
Citation: Dell’Aversana, P.

An Integrated Deep Learning

Framework for Classification of

Mineral Thin Sections and Other

Geo-Data, a Tutorial. Minerals 2023,

13, 584. https://doi.org/10.3390/

min13050584

Academic Editor: Stanisław Mazur

Received: 20 March 2023

Revised: 17 April 2023

Accepted: 20 April 2023

Published: 22 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

An Integrated Deep Learning Framework for Classification of
Mineral Thin Sections and Other Geo-Data, a Tutorial
Paolo Dell’Aversana

Eni S.p.A., San Donato Milanese, 20097 Milan, Italy; paolo.dell’aversana@eni.com

Abstract: Recent studies have demonstrated the potential of machine learning methods for fast and
accurate mineral classification based on microscope thin sections. Such methods can be extremely
useful to support geoscientists during the phases of operational geology, especially when mineralogi-
cal and petrological data are fully integrated with other geological and geophysical information. In
order to be effective, these methods require robust machine learning models trained on pre-labeled
data. Furthermore, it is mandatory to optimize the hyper-parameters of the machine learning tech-
niques in order to guarantee optimal classification accuracy and reliability. Nowadays, deep learning
algorithms are widely applied for image analysis and automatic classification in a large range of Earth
disciplines, including mineralogy, petrography, paleontology, well-log analysis, geophysical imaging,
and so forth. The main reason for the recognized effectiveness of deep learning algorithms for image
analysis is that they are able to quickly learn complex representations of images and patterns within
them. Differently from traditional image-processing techniques based on handcrafted features, deep
learning models automatically learn and extract features from the data, capturing, in almost real-time,
complex relationships and patterns that are difficult to manually define. Many different types of
deep learning models can be used for image analysis and classification, including fully connected
deep neural networks (FCNNs), convolutional neural networks (CNNs or ConvNet), and residual
networks (ResNets). In this paper, we compare some of these techniques and verify their effectiveness
on the same dataset of mineralogical thin sections. We show that the different deep learning methods
are all effective techniques in recognizing and classifying mineral images directly in the field, with
ResNets outperforming the other techniques in terms of accuracy and precision. In addition, we
compare the performance of deep learning techniques with different machine learning algorithms,
including random forest, naive Bayes, adaptive boosting, support vector machine, and decision
tree. Using quantitative performance indexes as well as confusion matrixes, we demonstrate that
deep neural networks show generally better classification performances than the other approaches.
Furthermore, we briefly discuss how to expand the same workflow to other types of images and
geo-data, showing how this deep learning approach can be generalized to a multiscale/multipurpose
methodology addressed to the analysis and automatic classification of multidisciplinary information.
This article has tutorial purposes, too. For that reason, we will explain, with a didactical level of
detail, all the key steps of the workflow.

Keywords: deep learning; minerals; thin sections; multidisciplinary images’ fast classification

1. Introduction

The recognition and analysis of images are critical tasks in various Earth disciplines,
including seismic facies classification, well-log analysis, microfossil and mineralogical
species’ recognition, among others [1–6]. Recent studies have explored the use of machine
learning methods for fast mineral classification based on microscope thin sections in field
geology operations. For instance, one approach involves using digital image analysis to
extract features from microscope thin-section images, such as grain size, shape, and color.
Machine learning algorithms can then be trained on these features to automatically identify
and classify minerals in real-time. One example of this approach is a study by She et al. [7],

Minerals 2023, 13, 584. https://doi.org/10.3390/min13050584 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13050584
https://doi.org/10.3390/min13050584
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min13050584
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13050584?type=check_update&version=1

Minerals 2023, 13, 584 2 of 20

who used machine learning to classify different minerals in thin-section images of ore
samples. The authors found that their method was able to classify minerals with an overall
accuracy of 89.3%. Another approach involves using deep learning techniques, such as
convolutional neural networks (CNNs), to directly learn the features of microscope thin-
section images and classify minerals based on these features. For instance, Liu et al. [8]
used a CNN to classify different minerals in thin-section images of rock samples. The
authors found that their method was able to classify minerals with an overall accuracy of
93.7%. Overall, these studies demonstrate the potential of machine learning methods for
fast mineral classification based on microscope thin sections in field geology operations.
However, it is important to remark that these methods may require to be trained on
pre-labeled data, in order to speed up the classification workflow. Furthermore, careful
hyper-parameters’ optimization is mandatory in order to achieve optimal accuracy and
reliability through fast machine learning workflows.

In recent years, deep neural networks (DNNs) have made significant improvements in
image classification, with the hierarchical models of the human visual system serving as a
useful conceptual basis for building effective artificial networks distributed with a layered
topology [9]. DNNs’ hierarchical organization enables them to effectively share and reuse
information, making them suitable for solving complex non-linear functions. The term
“deep learning” is often used to describe multilayer neural networks with many hidden
neuronal layers between the input and output layers. The simplest DNN architecture is the
fully connected neural network (FCNN) or multilayer perceptron [10,11], which connects all
nodes in one layer to all neurons in the next layer. However, this architecture is susceptible
to overfitting and other problems that can limit the accuracy of the classification results. As
anticipated above, Convolutional neural networks (CNNs or ConvNets) [12,13] represent
a more sophisticated and effective DNN approach, especially in computer vision. They
have shown excellent performance in solving complex image classification and pattern
recognition problems. The first significant difference between ConvNets and FCNNs is the
concept of “local processing”. Neurons belonging to two successive layers in ConvNets
are connected only locally, reducing the number of connections and the computation
complexity. The connection weights are shared in groups, significantly reducing the
number of weights. Additionally, ConvNets alternate between convolutional and pooling
layers, which reduce the dimensions of data.

Unfortunately, the vanishing gradient problem can limit the effectiveness of DNNs
with many hidden layers. This problem occurs when the gradient becomes vanishingly
small, preventing the weight from changing its value during the backpropagation process,
which can degrade the network’s learning capabilities. Nonetheless, solutions have been
proposed and successfully applied to address this problem, such as convolutional deep
residual networks [14] (convolutional ResNet or, briefly, ResNet). As we will explain in
detail in the methodological section, this type of deep neural network architecture includes
residual connections between layers. These connections allow the network to bypass
certain layers and learn residual functions, making it easier to train very deep networks.
ResNets have been shown to achieve state-of-the-art performance on a variety of computer
vision tasks, such as image classification and object detection. They can find interesting
applications in several Earth disciplines, such as petrography, mineralogy, paleontology,
sedimentology, and in all those fields where image recognition/classification plays a crucial
role in the data interpretation workflow.

In this paper, we discuss examples of the application of different deep learning tech-
niques to mineralogical classification problems through image analysis of microscope thin
sections, by expanding our previous work on a similar subject [5]. The following is the
structure of the paper:

• First, we introduce, briefly, the main methodological aspects of the techniques applied
in our study, including fully connected, convolutional, and residual neural networks.
We highlight benefits and limitations of these different deep learning methods.

Minerals 2023, 13, 584 3 of 20

• Next, in the example section, we start with an application based on the fully connected
deep neural network. We show how this network is able to classify images of mineral
thin sections, although with some uncertainties and classification mistakes.

• Then, we discuss another example using convolutional deep residual networks with
a varying number of hidden layers. We show how the classification results can be
improved with a ResNet architecture, with an accuracy that depends on the number
of hidden layers.

• Next, we will compare the performance of the different deep neural networks, high-
lighting benefits and limitations of the various types of architecture.

• Finally, we compare the performances of deep neural networks with those of different
types of algorithms, such as random forest, naive Bayes, adaptive boosting, support
vector machine, and decision tree.

As stated earlier, this paper has tutorial purposes, too. For that reason, we explain
in detail the main pragmatic aspects of the workflow addressed to image analysis and
classification. These aspects involve image-embedding techniques, image pre-processing,
feature engineering, hyper-parameters’ optimization of network architecture, training and
cross-validation techniques, classification methods, and representation of the results for
each one of the various types of deep neural networks applied here.

2. Methodological Overview

In this section, we summarize the main characteristics of the different types of deep
neural networks that we tested on the same experimental dataset. Our goal is to remark on
the differences, limitations, and benefits of the various deep learning techniques. Additional
technical/mathematical details, as well as a brief history about the developments of the
neural network architecture over the past decades, can be found in a previous work that
we dedicated to the description of the various types of deep learning architectures [15].

2.1. Fully Connected Neural Network (FCNN)

The fully connected neural network, also known as the dense neural network or
multilayer perceptron, is a type of artificial neural network that is widely used in machine
learning and deep learning applications. In a FCNN, each neuron in one layer is connected
to every neuron in the next layer. The input layer receives the input data, and the output
layer produces the output prediction. There can be one or more hidden layers between
the input and output layers, which are responsible for extracting relevant features from
the input data. Each neuron in a fully connected layer receives a weighted sum of inputs
from the previous layer, adds a bias term, and applies a non-linear activation function to
produce its output. The weights and biases of the network are learned during training
using optimization techniques such as backpropagation.

FCNN are called “deep” when they have multiple hidden layers. Deep neural net-
works are capable of learning complex and hierarchical representations of input data,
making them suitable for a wide range of applications, such as image recognition, natural
language processing, and speech recognition. However, FCNN can suffer from overfitting,
especially when dealing with high-dimensional input data. Regularization techniques such
as L2 regularization can help to alleviate overfitting. Additionally, the large number of
parameters in deep neural networks can make training slow and computationally expen-
sive. Techniques such as batch normalization and weight initialization can help speed up
training and improve performance.

Let us summarize the key features, benefits, and limitations of fully connected neural
networks (FCNNs):

• FCNNs are a type of artificial neural network, where each neuron in one layer is
connected to every neuron in the next layer.

• One of the benefits of FCNNs is that they can learn complex non-linear relationships
between input and output data.

Minerals 2023, 13, 584 4 of 20

• They are also relatively simple to understand and implement, making them a popular
choice for many machine learning tasks.

• However, FCNNs can be prone to overfitting, especially if the dataset is small or noisy.
• Additionally, training larger FCNNs can be computationally expensive and time-

consuming.
• Regularization techniques, such as dropout, can be used to mitigate overfitting.

2.2. Convolutional Neural Network (CNN or ConvNet)

Convolutional neural networks are a type of deep neural network that are primarily
used for image- and video-processing tasks. CNNs are inspired by the structure of the visual
cortex in animals and are designed to automatically and adaptively learn spatial hierarchies
of features from input data. The main building blocks of a CNN are convolutional layers,
pooling layers, and fully connected layers. Convolutional layers perform a series of
convolutions on the input data using a set of learnable filters or kernels. Each filter slides
across the input data, computing dot products with the input data and producing a feature
map that highlights a particular pattern or feature in the input.

Pooling layers down-sample the feature maps produced by the convolutional layers
by computing a summary statistic (e.g., maximum or average) within a small region of
the feature map. Pooling helps reduce the spatial size of the feature maps and control
overfitting. The output of the convolutional and pooling layers is then fed into one or
more fully connected layers, which perform classification or regression on the high-level
features extracted from the input data. The filters or kernels in the convolutional layers
are learned during training using backpropagation and stochastic gradient descent. The
training process involves minimizing a loss function that measures the discrepancy between
the network’s predictions and the ground truth labels.

CNNs have several advantages over traditional image-processing techniques (includ-
ing FCNNs). They can automatically learn a hierarchy of features from raw pixel data,
eliminating the need for manual feature engineering. Additionally, CNNs are robust to
small variations in the input data, such as translations and rotations, making them suitable
for a wide range of real-world applications. CNNs have been successfully applied to a
wide range of computer vision tasks, including image classification, object detection, face
recognition, and image segmentation.

In summary, the following are the key concepts, pros, and cons of convolutional neural
networks (ConvNets, or CNNs):

• CNNs are a type of deep neural network that are well-suited for image- and video-
processing tasks.

• The key benefit of CNNs is their ability to automatically detect features or patterns in
images, without the need for manual feature engineering.

• CNNs use convolutional layers to process input images, where each layer extracts
specific features from the input image.

• The limitation of CNNs is that they can be prone to overfitting, especially if the dataset
is small or noisy.

2.3. Deep Convolutional Residual Neural Network (ResNet)

Deep convolutional residual networks are a type of neural network architecture
designed to address the problem of degradation in deep neural networks by allowing the
networks to learn residual functions instead of directly learning the desired mapping.

The idea behind ResNets is based on the observation that as the depth of a neural
network increases, the performance of the network can degrade, meaning that the accuracy
on the training set starts to decrease. This degradation is because it becomes increasingly
difficult for the network to learn the underlying mapping as the depth increases. ResNets
address this problem by introducing a new type of residual block, which is a building block
of the network (Figure 1).

Minerals 2023, 13, 584 5 of 20

Minerals 2023, 13, x FOR PEER REVIEW 5 of 20

Deep convolutional residual networks are a type of neural network architecture de-

signed to address the problem of degradation in deep neural networks by allowing the

networks to learn residual functions instead of directly learning the desired mapping.

The idea behind ResNets is based on the observation that as the depth of a neural

network increases, the performance of the network can degrade, meaning that the accu-

racy on the training set starts to decrease. This degradation is because it becomes increas-

ingly difficult for the network to learn the underlying mapping as the depth increases.

ResNets address this problem by introducing a new type of residual block, which is a

building block of the network (Figure 1).

To better understand the concept of residual blocks in neural networks, it can be use-

ful to compare how it works through comparison with the basic structure of a “standard”

neural network. In a typical neural network, each layer learns to transform its input data

into a higher-level representation that can be used by the subsequent layers. Each layer is

composed of a set of learnable parameters that are used to compute a set of outputs from

the input data. The output of one layer is then passed as input to the next layer, and this

process continues until the final output is produced.

A residual block, on the other hand, introduces a shortcut connection that bypasses

one or more layers in the network (Figure 1).

Figure 1. Shortcut connection [14].

The purpose of this shortcut connection is to allow the network to learn residual func-

tions. A residual function is the difference between the input to the block and the output

of the block. With reference to Figure 1, a building block is defined through identity map-

ping by shortcuts, as follows:

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (1)

Here, x and y are, respectively, the input and output vectors of the layers considered.

The function F(x, {Wi}) is the residual mapping to be learned. For example, in case of a

two-layer building block, we have:

𝐹 = 𝑊2σ ∙ (𝑊1𝑥) (2)

where W1 and W2 represent the weights of the two neuron layers, 𝜎 represents the

“ReLU” (or “relu”, as in Figure 1) activation function (see below for an explanation of

“ReLU”), and the biases are omitted for the sake of simplicity. If 𝐹 has only a single layer,

Equation (1) corresponds to a linear layer, for which we have no observed advantage:

𝑦 = 𝑊1𝑥 + 𝑥 (3)

Finally, if we are considering convolutional layers of convolutional neural networks,

the function F(x, {Wi}) can represent multiple convolutional layers. More specifically, in a

residual block, the input data are first passed through a set of convolutional layers to

transform them into a higher-level representation. This output is then added back to the

original input data, resulting in the residual function. The residual function is then passed

through another set of convolutional layers to produce the final output of the block.

Figure 1. Shortcut connection [14].

To better understand the concept of residual blocks in neural networks, it can be useful
to compare how it works through comparison with the basic structure of a “standard”
neural network. In a typical neural network, each layer learns to transform its input data
into a higher-level representation that can be used by the subsequent layers. Each layer is
composed of a set of learnable parameters that are used to compute a set of outputs from
the input data. The output of one layer is then passed as input to the next layer, and this
process continues until the final output is produced.

A residual block, on the other hand, introduces a shortcut connection that bypasses
one or more layers in the network (Figure 1).

The purpose of this shortcut connection is to allow the network to learn residual
functions. A residual function is the difference between the input to the block and the
output of the block. With reference to Figure 1, a building block is defined through identity
mapping by shortcuts, as follows:

y = F(x, {Wi}) + x (1)

Here, x and y are, respectively, the input and output vectors of the layers considered.
The function F(x, {Wi}) is the residual mapping to be learned. For example, in case of a
two-layer building block, we have:

F = W2σ·(W1x) (2)

where W1 and W2 represent the weights of the two neuron layers, σ represents the “ReLU”
(or “relu”, as in Figure 1) activation function (see below for an explanation of “ReLU”), and
the biases are omitted for the sake of simplicity. If F has only a single layer, Equation (1)
corresponds to a linear layer, for which we have no observed advantage:

y = W1x + x (3)

Finally, if we are considering convolutional layers of convolutional neural networks,
the function F(x, {Wi}) can represent multiple convolutional layers. More specifically, in
a residual block, the input data are first passed through a set of convolutional layers to
transform them into a higher-level representation. This output is then added back to the
original input data, resulting in the residual function. The residual function is then passed
through another set of convolutional layers to produce the final output of the block.

The addition of the residual function to the original input data effectively allows the
network to learn the difference between the desired output and the current output at that
layer. This is important because in deep networks, it can be difficult for the network to
directly learn the desired mapping. By allowing the network to learn residual functions,
the network can more easily learn the desired mapping and improve its performance.

Overall, the use of residual blocks in neural networks is a powerful technique for
improving the performance of very deep networks. By allowing the network to learn
residual functions and use shortcut connections to reuse learned features from previous
layers, residual networks are able to achieve state-of-the-art performance on a variety of

Minerals 2023, 13, 584 6 of 20

tasks. The architecture of a ResNet typically consists of several layers of residual blocks,
followed by a global average pooling layer and a fully connected layer for classification.
The shortcut connections allow the network to be very deep, with over 1000 layers in some
cases. The residual blocks also have the advantage of being able to reuse learned features
from previous layers, which can lead to more efficient training and better performance. The
main benefits of using ResNets are improved performance on very deep networks, faster
convergence during training, and the ability to train networks with many layers. ResNets
have been shown to outperform other state-of-the-art architectures on a variety of tasks,
including image classification, object detection, and semantic segmentation.

In summary, deep residual networks are a powerful neural network architecture that
address the problem of degradation in very deep networks by allowing the networks to
learn residual functions. By introducing shortcut connections and residual blocks, ResNets
are able to efficiently learn features from previous layers and achieve better performance
on a variety of tasks.

Schematically, the following are the main advantages and disadvantages of ResNets:

• ResNets are a type of CNN that use residual blocks to enable the training of very deep
models.

• The key concept of ResNets is the shortcut connections that allow information to
bypass certain layers and be directly propagated to deeper layers.

• One benefit of ResNets is that they can achieve higher accuracy than traditional CNNs
when working with very deep networks.

• ResNets can also mitigate the problem of vanishing gradients that can occur in very
deep networks.

• However, ResNets have a higher computational cost than traditional CNNs, and can
require more memory and longer training times.

• Additionally, the extra shortcut connections can make the network prone to overfitting
if the dataset is small.

3. Examples

This section outlines the use of the various deep learning methods briefly explained in
the previous section, starting with simpler fully connected neural networks and progressing
to more advanced deep residual networks. We discuss how we applied these different
architectures to classify images of mineral thin sections obtained from real samples. We
applied these techniques to a test dataset with a didactical purpose, too. For that reason,
in the following section, we explain the details of the main steps of the classification
workflow, clarifying why and how we selected each specific hyper-parameter of our
network architecture. Our goal is to show how it is possible to test and to evaluate the
effectiveness of the different approaches in classifying the various mineral species through
their microscope images.

3.1. Classification of Mineralogical Thin Sections Using FCNN

In this test, we utilized a dataset consisting of about 200 thin sections of rocks and min-
erals (link to the dataset: http://www.alexstrekeisen.it/index.php, accessed on 20 February
2023; courtesy of Alessandro Da Mommio). We collected these images for creating a la-
beled dataset for training the deep learning models used, successively, for classifying new
images. The thin sections are presented as low-resolution colored (RGB) JPEG images with
a resolution of 96 dpi and a size of 275 × 183 pixels. The objective of this study was to
classify the thin sections into four distinct classes: augite, biotite, olivine, and plagioclase.
Although the classification may seem straightforward, it was relatively challenging due to
the similarities in the geometric features of different minerals and the potential effects of
corrosion and alteration. Furthermore, we performed an additional classification test of
four types of sedimentary rocks, using a set of jpeg images of thin sections. In this second
type of test, we applied a suite of machine learning techniques (decision tree, random forest,

http://www.alexstrekeisen.it/index.php

Minerals 2023, 13, 584 7 of 20

adaptive boosting, support vector machine, and naive Bayes), with the goal of comparing
different classification approaches with deep learning methods.

In the following part, we describe in detail all the steps of the workflow (as in the
scheme of Figure 2).

Minerals 2023, 13, x FOR PEER REVIEW 7 of 20

a labeled dataset for training the deep learning models used, successively, for classifying

new images. The thin sections are presented as low-resolution colored (RGB) JPEG images

with a resolution of 96 dpi and a size of 275 × 183 pixels. The objective of this study was

to classify the thin sections into four distinct classes: augite, biotite, olivine, and plagio-

clase. Although the classification may seem straightforward, it was relatively challenging

due to the similarities in the geometric features of different minerals and the potential

effects of corrosion and alteration. Furthermore, we performed an additional classification

test of four types of sedimentary rocks, using a set of jpeg images of thin sections. In this

second type of test, we applied a suite of machine learning techniques (decision tree, ran-

dom forest, adaptive boosting, support vector machine, and naive Bayes), with the goal of

comparing different classification approaches with deep learning methods.

In the following part, we describe in detail all the steps of the workflow (as in the

scheme of Figure 2).

Figure 2. Block diagram of the classification workflow using FCNN. The workflow begins with data

loading and data augmentation aimed at increasing the training dataset’s size. It then moves on to

image embedding to convert images into feature vectors. The following step is image pre-processing

to normalize instances of the features and prepare the data for training. The subsequent steps are

setting the hyper-parameters of the FCNN, training the network, and performing cross-validation

tests. These are followed by performance evaluation using a suite of performance indexes and the

confusion matrix method. Finally, the deep neural network classifies the unlabeled data.

3.1.1. Data Augmentation and Preparation of the Training Dataset

After data loading and check, we created a set of examples to train the FCNN. In this

phase, the assistance of an expert in mineralogy was crucial for labeling a significant num-

ber of representative images of the various mineralogical classes. Due to the limited num-

ber of available images, the training dataset used in this study was relatively small. Defin-

ing a minimum number of training examples is a challenging task because it varies de-

pending on the complexity of the classification problem, image quality and heterogeneity,

and algorithms used. To estimate the appropriate number of training data required, spe-

cific tests can be performed, as explained below in the section dedicated to cross-valida-

tion tests. To address the issue of the small training dataset, we applied dataset augmen-

tation techniques to add “artificial” images. These techniques allow for the application of

transformation operators to the original data, including flipping (vertically and horizon-

tally), rotating, zooming and scaling, cropping, translating the image (moving along the x

or y axis), and adding Gaussian noise (distortion of high-frequency features). For this pre-

processing, we used Python libraries, available in the Tensorflow package. The underlying

concept behind this data augmentation approach is that the accuracy of the neural net-

work model can be significantly improved by combining different operators across the

original dataset.

3.1.2. Image Embedding

Image embedding is a technique used in computer vision and machine learning to

convert an image into a feature vector, which can then be used for tasks such as image

classification, object detection, and image retrieval. It involves transforming an image into

a set of numbers that can be easily processed by machine learning algorithms.

Data loading
and check

Image
embedding

Image
pre-processing

FCNN
setting

Data augmentation;
Preparing training data

Training and Cross-
validation tests

Classification
by FCNN

Performance
evaluation

Figure 2. Block diagram of the classification workflow using FCNN. The workflow begins with data
loading and data augmentation aimed at increasing the training dataset’s size. It then moves on to
image embedding to convert images into feature vectors. The following step is image pre-processing
to normalize instances of the features and prepare the data for training. The subsequent steps are
setting the hyper-parameters of the FCNN, training the network, and performing cross-validation
tests. These are followed by performance evaluation using a suite of performance indexes and the
confusion matrix method. Finally, the deep neural network classifies the unlabeled data.

3.1.1. Data Augmentation and Preparation of the Training Dataset

After data loading and check, we created a set of examples to train the FCNN. In this
phase, the assistance of an expert in mineralogy was crucial for labeling a significant number
of representative images of the various mineralogical classes. Due to the limited number of
available images, the training dataset used in this study was relatively small. Defining a
minimum number of training examples is a challenging task because it varies depending
on the complexity of the classification problem, image quality and heterogeneity, and
algorithms used. To estimate the appropriate number of training data required, specific tests
can be performed, as explained below in the section dedicated to cross-validation tests. To
address the issue of the small training dataset, we applied dataset augmentation techniques
to add “artificial” images. These techniques allow for the application of transformation
operators to the original data, including flipping (vertically and horizontally), rotating,
zooming and scaling, cropping, translating the image (moving along the x or y axis), and
adding Gaussian noise (distortion of high-frequency features). For this pre-processing, we
used Python libraries, available in the Tensorflow package. The underlying concept behind
this data augmentation approach is that the accuracy of the neural network model can be
significantly improved by combining different operators across the original dataset.

3.1.2. Image Embedding

Image embedding is a technique used in computer vision and machine learning to
convert an image into a feature vector, which can then be used for tasks such as image
classification, object detection, and image retrieval. It involves transforming an image into
a set of numbers that can be easily processed by machine learning algorithms.

We tested various algorithms and techniques for embedding our images (jpeg files
of mineralogical thin sections), and finally, we adopted the SqeezeNet technique. This is
an algorithm with a neural network architecture that uses a combination of convolutional
layers and modules to extract features from images. The reason for our selection was
because SqeezeNet was more computationally efficient than the other methods, while still
preserving a high accuracy. Other techniques that we tested are the following:

VGG-16 and VGG-19: These are convolutional neural networks that were developed
by the Visual Geometry Group at Oxford University. They consist of 16 or 19 layers,
respectively, and are known for their effectiveness in image classification tasks.

Minerals 2023, 13, 584 8 of 20

Painters: This is an algorithm developed by Google that creates an embedding of
an image by synthesizing a new image from it. It works by training a neural network
to generate a painting that is similar to the original image, and then using the internal
representation of the network as the image embedding.

DeepLoc: This is an algorithm developed by the University of Oxford that creates
an embedding of an image by combining information from multiple layers of a convo-
lutional neural network. It is designed specifically for the task of protein subcellular
localization, which involves determining the location of proteins within cells based on
microscopic images.

3.1.3. Pre-Processing

Before training the FCNN and using it for image classification, it was necessary to
pre-process all the images of the datasets. The following are the main pre-processing steps
applied to our data.

Normalization: Normalizing image data is an important step to ensure that values
across all images (after embedding operations) are on a common scale. This can prevent the
dominance of certain features due to differences in their ranges of values. In general, when
dealing with numerical features, centering the data by mean or median can help to shift
the data so that the central value is closer to zero. Scaling the data by standard deviation
can help to further adjust the data to a suitable range for analysis.

Randomization: Randomizing instances and classes is a useful step for reducing bias
and ensuring that the future classification model is robust to different orders of presentation
of data. This can help to ensure that the final model(s) is (are) not biased towards any
particular pattern or structure in the data.

Removing sparse features: This is another useful step that can help to simplify the
data and remove noise. Features with a high percentage of missing or zero values may not
contribute much to the classification task and can be safely removed.

PCA: Principal component analysis is a common technique used for dimensionality
reduction. It can help to identify the most important features in the data and reduce the
number of features, while still retaining much of the original information.

CUR matrix decomposition: This is another technique for dimensionality reduction
that can help to reduce the computational complexity of our analysis. Similar to PCA,
it identifies the most important features in the data and reduces the number of features
without sacrificing too much information. We tested it, but finally, we only applied PCA.

3.1.4. Fully Connected Neural Network (FCNN) Hyper-Parameters

After data preparation, features’ extraction, and pre-processing, the next crucial step
was to optimize the hyper-parameters of our FCNN. There are many parameters to play
with in order to make a deep neural network effective. Adjusting these parameters in an
optimal way can be a difficult and subjective task. However, there are automatic approaches
for that purpose, such as using specific reinforcement learning methods that help define
the optimal parameters of a neural network for reproducing a desired output. Many
combinations of hyper-parameters can be automatically tested, and the effectiveness of
each combination is verified through cross-validation tests, as explained in the following.
The crucial network parameters are:

• N-hl and N-Neurons: These represent, respectively, the number of hidden layers and
the number of neurons populating each hidden layer. We tested neural networks with
a minimum of 1 up to a maximum of 10 hidden layers, using a number of neurons
ranging from 100 to 300 for each hidden layer. Among the possible choices, after many
tests, we selected a quite simple architecture with three hidden layers and 200 neurons
for each layer.

• Activation function for the hidden layers: In deep neural networks, activation func-
tions are mathematical functions that are applied to the output of each neuron in
the network. These functions introduce non-linearity to the output of each neuron,

Minerals 2023, 13, 584 9 of 20

allowing the network to learn complex patterns in the input data. There are several
types of activation functions, including:

Logistic Sigmoid Function: This function takes an input value and returns a value
between 0 and 1, which can be interpreted as a probability. It is defined as:

σ(x) = 1/(1 + exp(−x)), where x represents the input vector.
Hyperbolic Tangent Function: This function takes a vector of input values x and

returns values between −1 and 1. It is defined as:

tanh(x) = (exp(x) − exp(−x))/(exp(x) + exp(−x))

Rectified Linear Unit (ReLU) Function: This function returns the input value if it is
positive, and 0 otherwise. It is defined as:

ReLU(x) = max(0, x)

Leaky ReLU Function: This function is similar to ReLU but introduces a small slope for
negative values, preventing the “dying ReLU” problem that can occur when the gradient
of the function becomes 0. It is defined as:

Leaky ReLU(x) = max(0.01x, x)

Exponential Linear Unit (ELU) Function: This function is similar to leaky ReLU but
uses an exponential function for negative values, allowing it to take negative values. It is
defined as: ELU(x) = {x if x >= 0, alpha * (exp(x)− 1) if x < 0}, where alpha is a small constant.

Choosing the right activation function is important for the performance of a neural
network. Some functions work better than others depending on the type of problem being
solved and the architecture of the network. For example, ReLU and its variants are widely
used in deep learning because of their simplicity and effectiveness, while sigmoid and tanh
functions are less popular due to their saturation and vanishing gradient issues. In fact, we
used ReLU in our final setting.

• Solver for weight optimization: A solver for weight optimization in a neural network
is a method used to find the set of weights that minimize the loss function of the
network. The loss function measures the difference between the predicted output
of the network and the actual output, and the goal of the solver is to find the set of
weights that minimize this difference. There are various types of solvers used for
weight optimization in neural networks, each with their own strengths and weaknesses.
Outlined below are three commonly used types:

L-BFGS-B: This is an optimizer in the family of quasi-Newton methods, which are
used for unconstrained optimization problems. It is a popular choice for optimizing the
weights in a neural network because it is fast and efficient and can handle a large number
of variables.

SGD: Stochastic gradient descent is a popular optimization algorithm that works by
iteratively updating the weights in the network based on the gradient of the loss function
with respect to the weights. It is simple to implement and computationally efficient, but it
can be sensitive to the choice of the learning rate and can get stuck in local minima.

Adam: This is a stochastic gradient-based optimizer that is a modification of SGD.
It uses an adaptive learning rate that adjusts over time based on the past gradients and
includes momentum to prevent oscillations. Adam is often preferred over traditional SGD
because it is less sensitive to the choice of the learning rate and can converge faster.

The choice of solver depends on the specific problem being solved, the size and
complexity of the network, and the available computational resources. Finally, we selected
the Adam solver for our network.

• Alpha: L2 penalty (regularization term) parameter. In a neural network, the alpha
parameter is a regularization term used to control the amount of L2 regularization
applied to the weights of the network during training. L2 regularization is a technique
used to prevent overfitting, which occurs when the network learns the training data

Minerals 2023, 13, 584 10 of 20

too well and performs poorly on new, unseen data. The alpha parameter is multiplied
by the sum of squares of all the weights in the network and added to the loss function
during training. This penalty term encourages the network to learn smaller weights,
which helps to reduce overfitting. Increasing the value of alpha increases the amount of
regularization applied to the weights, which can help to reduce overfitting but may also
result in underfitting if the regularization is too strong. On the other hand, decreasing
the value of alpha reduces the amount of regularization applied to the weights, which
can lead to overfitting. The optimal value of alpha depends on the specific problem
being solved and the complexity of the network. It can be determined using techniques
such as grid search or cross-validation. Regularization is an important technique
for improving the performance of neural networks and should be considered when
building a network. We ran many tests in a wide range of values for this parameter,
from relatively small values (0.0005) in order to avoid underfitting, up to high values
(100), in order to exclude the possibility of the opposite problem (overfitting). Finally,
we selected an average value (0.1).

• Max iterations: Maximum number of iterations. The maximum number of iterations in
a deep neural network is the maximum number of times the training algorithm updates
the weights of the network during training. The training process in a neural network
involves feeding the input data into the network, computing the output, comparing it
to the actual output, and updating the weights to minimize the difference between
them. The number of iterations needed to train a deep neural network depends on
various factors, such as the size and complexity of the network, the amount and
complexity of the input data, the choice of activation functions, the optimization
algorithm used, and the convergence criteria. To prevent overfitting, it is common
to monitor the performance of the network on a validation set during training and
stop the training when the performance on the validation set starts to degrade. This
can help to avoid training the network for too many iterations, which can lead to
overfitting. For our tests, we used a Max iterations number ranging from 100 to 200.

3.1.5. FCNN Training and Cross-Validation Tests

After setting the parameters of our FCNN, as explained above, we performed an
automatic sequence of cross-validation tests. These represent a common technique used
in machine learning, including deep neural networks, to evaluate the performance of a
model on unseen data. It involves partitioning the available dataset into several subsets,
or “folds”, where one fold is used as the validation set, while the remaining folds are
used for training. This process is repeated several times, with each fold taking turns as the
validation set.

In the context of deep neural networks, we applied cross-validation to assess how
well our FCNN model generalizes to new data, as well as to tune hyper-parameters such
as the learning rate, the number of layers, and the number of neurons in each layer. The
goal was to find a model that performs well on the validation sets across all folds, without
overfitting to the training data.

There are several types of cross-validation tests, including k-fold cross-validation and
stratified k-fold cross-validation. In k-fold cross-validation, the dataset is divided into k
equally sized folds, and the model is trained and evaluated k times, with each fold serving
as the validation set once. In stratified k-fold cross-validation, the dataset is divided into
k-folds that preserve the proportion of samples for each class, which can be especially
useful when dealing with imbalanced datasets. In our case, we performed mainly k-fold
tests using a number of folds ranging between 3 and 8.

3.1.6. FCNN Performance Evaluation

Once the cross-validation process was complete, the performance metrics for each
fold were averaged to provide an estimate of the model’s performance on unseen data.
These metrics can include accuracy, precision, recall, F1 score, and “area under the receiver

Minerals 2023, 13, 584 11 of 20

operating characteristic curve” (AUC-ROC), depending on the specific problem being
addressed. The following is a brief explanation of these metric indexes.

Accuracy: This metric measures the proportion of correct predictions made by the
model. It is calculated by dividing the number of correct predictions by the total number of
predictions. Accuracy is a straightforward metric, but it can be misleading if the dataset is
imbalanced, meaning that one class has significantly more samples than the other.

Precision: This metric measures the proportion of true positive predictions out of all
positive predictions made by the model. It is calculated by dividing the number of true
positive predictions by the sum of true positive and false positive predictions. Precision is
useful when the cost of false positives is high.

Recall: This metric measures the proportion of true positive predictions out of all
actual positive samples in the dataset. It is calculated by dividing the number of true
positive predictions by the sum of true positive and false negative predictions. Recall is
useful when the cost of false negatives is high.

F1 Score: This metric is the harmonic mean of precision and recall and provides a single
score that balances both metrics. It is calculated as: 2 × (precision × recall)/(precision + recall).
The F1 score is useful when both precision and recall are important.

AUC-ROC: This metric measures the model’s ability to distinguish between positive
and negative samples. It is calculated by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold values and calculating the area under the
curve of this plot. A perfect classifier will have an AUC-ROC score of 1, while a random
classifier will have an AUC-ROC score of 0.5. AUC-ROC is useful when the cost of false
positives and false negatives is similar.

Table 1 shows an example of performance evaluation through a k-fold test on our
image data. In this specific case, we applied a fully connected deep neural network
consisting of 5 hidden layers with 200 neurons each. The network uses a Rectified Linear
Unit activation function, and an Adam solver running for a maximum of 200 iterations. We
can see that all the indexes showed relatively high values, indicating that our FCNN model
has good generalization performance on unseen data.

Table 1. An example of performance indexes for a fully connected neural network after one of many
cross-validation tests (see the text for a detailed explanation of each index).

Model Area under Curve
(AUC)

Classification
Accuracy (CA) F1 Precision Recall

FCNN
(5 hidden layers) 0.947 0.796 0.791 0.794 0.797

3.1.7. Classification

After optimizing the network parameters and after the cross-validation tests, we
applied our “best” FCNN model for classifying the unlabeled (“unseen”) mineralogical
thin sections not included in the training dataset. To be more precise, we selected a set
of FCNN models with good performances. Finally, we created an “average model” from
that set, simply by averaging the optimal hyper-parameters determined through the cross-
validation tests (see FCNN parameters related to Table 1). Figure 3 shows one illustrative
case of a classification result using the above neural network architecture. The classification
performance was good, even though one image of Biotite was misclassified as Olivine (the
top-right image).

Minerals 2023, 13, 584 12 of 20

Minerals 2023, 13, x FOR PEER REVIEW 12 of 20

Table 1. An example of performance indexes for a fully connected neural network after one of many

cross-validation tests (see the text for a detailed explanation of each index).

Model
Area Under Curve

(AUC)

Classification

Accuracy (CA)
F1 Precision Recall

FCNN

(5 hidden layers)
0.947 0.796 0.791 0.794 0.797

3.1.7. Classification

After optimizing the network parameters and after the cross-validation tests, we ap-

plied our “best” FCNN model for classifying the unlabeled (“unseen”) mineralogical thin

sections not included in the training dataset. To be more precise, we selected a set of

FCNN models with good performances. Finally, we created an “average model” from that

set, simply by averaging the optimal hyper-parameters determined through the cross-val-

idation tests (see FCNN parameters related to Table 1). Figure 3 shows one illustrative

case of a classification result using the above neural network architecture. The classifica-

tion performance was good, even though one image of Biotite was misclassified as Olivine

(the top-right image).

Figure 3. Example of classification result using FCNN. Despite misclassifying one Biotite image as

Olivine (in the top-right image), the classification performance can still be considered good.

3.2. Classification of Mineralogical Thin Sections Using ResNet

In order to improve the classification performances, we applied the same workflow

shown in Figure 2, but this time using deep convolutional residual neural networks (Res-

Nets) rather than FCNNs. The number of hidden layers in convolutional residual net-

works can be parameterized, allowing for the testing of their effectiveness with quantita-

tive performance indicators. In our experiments, we tested ResNet_18, ResNet_34, Res-

Net_50, and ResNet_152, which have 18, 34, 50, and 152 deep layers, respectively. To ac-

complish this, we created a Jupyter notebook (Python) that utilizes the residual networks

open-source code available for download from the “TORCHVISION.MODELS.RESNET”

website: https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html. (ac-

cessed on 10 January 2023).

For each network architecture, we conducted cross-validation tests to assess its per-

formance and plotted the accuracy and loss function against the iteration number. Here,

accuracy represents the ratio of correct predictions to total input samples, and it increased

over time, while the loss function decreased, theoretically converging towards zero. In

particular, for ResNet_152, the accuracy reached almost the ideal value of 1 after a few

iterations. Figure 4 illustrates the graph of both the training and validation loss functions,

plotted together with accuracy versus the iteration number.

Figure 3. Example of classification result using FCNN. Despite misclassifying one Biotite image as
Olivine (in the top-right image), the classification performance can still be considered good.

3.2. Classification of Mineralogical Thin Sections Using ResNet

In order to improve the classification performances, we applied the same workflow
shown in Figure 2, but this time using deep convolutional residual neural networks
(ResNets) rather than FCNNs. The number of hidden layers in convolutional residual
networks can be parameterized, allowing for the testing of their effectiveness with quan-
titative performance indicators. In our experiments, we tested ResNet_18, ResNet_34,
ResNet_50, and ResNet_152, which have 18, 34, 50, and 152 deep layers, respectively. To
accomplish this, we created a Jupyter notebook (Python) that utilizes the residual networks
open-source code available for download from the “TORCHVISION.MODELS.RESNET”
website: https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html (ac-
cessed on 10 January 2023).

For each network architecture, we conducted cross-validation tests to assess its per-
formance and plotted the accuracy and loss function against the iteration number. Here,
accuracy represents the ratio of correct predictions to total input samples, and it increased
over time, while the loss function decreased, theoretically converging towards zero. In
particular, for ResNet_152, the accuracy reached almost the ideal value of 1 after a few
iterations. Figure 4 illustrates the graph of both the training and validation loss functions,
plotted together with accuracy versus the iteration number.

Figure 4 is interesting because it shows both benefits and limitations of our classifica-
tion approach based on ResNet. We remarked that training loss and validation loss are both
measures of how well the model is performing on a given dataset, but they have different
purposes. Training loss is the error metric used during the training phase to optimize the
network parameters. It is calculated as the difference between the predicted output of the
network and the true output of the training set. The objective during training is to minimize
the training loss by adjusting the weights and biases of the network. The training loss is
typically calculated after each batch or epoch of training and is used to update the model
parameters. Instead, validation loss is a measure of how well the model generalizes to new,
unseen data. It is calculated using the validation set, which is a subset of the data that is
not used during training. The validation loss is a metric used to evaluate the performance
of the model during training and to prevent overfitting. Overfitting occurs when the model
performs well on the training data but poorly on the validation or test data. The goal during
training is to minimize the validation loss, which indicates that the model is generalizing
well to new data.

It is clear that in our test with ResNet_152, there was some overfitting, because the
validation loss started increasing after seven iterations. In general, a good model should
show decreasing values versus iterations for both training and validation losses. Sometimes,
choosing a residual network with a high number of hidden layers (>100) could be the reason

https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

Minerals 2023, 13, 584 13 of 20

for overfitting effects, as occurred in our case with ResNet_152. For that reason, we tried
to classify our thin-section images using a ResNet_50 (with 50 hidden layers). Figure 5
shows the trend of the training and validation loss versus iterations for ResNet_50. This
time, both curves decreased with regularity, showing much less overfitting problems than
ResNet_152. Unfortunately, the accuracy was not as good as in the previous case. In other
words, there was a trade-off between accuracy and overfitting. In conclusion, this tutorial
test shows that reliable classification results should derive from a balanced compromise
between an accurate training and limited overfitting effects.

Minerals 2023, 13, x FOR PEER REVIEW 13 of 20

Figure 4. Training and validation loss functions, and accuracy versus iteration number related to

ResNet_152. Training loss is the error metric used during the training phase to optimize the network

parameters. The validation loss quantifies how effective a model is at extrapolating to new and un-

seen data. This measure is obtained by utilizing the validation set, which is an independent subset

of data not used for training the model. In this specific test, there is some overfitting, because the

validation loss starts increasing after a few iterations.

Figure 4 is interesting because it shows both benefits and limitations of our classifi-

cation approach based on ResNet. We remarked that training loss and validation loss are

both measures of how well the model is performing on a given dataset, but they have

different purposes. Training loss is the error metric used during the training phase to op-

timize the network parameters. It is calculated as the difference between the predicted

output of the network and the true output of the training set. The objective during training

is to minimize the training loss by adjusting the weights and biases of the network. The

training loss is typically calculated after each batch or epoch of training and is used to

update the model parameters. Instead, validation loss is a measure of how well the model

generalizes to new, unseen data. It is calculated using the validation set, which is a subset

of the data that is not used during training. The validation loss is a metric used to evaluate

the performance of the model during training and to prevent overfitting. Overfitting oc-

curs when the model performs well on the training data but poorly on the validation or

test data. The goal during training is to minimize the validation loss, which indicates that

the model is generalizing well to new data.

It is clear that in our test with ResNet_152, there was some overfitting, because the

validation loss started increasing after seven iterations. In general, a good model should

show decreasing values versus iterations for both training and validation losses. Some-

times, choosing a residual network with a high number of hidden layers (>100) could be

the reason for overfitting effects, as occurred in our case with ResNet_152. For that reason,

we tried to classify our thin-section images using a ResNet_50 (with 50 hidden layers).

Figure 5 shows the trend of the training and validation loss versus iterations for Res-

Net_50. This time, both curves decreased with regularity, showing much less overfitting

problems than ResNet_152. Unfortunately, the accuracy was not as good as in the previ-

ous case. In other words, there was a trade-off between accuracy and overfitting. In con-

clusion, this tutorial test shows that reliable classification results should derive from a

balanced compromise between an accurate training and limited overfitting effects.

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25

train_loss valid_loss accuracy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 5 10 15 20 Iterations

Training loss

Validation loss
Accuracy

ResNet_152

Figure 4. Training and validation loss functions, and accuracy versus iteration number related to
ResNet_152. Training loss is the error metric used during the training phase to optimize the network
parameters. The validation loss quantifies how effective a model is at extrapolating to new and
unseen data. This measure is obtained by utilizing the validation set, which is an independent subset
of data not used for training the model. In this specific test, there is some overfitting, because the
validation loss starts increasing after a few iterations.

Minerals 2023, 13, x FOR PEER REVIEW 14 of 20

Figure 5. Training and validation loss functions, and accuracy versus iteration number related to

ResNet_50. In this test, both curves decrease with regularity, showing much less overfitting prob-

lems than the test with Res-Net_152.

Despite the different overfitting problems, in our specific case, both ResNet_152 and

ResNet_50 performed well when we applied them for classifying our set of unlabeled thin

mineralogical sections. Figure 6 shows an example of classification obtained using Res-

Net_50. All the test images were properly classified, with variable values of probability

(see Table 2). For each test image, the value of the loss function was generally around 0.1–

0.2 and the accuracy was generally around 0.8–0.9. This occurred after a few (20–25) iter-

ations, indicating that the network converged quickly towards the correct predictions. Re-

sults with ResNet_152 were not very different (with similar probabilities of classification).

Figure 6. Example of classification results with ResNet_50. Here, only 9 samples are considered for

illustrative purposes. The main part of the dataset was properly classified using this ResNet_50 ar-

chitecture, with a low percentage of mistakes. For each classified thin section, the value of the loss

function is generally close to 0.1–0.2 and the accuracy is generally greater than 0.8–0.9, after around

20–25 iterations.

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0 5 10 15 20 25

train_loss valid_loss accuracy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 5 10 15 20 Iterations

Training loss

Validation loss

Accuracy

ResNet_50

Figure 5. Training and validation loss functions, and accuracy versus iteration number related to
ResNet_50. In this test, both curves decrease with regularity, showing much less overfitting problems
than the test with Res-Net_152.

Minerals 2023, 13, 584 14 of 20

Despite the different overfitting problems, in our specific case, both ResNet_152 and
ResNet_50 performed well when we applied them for classifying our set of unlabeled
thin mineralogical sections. Figure 6 shows an example of classification obtained using
ResNet_50. All the test images were properly classified, with variable values of probability
(see Table 2). For each test image, the value of the loss function was generally around 0.1–0.2
and the accuracy was generally around 0.8–0.9. This occurred after a few (20–25) iterations,
indicating that the network converged quickly towards the correct predictions. Results
with ResNet_152 were not very different (with similar probabilities of classification).

Minerals 2023, 13, x FOR PEER REVIEW 14 of 20

Figure 5. Training and validation loss functions, and accuracy versus iteration number related to

ResNet_50. In this test, both curves decrease with regularity, showing much less overfitting prob-

lems than the test with Res-Net_152.

Despite the different overfitting problems, in our specific case, both ResNet_152 and

ResNet_50 performed well when we applied them for classifying our set of unlabeled thin

mineralogical sections. Figure 6 shows an example of classification obtained using Res-

Net_50. All the test images were properly classified, with variable values of probability

(see Table 2). For each test image, the value of the loss function was generally around 0.1–

0.2 and the accuracy was generally around 0.8–0.9. This occurred after a few (20–25) iter-

ations, indicating that the network converged quickly towards the correct predictions. Re-

sults with ResNet_152 were not very different (with similar probabilities of classification).

Figure 6. Example of classification results with ResNet_50. Here, only 9 samples are considered for

illustrative purposes. The main part of the dataset was properly classified using this ResNet_50 ar-

chitecture, with a low percentage of mistakes. For each classified thin section, the value of the loss

function is generally close to 0.1–0.2 and the accuracy is generally greater than 0.8–0.9, after around

20–25 iterations.

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0 5 10 15 20 25

train_loss valid_loss accuracy

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 5 10 15 20 Iterations

Training loss

Validation loss

Accuracy

ResNet_50

Figure 6. Example of classification results with ResNet_50. Here, only 9 samples are considered
for illustrative purposes. The main part of the dataset was properly classified using this ResNet_50
architecture, with a low percentage of mistakes. For each classified thin section, the value of the loss
function is generally close to 0.1–0.2 and the accuracy is generally greater than 0.8–0.9, after around
20–25 iterations.

Table 2. Classification probabilities for each mineralogical class (for the test images of Figure 6). It
can be observed that the classification probabilities for correctly identified mineral species are very
high, almost nearing 100%.

Classification Probability [%] for Each Class

Sample ID Augite Biotite Olivine Plagioclase

1 98 0 2 0
2 95 3 2 0
3 0 100 0 0
4 1 98 1 0
5 1 0 99 0
6 0 1 99 0
7 1 0 99 0
8 0 1 0 99
9 0 0 0 100

3.3. Comparison with Other Classification Approaches

The deep learning (DL) methods considered in the previous applications (FCNN,
ConvNet, and ResNet) use learned features automatically extracted from the raw image
data. In order to compare DL methods with some other completely data-driven techniques,

Minerals 2023, 13, 584 15 of 20

or based on handcrafted features, we performed an independent classification of the
same dataset using different machine learning methods, not based on neural networks,
including decision tree, support vector machine, random forest, naive Bayes, and adaptive
boosting. We applied these methods to features of the thin sections manually designed by
human experts, including specific patterns, textures, or shapes in the image. Table 3 below
shows the comparison of classification performances between deep learning (FCNN, in
this example) and the suite of alternative classifiers. Although techniques such as random
forest or support vector machine seem to produce satisfactory classification results, as we
can notice, a simple FCNN with just five hidden layers showed better performance indexes
(highlighted in bold in Table 3) than the other methods. However, none of the indexes
were equal to one, indicating that the classification performance was good, but not perfect.
Indeed, there were still misclassification cases, even when using FCNNs. We can expect
that by increasing the size of the training dataset (that in our tests was relatively small), it
will be possible to improve the classification results.

Table 3. Comparison of classification performances between deep learning and a suite of different classi-
fiers. The indexes of FCNN are generally higher than the values for the other machine learning methods.

Classifiers Area under
Curve (AUC)

Classifiaction
Accuracy (CA) F1 Precision Recall

FCNN (5 hidden layers) 0.947 0.796 0.791 0.794 0.797

Decision Tree 0.761 0.632 0.624 0.646 0.632

Support Vector Machine 0.832 0.779 0.772 0.712 0.779

Random Forest 0.887 0.716 0.702 0.712 0.716

Naive Bayes 0.854 0.516 0.498 0.721 0.516

Adaptive Boosting 0.671 0.526 0.525 0.524 0.526

As an additional test, we expanded the dataset, including thin sections obtained
from sedimentary rock samples. Figure 7 shows some examples of thin sections used for
training all the classification methods mentioned above, in order to perform an additional
performance comparison with DL methods.

Minerals 2023, 13, x FOR PEER REVIEW 16 of 20

Figure 7. Examples of training images of thin sections obtained from four classes of sedimentary

rocks. For this test, we trained the neural network(s) and the other classifiers on a limited set of

mineral images, in order to perform the same type of classification test on sedimentary rocks, too.

Figure 8 shows an example of a performance comparison on the training dataset. In

this case, instead of using performance indexes as in Table 3, we used a visual evaluation

approach based on a confusion matrix. Note that a confusion matrix in machine learning

is a table that summarizes the performance of a model on a set of test data by comparing

the actual target values with the predicted values. It is a way to evaluate the accuracy of a

classification model and helps to identify where errors in the model were made. The ma-

trix typically has N rows and N columns, representing the actual and predicted classes,

respectively. True positives, false positives, true negatives, and false negatives are the four

types of values in the matrix, and they are used to calculate metrics such as accuracy,

precision, recall, and F1 score. Figure 8 shows an example of a confusion matrix for a neu-

ral network (FCNN) and random forest, obtained through a cross-validation test applied

to the sedimentary thin-section images shown in Figure 7. We can notice that the values

on the principal diagonal (percentage of correct predicted versus actual results) for the

neural network were significantly higher than for random forest, indicating that higher

classification accuracy was obtained through the deep learning approach. In conclusion,

the confusion matrix technique also showed that the classification performance of deep

neural networks was good, although not perfect.

Figure 8. Comparison of two confusion matrices for neural network and random forest applied to

the same image dataset (see Figure 7). The values on the principal diagonal (percentage of correct

Anhydrites

Anhydrites Arenites

Arenites Conglomerates

Conglomerates

Congl. Mudstones

Neural Network

Predicted

A
ct
u
a
l

Random Forest

Predicted

A
ct
u
a
l

Figure 7. Examples of training images of thin sections obtained from four classes of sedimentary
rocks. For this test, we trained the neural network(s) and the other classifiers on a limited set of
mineral images, in order to perform the same type of classification test on sedimentary rocks, too.

Minerals 2023, 13, 584 16 of 20

Figure 8 shows an example of a performance comparison on the training dataset. In
this case, instead of using performance indexes as in Table 3, we used a visual evaluation
approach based on a confusion matrix. Note that a confusion matrix in machine learning
is a table that summarizes the performance of a model on a set of test data by comparing
the actual target values with the predicted values. It is a way to evaluate the accuracy of
a classification model and helps to identify where errors in the model were made. The
matrix typically has N rows and N columns, representing the actual and predicted classes,
respectively. True positives, false positives, true negatives, and false negatives are the
four types of values in the matrix, and they are used to calculate metrics such as accuracy,
precision, recall, and F1 score. Figure 8 shows an example of a confusion matrix for a neural
network (FCNN) and random forest, obtained through a cross-validation test applied to
the sedimentary thin-section images shown in Figure 7. We can notice that the values
on the principal diagonal (percentage of correct predicted versus actual results) for the
neural network were significantly higher than for random forest, indicating that higher
classification accuracy was obtained through the deep learning approach. In conclusion,
the confusion matrix technique also showed that the classification performance of deep
neural networks was good, although not perfect.

Minerals 2023, 13, x FOR PEER REVIEW 16 of 20

Figure 7. Examples of training images of thin sections obtained from four classes of sedimentary

rocks. For this test, we trained the neural network(s) and the other classifiers on a limited set of

mineral images, in order to perform the same type of classification test on sedimentary rocks, too.

Figure 8 shows an example of a performance comparison on the training dataset. In

this case, instead of using performance indexes as in Table 3, we used a visual evaluation

approach based on a confusion matrix. Note that a confusion matrix in machine learning

is a table that summarizes the performance of a model on a set of test data by comparing

the actual target values with the predicted values. It is a way to evaluate the accuracy of a

classification model and helps to identify where errors in the model were made. The ma-

trix typically has N rows and N columns, representing the actual and predicted classes,

respectively. True positives, false positives, true negatives, and false negatives are the four

types of values in the matrix, and they are used to calculate metrics such as accuracy,

precision, recall, and F1 score. Figure 8 shows an example of a confusion matrix for a neu-

ral network (FCNN) and random forest, obtained through a cross-validation test applied

to the sedimentary thin-section images shown in Figure 7. We can notice that the values

on the principal diagonal (percentage of correct predicted versus actual results) for the

neural network were significantly higher than for random forest, indicating that higher

classification accuracy was obtained through the deep learning approach. In conclusion,

the confusion matrix technique also showed that the classification performance of deep

neural networks was good, although not perfect.

Figure 8. Comparison of two confusion matrices for neural network and random forest applied to

the same image dataset (see Figure 7). The values on the principal diagonal (percentage of correct

Anhydrites

Anhydrites Arenites

Arenites Conglomerates

Conglomerates

Congl. Mudstones

Neural Network

Predicted

A
ct
u
a
l

Random Forest

Predicted

A
ct
u
a
l

Figure 8. Comparison of two confusion matrices for neural network and random forest applied to
the same image dataset (see Figure 7). The values on the principal diagonal (percentage of correct
predicted versus actual results, in blue) for the neural network are significantly higher than for
random forest, indicating a higher classification accuracy. The percentages of misclassifications are
in pink).

4. Extension of the Workflow to Other Geo-Data

The same deep learning approach can be generalized to a multiscale/multipurpose
methodology that is addressed to the analysis and automatic classification of multidisci-
plinary information (Figure 9).

This can include paleontological thin sections, composite well-logs, geophysical mod-
els, and so forth. The structure of the workflow is substantially the same as that shown in
Figure 2. The deep learning algorithms are the same, even though the hyper-parameters
need to be optimized in relation to the different types of images/data to classify. Further-
more, as we have seen in the examples discussed above, the different types of deep learning
methods can be supported by additional machine learning techniques, such as adaptive
boosting, decision trees, random forest, support vector machine, Bayesian methods, and
so forth. In its complete implementation, our integrated machine learning framework
includes a suite of all these algorithms working in parallel. The performances of all these
algorithms are quantitatively estimated and compared. Finally, all the classification results
are compared, too. We have discussed such a comparative approach in previous papers, for
a specific application to composite well-log analysis and litho-fluid facies’ classification [4].

Minerals 2023, 13, 584 17 of 20

Minerals 2023, 13, x FOR PEER REVIEW 17 of 20

predicted versus actual results, in blue) for the neural network are significantly higher than for ran-

dom forest, indicating a higher classification accuracy. The percentages of misclassifications are in

pink).

4. Extension of the Workflow to Other Geo-Data

The same deep learning approach can be generalized to a multiscale/multipurpose

methodology that is addressed to the analysis and automatic classification of multidisci-

plinary information (Figure 9).

Figure 9. Scheme of the integrated DL/ML platform for automatic analysis and classification of mul-

tidisciplinary geo-data. The structure of the workflow largely remains unchanged with respect to

Figure 2. Of course, the hyper-parameters must be optimized with respect to the different types of

images/data being classified. Furthermore, additional deep learning methods can be complemented

by further machine learning techniques, such as adaptive boosting, decision trees, random forest,

support vector machine, Bayesian methods, etc. In our holistic machine learning framework, all

these algorithms work concurrently. Their individual performances are quantitatively estimated

and compared.

This can include paleontological thin sections, composite well-logs, geophysical

models, and so forth. The structure of the workflow is substantially the same as that

shown in Figure 2. The deep learning algorithms are the same, even though the hyper-

parameters need to be optimized in relation to the different types of images/data to clas-

sify. Furthermore, as we have seen in the examples discussed above, the different types of

deep learning methods can be supported by additional machine learning techniques, such

as adaptive boosting, decision trees, random forest, support vector machine, Bayesian

methods, and so forth. In its complete implementation, our integrated machine learning

framework includes a suite of all these algorithms working in parallel. The performances

of all these algorithms are quantitatively estimated and compared. Finally, all the classifi-

cation results are compared, too. We have discussed such a comparative approach in pre-

vious papers, for a specific application to composite well-log analysis and litho-fluid fa-

cies’ classification [4].

An additional useful application of our integrated machine learning platform is

aimed at the integration of multiple geophysical models retrieved from multidisciplinary

geophysical measurements. In that case, we create a multi-physics attribute matrix that

comprises characteristics extracted from both data and model space. Geophysical meas-

urements or observations of any type (such as seismic travel times, EM, DC, gravity data,

etc.) can be used as data, while spatial distributions of geophysical parameters (such as

seismic velocity, electric resistivity, density, etc.) can be used as models. In our approach,

these models are progressively generated using an iterative multi-domain process that

includes constrained, cooperative, and joint inversion of multi-physics data. Both data and

models are calibrated at well locations to create a robust labeled data/model set for train-

ing the suite of automatic learners mentioned above. If well data are unavailable, the train-

ing dataset is created using multi-domain forward modeling in realistic scenarios. The

INPUT

Micro-fossils

Composite well-logs

kerogen composition
analysis

Multi-disciplinary
Geophysical data

Chemical analyses of
rock samples

…

DATA ANALYSIS

Pre-processing,
normalization …

Feature
engineering

Training

Cross-validation

Performance
evaluation

…

DEEP NEURAL NETWORKS
AND OTHER ML METHODS

FCNN

ConvNet

ResNet

Transformers

Bayesian methods,
Random Forest,

Adaptive Boosting,

…

C
L
A
S
S
I
F
I
C
A
T
I
O
N

Figure 9. Scheme of the integrated DL/ML platform for automatic analysis and classification of
multidisciplinary geo-data. The structure of the workflow largely remains unchanged with respect to
Figure 2. Of course, the hyper-parameters must be optimized with respect to the different types of
images/data being classified. Furthermore, additional deep learning methods can be complemented
by further machine learning techniques, such as adaptive boosting, decision trees, random forest,
support vector machine, Bayesian methods, etc. In our holistic machine learning framework, all
these algorithms work concurrently. Their individual performances are quantitatively estimated
and compared.

An additional useful application of our integrated machine learning platform is aimed
at the integration of multiple geophysical models retrieved from multidisciplinary geophys-
ical measurements. In that case, we create a multi-physics attribute matrix that comprises
characteristics extracted from both data and model space. Geophysical measurements or
observations of any type (such as seismic travel times, EM, DC, gravity data, etc.) can be
used as data, while spatial distributions of geophysical parameters (such as seismic velocity,
electric resistivity, density, etc.) can be used as models. In our approach, these models are
progressively generated using an iterative multi-domain process that includes constrained,
cooperative, and joint inversion of multi-physics data. Both data and models are calibrated
at well locations to create a robust labeled data/model set for training the suite of automatic
learners mentioned above. If well data are unavailable, the training dataset is created using
multi-domain forward modeling in realistic scenarios. The effectiveness of each automatic
learner is evaluated using cross-validation techniques, performance indices, and confusion
matrices. The final step of the workflow involves classifying/predicting the remaining
part of the data and models (located away from the calibration points). Ultimately, the
results are presented in the form of a probabilistic spatial distribution of classes, such as
“Brine”, “Oil”, “Gas”, etc. This workflow is particularly useful (but not exclusively) in areas
where drilling results are available and where there is a desire to expand our knowledge of
probabilistic multi-physics models over large distances from the wells. A case history is
discussed by Dell’Aversana [16].

5. Discussion

Despite its high complexity, we remark that the most time-consuming part of the
workflow described in the previous sections consists in the preparation of a pre-labeled
dataset for training the network models. Human experts perform that part in advance,
whereas the part of the job performed in the field/lab consists in running an automatic
chain of steps under human supervision. As described above, these steps include feature
engineering (embedding and extraction), pre-processing, model optimization, training, cross-
validation, performance evaluation, model selection, and the final automatic classification of
new unlabeled images/data. All these steps require just a few seconds of computation using
a standard PC (for instance, we used a System with a Dual-core Intel processor, 2.5 GHz,
RAM 12.0 GB, Windows 10, 64 bit). Obviously, the larger the training dataset and the more
balanced it is with respect to the various classes, the better the performance of the adopted

Minerals 2023, 13, 584 18 of 20

neural network models will be. However, the size of the training dataset has a relatively low
impact on the computation times of the automatic classification workflow in the field/lab.

Based on the classification tests discussed here, the main deep learning techniques
(fully connected, convolutional, and residual neural networks) proved to be effective in
recognizing and classifying mineral images (microscope thin sections), as well as other
types of geological–geophysical data. The FCNN showed some limitations in classification
accuracy, although the algorithm’s performance remained generally high. This performance
can be quantified using appropriate indices (as well as a confusion matrix) that, in the
test we conducted, showed moderately high values: accuracy and precision were around
0.8, with 1.0 being the ideal value (corresponding to the correct classification of all images
included in the dataset). These limitations of accuracy and precision were partially resolved
using ResNets. In this case, accuracy generally exceeded 0.9 for ResNet_50, while it
approached 1.0 for ResNet_152 (after 20–25 iterations). In ResNet_152, the values of the
validation loss function tended to increase rather than decrease after only 7–8 iterations.
This is clear evidence of overfitting problems that can increase with the number of hidden
layers. Therefore, a general rule is that it is important to test ResNets with a variable
number of hidden neural layers, in order to find the right balance between classification
accuracy and the overfitting risk. In our test, ResNet_50 showed a good performance,
reaching a satisfactory balance between accuracy and generalization on unseen data. In
summary, ResNets guarantee good, although not perfect, classification performances. The
reason for some inaccurate results can be the relatively small size of the training dataset
that we used in our tests, and it is highly probable that the accuracy could improve with an
expanded labeled dataset.

We recognize that there are additional deep neural network architectures that can
work properly for image classification tasks that have not been applied in this paper. For
example, long short-term memory (LSTM) deep networks are capable of processing both
individual data points and entire sequences of data, making them well-suited for image
classification tasks that require temporal information. For instance, there are interesting
applications based on the integration of a block-chain layer with an LSTM architecture [17].
This is particularly useful when dealing with videos or sequential data. In fact, because
LSTMs have feedback connections, they can remember information over longer periods,
allowing them to maintain a more accurate representation of the input data. This memory
retention also enables them to identify subtle patterns or similarities in images that may
be challenging for other models to detect. However, using LSTMs for image classification
also has some limitations. One of the main challenges is the training time required, which
can be significantly longer than that for other models. Additionally, training an LSTM
network requires a larger dataset, especially when compared to traditional feedforward
neural networks. This is because an LSTM network needs to consider and integrate data
over several time steps, so it needs more data to learn the temporal dependencies.

However, as discussed in the previous section, deep learning methods represent just
one among a suite of machine learning techniques that can be applied for automatic analysis
and classification of multidisciplinary geo-data. Many algorithms can run in parallel on
the same data, in order to perform a sort of cooperative and comparative automatic
interpretation of complementary big datasets. An integrated system of machine learning
and deep learning, as schematically shown in Figure 9, represents a tool of fundamental
importance to support the decision-making process of geologists, geophysicists, engineers,
and managers. In fact, it allows for the rapid and reliable integration of a large amount of
heterogeneous information at an extremely variable scale. Finally, the integrated models
can be passed as inputs to another system of automatic analysis, this time based on
reinforcement learning techniques [18]. These latter techniques allow for the optimization
of decision-making policies in highly complex and dynamic environments, based on input
variables that vary over time. In this way, our integrated framework of machine learning,
deep learning, and reinforcement learning becomes an agile and robust tool at the same
time, supporting the operational work of geoscientists and managers [19,20].

Minerals 2023, 13, 584 19 of 20

6. Conclusions

In this article, we have attempted to provide the main criteria and methods for devel-
oping a generalized machine learning and deep learning approach aimed at fast automatic
classification of mineral image thin sections. The main conclusion is that fully connected
(FCNNs), convolutional, and residual neural networks (ResNets) are effective techniques
in recognizing and classifying mineral images directly in the field, with ResNets out-
performing the other techniques in terms of accuracy and precision. Using appropriate
hyper-parameters, ResNets demonstrated good (but improvable) performances in all the
classification tests performed in this work. The presence of few unavoidable inaccuracies
can be easily explained by the fact that we used a training dataset of a limited size. We
expect to improve these results using a larger labeled dataset for training our networks.

We remark that accurate classification is never the result of the application of a single
algorithm, but rather the result of a complex workflow of analysis, training, optimization
of neural network parameters, the selection and choice of the type of classifier algorithm,
possible retraining of the selected algorithm, cross-validation tests, and final verification by
a human expert. The advantage offered by a deep learning approach is that the main part
of this workflow can be automatized and requires very short computation times.

Finally, the same workflow discussed here, with some appropriate variations, can be
used to classify other types of geologically relevant images. For instance, we have already
applied it to analyze and classify microscope images of microfossils, as well as thin sections
of rocks with different types of kerogens. Furthermore, we have integrated this deep
learning methodology into a broader machine learning context, in order to create a general
methodology for integrated analysis and classification of multidisciplinary/multiscale
information (chemical analysis of rock samples, composite well-logs, geophysical data, and
so forth).

Funding: This research received no external funding.

Data Availability Statement: All the images (microscope mineral thin sections) discussed and
shown in this paper have been obtained courtesy of Dr. Alessandro Da Mommio. Link: http:
//www.alexstrekeisen.it/index.php (accessed on 20 February 2023). The specific jpeg files used in
this paper can be obtained upon request by writing an email to dellavers@tiscali.it. An excellent
Python tutorial about a complete workflow for image classification can be found and tested directly
on Google Colab, at the following link: https://colab.research.google.com/github/tensorflow/docs/
blob/master/site/en/tutorials/images/classification.ipynb#scrollTo=5fWToCqYMErH (accessed
on 10 April 2023).

Acknowledgments: The author would like to thank Alessandro Da Mommio for providing permis-
sion to use the thin-section images for scientific purposes.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Aminzadeh, F.; de Groot, P. Neural Networks and Other Soft Computing Techniques with Applications in the Oil Industry; EAGE

Publications: Houten, The Netherlands, 2006; Volume 129, p. 161.
2. Barnes, A.E.; Laughlin, K.J. Investigation of methods for unsupervised classification of seismic data. In Expanded Abstracts; SEG

Technical Program: Salt Lake City, UT, USA, 2002; pp. 2221–2224. [CrossRef]
3. Bestagini, P.; Lipari, V.; Tubaro, S. A machine learning approach to facies classification using well logs. In Expanded Abstracts; SEG

Technical Program: Houston, TX, USA, 2017; pp. 2137–2142. [CrossRef]
4. Dell’Aversana, P. Comparison of different Machine Learning algorithms for lithofacies classification from well logs. Bull. Geophys.

Oceanogr. 2017, 60, 69–80. [CrossRef]
5. Dell’Aversana, P. Deep Learning for automatic classification of mineralogical thin sections. Bull. Geophys. Oceanogr. 2021, 62,

455–466. [CrossRef]
6. Hall, B. Facies classification using machine learning. Lead. Edge 2016, 35, 906–909. [CrossRef]
7. She, Y.; Wang, H.; Zhang, X.; Qian, W. Mineral identification based on machine learning for mineral resources exploration. J. Appl.

Geophys. 2019, 168, 68–77.
8. Liu, K.; Liu, J.; Wang, K.; Wang, Y.; Ma, Y. Deep learning-based mineral classification in thin sections using convolutional neural

network. Minerals 2020, 10, 1096.

http://www.alexstrekeisen.it/index.php
http://www.alexstrekeisen.it/index.php
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/classification.ipynb#scrollTo=5fWToCqYMErH
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/classification.ipynb#scrollTo=5fWToCqYMErH
https://doi.org/10.1190/1.1817152
https://doi.org/10.1190/segam2017-17729805.1
https://doi.org/10.4430/bgta0256
https://doi.org/10.4430/bgo00367
https://doi.org/10.1190/tle35100906.1

Minerals 2023, 13, 584 20 of 20

9. Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow,
2nd ed.; Packt Publishing Ltd.: Birmingham, UK, 2017.

10. Rosenblatt, F. The Perceptron, a Perceiving and Recognizing Automaton; Cornell Aeronautical Laboratory: New York, NY, USA, 1957.
11. Minsky, M.; Papert, S. Perceptrons. In An Introduction to Computational Geometry; M.I.T. Press: Cambridge, UK, 1969.
12. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
13. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis.

In Icdar; IEEE: Piscataway, NJ, USA, 2003; p. 958.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 20–22 June 2016; pp. 770–778. [CrossRef]
15. Dell’Aversana, P. Artificial Neural Networks and Deep Learning: A Simple Overview. In A Global Approach to Data Value

Maximization. Integration, Machine Learning and Multimodal Analysis; Cambridge Scholars Publishing: Newcastle upon Tyne,
UK, 2019.

16. Dell’Aversana, P. An integrated multi-physics Machine Learning approach for exploration risk mitigation. Bull. Geophys. Oceanogr.
2020, 61, 517–538.

17. Mendi, A.F. A Sentiment Analysis Method Based on a Blockchain-Supported Long Short-Term Memory Deep Network. Sensors
2022, 22, 4419. [CrossRef] [PubMed]

18. Mendi, A.F.; Doğan, D.; Erol, T.; Topaloğlu, T.; Kalfaoğlu, E.; Altun, H.O. Applications of Reinforcement Learning and its
Extension to Tactical Simulation, November 2021. Int. J. Simul. Syst. Sci. Technol. 2021, 22, 14–15. [CrossRef]

19. Ravichandiran, S. Deep Reinforcement Learning with Python; Packt Publishing: Birmingham, UK, 2020.
20. Dell’Aversana, P. Reservoir prescriptive management combining electric resistivity tomography and machine learning. AIMS

Geosci. 2021, 7, 138–161. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/s22124419
https://www.ncbi.nlm.nih.gov/pubmed/35746201
https://doi.org/10.5013/IJSSST.a.22.01.14
https://doi.org/10.3934/geosci.2021009

	Introduction
	Methodological Overview
	Fully Connected Neural Network (FCNN)
	Convolutional Neural Network (CNN or ConvNet)
	Deep Convolutional Residual Neural Network (ResNet)

	Examples
	Classification of Mineralogical Thin Sections Using FCNN
	Data Augmentation and Preparation of the Training Dataset
	Image Embedding
	Pre-Processing
	Fully Connected Neural Network (FCNN) Hyper-Parameters
	FCNN Training and Cross-Validation Tests
	FCNN Performance Evaluation
	Classification

	Classification of Mineralogical Thin Sections Using ResNet
	Comparison with Other Classification Approaches

	Extension of the Workflow to Other Geo-Data
	Discussion
	Conclusions
	References

