with positive Ce anomalies and negative Eu anomalies, further indicating
a magmatic origin [27,28]. In the concordia diagram, all the zircons plotted on or near
the concordia line and the twenty-four zircons (except for the zircon grain of 02) yield a
weighted mean 206Pb/238U age of 129.4 ± 1.9 Ma (n = 24, MSWD = 3.8, 2σ) (Figure 4a). The
dating results reveal that the Gaohushan granite was formed during the Early Cretaceous
period, indicating its crystallization time.
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5.2. Whole Rock Major and Trace Elements Compositions
5.2.1. Major Elements

The major and trace element compositions of Gaohushan granites can be found in
Table S3. The granites are characterized by high SiO2 and Al2O3 contents, which range
from 73.79% to 76.04% and from 13.60% to 14.52%, respectively. The total alkali contents
(Na2O + K2O) range from 7.08% to 8.43%, while K2O/Na2O ratios range from 1.07 to
2.00. In the TAS diagram, all samples of two-mica granite are located within the granite
area (Figure 5). In the QAP diagram, all samples of two-mica granite are located within
the monzogranite area (Figure 6). The Gaohushan granites have high FeOT/MgO ratios
ranging from 9.00 to 27.55, with an average value of 17.55, but low CaO and MgO contents
(ranging from 0.24% to 0.59% and from 0.03% to 0.1%, respectively). The Mg# values
of these two-mica granites range from 6.19 to 14.92, with an average value of 10.17. The
A/CNK ratios (or ASI index) of these granites range from 1.19 to 1.47, with an average value
of 1.30. In the A/NK vs. A/CNK diagram, all the granites are plotted in the peraluminous
area, indicating high levels of aluminum saturation (Figure 7a). According to the CIPW
standard mineral calculation, it can be observed that all the samples contain corundum (C)
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with an average content of 3.97%, ranging from 2.91% to 5.24%, which indicates that these
granites are strongly peraluminous. Additionally, all the granites belong to the high-K
calc-alkaline series (Figure 7b). The Ritterman indices (σ43), differentiation indices (DI),
and consolidation indices (SI) of these granites range from 1.58 to 2.27, 91.09 to 95.12, and
0.34 to 1.14, respectively.
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5.2.2. Trace and Rare Earth Elements

The Gaohushan granites exhibit low contents of rare earth elements (REEs) ranging
from 2.33 to 23.50 ppm, with an average value of 7.48 ppm. There is a slight differentiation
between light rare earth elements (LREEs) and heavy rare earth elements (HREEs), with
LREE/HREE and (La/Yb)N ratios ranging from 1.99 to 7.79 and 1.45 to 16.65, respectively.
The granites also show significant negative Eu anomalies with δEu ranging from 0.02 to 0.32.
Additionally, the normalized distribution pattern of REE in chondritic meteorites displays a
right-dipping feature (Figure 8a). The Gaohushan granites exhibit an average 104 × Ga/Al
ratio of 2.11, with a range from 1.06 to 2.71. These granites also display low contents of
Zr + Y + Nb + Ce, ranging from 23.61 to 84.22 ppm. Primitive mantle normalized trace
element spider diagrams indicate that these rocks are depleted in Ba, Th, La, Sr, Nd, and Ti,
but enriched in Rb, U, Ta, Nb, and P (Figure 8b).
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6. Discussion
6.1. Petrogenesis

The Gaohushan granites are characterized by high SiO2 contents and a strong pera-
luminous nature. They also exhibit higher FeOT/MgO ratios, ranging from 9.00 to 27.55,
compared to the average of 2.27 for I-type granite [35]. The REE distribution patterns of the
Gaohushan granites exhibit characteristics like those of peraluminous A-type granite. The
Gaohushan granite has a relatively low content of rare earth elements (REE), with a range
of ∑REE between 2.33 to 23.50 ppm, similar to other A-type granites [36]. Compared to
the average REE content of A-type granite in the Zhenzhushan area (~17.01 ppm), the Late
Yanshanian fine-grained alkali feldspar granite in Hunan Xitian area (~28.78 ppm), and
the A-type granite in Daxinganling Woduhe area (~46.52 ppm) [36,37], the REE content of
Gaohushan granite is relatively lower.

For high-silicon granites (SiO2 > 74%), the FeOT/MgO vs. SiO2 diagram can effectively
differentiate A-type granites from I-type and S-type granites. The Gaohushan granite
samples are plotted in the A-type area [38] (Figure 9a), indicating their classification as
A-type magmatism. Similarly, the Na2O vs. K2O diagram also shows that the Gaohushan
granites belong to an A-type magmatism (Figure 9b).

The Gaohushan granites are plotted in the peraluminous area in the A/NK vs. A/CNK
diagram (Figure 9a) and are showing a strongly peraluminous characteristic. Rb, Sr, and
Ba in granite are mainly enriched in feldspar and biotite. The ratios of Rb/Ba and Rb/Sr
can reflect the source area for the strong peraluminous granite. The Rb/Ba ratios of
the Gaohushan granites are from 41 to 196, and higher than granites in Ehu, Yaoli, and
Wolonggu areas, indicating an increasing proportion of clay in the magmatic source [39]
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(Figure 9c). The CaO/Na2O ratio of granite with the argillaceous source is generally
less than 0.3 [40], and CaO/Na2O ratios of the Gaohushan granite are from 0.08 to 0.19
(with an average value of 0.13), indicating that the source of Gaohushan granite is mainly
argillaceous (Figure 9d).

Highly differentiated acid magma can give rise to strong peraluminous A-type granites,
with the Zr/Hf ratios serving as a useful indicator of the degree of magma crystallization
differentiation [41]. Breiter [41] noted that the granitoids do not contain any other real host
of Zr and Hf besides zircon. Therefore, average Zr/Hf values in zircon should equal average
Zr/Hf values in the whole rock. Based on Zr/Hf ratios, granite can be classified into three
types: ordinary granite (Zr/Hf > 55), medium-differentiated granite (25 < Zr/Hf < 55),
and highly differentiated granite (Zr/Hf < 25) [41,42]. Most light-colored granites with
a few dark minerals or alaskite have undergone intense crystallization differentiation,
also known as strong differentiation or highly differentiated granite. The Zr/Hf ratios of
Gaohushan granite range from 17.7 to 32.0, with an average value of 22, suggesting that it
may belong to the highly differentiated granite category. On the other hand, the average
Zr/Hf ratio for the nearby Ehu granite is 32.85, for Yaoli granite it is 28.47, and for Wolonggu
granite it is 27.99 [18,20], indicating that these rocks are medium-differentiated granite.
Discrimination diagrams using 104 × Ga/Al also show that Gaohushan A-type granites are
highly differentiated (Figure 10). The slightly lower Ga/Al ratios (ranging from 1.06 × 104

to 2.71 × 104), as well as the Zr (13.00 to 50.5 ppm) and Y (0.62 to 2.87 ppm) contents of
Gaohushan granite, may be attributed to the strong crystallization differentiation of the
magma, which caused the fractional crystallization of plagioclase, zircon, and other Y-rich
minerals [43].
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Figure 9. (a) FeOT/MgO vs. SiO2 discrimination diagram for granites (modified after [44]); (b) Na2O
vs. K2O discrimination diagram for granites (modified after [45]); (c) Rb/Sr ratios. (The field of
pelite-derived melt and the boundary between clay-poor and clay-rich sources are from [39], and
the average compositions of basalt and the average compositions of basalt and Proterozoic shale are
from [46]); (d) whole-rock CaO/Na2O vs. Al2O3/TiO2. (data sources and legends shown in Figure 5).
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6.2. Discrimination of A1 or A2 Type for Gaohushan Granite

The R1 values (R1 = 4Si − 11(Na + K) − 2(Fe + Ti)) of the anorgenic granite range from
500 to 3000. Meanwhile, the R1 values of post-orogenic type granite are narrow, ranging
from 2300 to 2600 [47]. Figure 11 shows that most of the Gaohushan granites are located
within the anorgenic granite area in the R1-R2 diagram.

Loiselle [48] classified A-type granites as alkaline, metaluminous, and weakly pera-
luminous rocks, emphasizing their “alkaline, anhydrous, and anorogenic” characteristics.
A-type granites are often found intruding into rift zones or stable continental plates, which
are referred to as “anorogenic.” The Gaohushan A-type granite is high in silicon, highly
differentiated, and has a small outcropping area. It belongs to the anorogenic granitoids
and formed in the Cretaceous period due to the subduction of the Pacific plate and super-
deep faults in the continental crust [49]. The anorogenic and post-orogenic settings of
A-type granites are still subject to debate, but it is widely accepted that they form under an
extensional tectonic setting [50].
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Eby [38,44] classified A-type granites into A1-type and A2-type granite. A1-type
granites are formed in rift environments and are usually associated with hotspots or mantle
plumes, while A2-type granites are mostly formed in post-collisional or post-orogenic
settings. The tectonic discrimination diagram in Figure 12 indicates that the Gaohushan
A-type granites and adjacent granites in the region fall within the A1-type granite area,
suggesting that these rocks were formed in a rift environment. Additionally, the low
contents of rare earth elements (REE) ranging from 2.33 to 23.50 ppm in the Gaohushan
granites are consistent with the characteristics of A1-type granite.
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6.3. Tectonic Significance

During the Mesozoic era, the paleo-Pacific plate was highly active, leading to the
formation of a large active continental margin. While Japan is situated in the volcanic
island arc zone, southeastern China is in the back-arc extension zone. As the Pacific plate
subducted beneath the South China block, it caused extensive folding and magmatism in
the region [52]. In the Early Yanshanian, lithospheric thinning and stretching began in the
interior of South China, and this regional lithospheric extension continued periodically
until the Cretaceous period [53–56]. The Gaohushan granite was formed at 129.4 ± 1.9 Ma,
which coincides with the development of fault basins, intense magmatic activity, and
volcanism in South China at 135 ± 5 Ma, as well as the time when inland extension
occurred at ~137 Ma [1,57].

During the Early Jurassic period, a 1300 km intracontinental orogenic belt formed in
South China, along with a volcanic province in the eastern region, which were linked to
low-angle subduction of the Pacific plate and basaltic magma underplating [5,58–60]. This
period was characterized by compressional tectonic evolution and geodynamic mechanisms.
In the Middle Jurassic, Eastern China experienced a change in tectonic trend from E-W to
NE-NNE, and the tectonic setting shifted from a compressional tectonomagmatic orogenic
system to an extensional basin and rift system [61,62]. During the Early Cretaceous, a
faulted basin and metamorphic core complex emerged, likely due to lithospheric thinning,
crust extension-collapse, crust–mantle interaction, and subducting plate melting caused
by continental lithospheric delamination and Pacific plate roll-back [63–66]. The tectonic
setting shifted into an extensional one in the Early Cretaceous [67,68], during which the
A1-type Gaohushan granite was emplaced (Figure 13).
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6.4. Metallogenic Implication

Mao et al. [1] divided the Mesozoic large-scale diagenesis and mineralization in South
China into three periods: 170~150 Ma, 140~126 Ma, and 110~80 Ma. These three large-scale
diagenesis–mineralization are related to the multi-stage back-arc lithospheric extension,
crust–mantle interaction, and deep fluid migration caused by the collision of the South
China and North China blocks and the subduction of the oceanic plates [70]. The period
from 140 Ma to 126 Ma is a relatively concentrated period of Yanshanian mineralization.
The subduction angle of the Pacific slab changed from oblique to almost parallel to the
continental margin, which led to the lithospheric extension and thinning [71]. Various de-
posits from different sources gathered in fault basins and volcanic basins, and mainly have
tungsten and tin mineralization [71,72]. The genesis of these deposits is related with granite,
and the source of ore-forming materials is related with factors such as the maturity of the
crust and the minerality of the strata [73,74]. According to the three mineralization periods
divided by Mao et al. [1], the formation age of the Gaohushan granite is 129.4 ± 1.9 Ma, be-
longing to the second mineralization period under the background of lithospheric extension
and thinning, mantle material upwelling, and continental crust remelting.

The highly differentiated granites found in South China are referred to as rare metal
or rare element granites, which possess distinctive mineralization properties and are
frequently associated with minerals containing tungsten, tin, niobium, tantalum, lithium,
beryllium, rubidium, cesium, and rare earth element. The two-mica granite is also often
associated with tungsten, tin, and tungsten–tin ore deposits [75,76]. The Gaohushan
high-K calc-alkaline A1-type granites show nearly equivalent contents of K2O and Na2O
with slightly higher contents of K2O, and obvious negative Eu anomalies, similar to the
characteristics of tungsten–tin mineralized granite (Xihuashan and Piaotang tungsten
and tin mining areas). The Gaohushan granites show low ratios of CaO/(K2O + Na2O)
(from 0.03 to 0.08), low contents of TiO2, REE and HFSE, and are highly differentiated
which is consistent with the geochemical characteristics of Nanling tantalum and niobium
granite [77,78]. Therefore, the Gaohushan granite should be an important symbol for the
prospecting of W, Sn, Nb, and Ta deposits.

7. Conclusions

(1) The Gaohushan granitic pluton is comprised of two-mica granite, which is a member
of the peraluminous high-K calc-alkaline series of rocks. It displays the features of a
highly fractionated A-type granite;

(2) The Gaohushan granite crystallized during the Early Cretaceous period, approxi-
mately 129.4 ± 1.9 Ma, in an extensional tectonic setting. The magma that formed
the granite was derived primarily from the crust, but also had contributions from
the mantle;
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(3) The A-type granites discovered in the Gaohushan region have similar structural
environments and petrochemical characteristics to granites found in tungsten, tin,
niobium, and tantalum deposits in southern China. As such, they may serve as
important indicators for prospecting these valuable mineral deposits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13050588/s1, Table S1: LA-ICP-MS zircon rare earth elements
analysis of the Gaohushan granite (GHSH); Table S2: LA-ICP-MS zircon Th-U-Pb isotopic analysis of
the Gaohushan granite (GHSH); Table S3: major element data components (%) and trace element
abundance (×10−6) of Gaohushan granite.
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