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Abstract: The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation
during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence
and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain.
Integration of thermochronological techniques with time–temperature modelling has proven to be
a powerful tool for thermal-tectonic history reconstruction. Therefore, we collected representative
samples from the Arabian–Nubian Shield basement rocks of the Wadi Agar area at the eastern flank of
the Suez rift. Zircon fission-track data show two cooling age possibilities of Ediacaran and Devonian
ages. Meanwhile, apatite fission-track data represent three cooling age spans of Carboniferous,
Triassic, and Cretaceous. The integration of these data with the modelled time–temperature histories
reveals four different cooling events synchronous with the regional events; (1) the Neoproterozoic
post-accretion erosional event that causes near-surface rock uplift, (2) the Devonian–Carboniferous
Hercynian tectonic event which affected the region with rocks exhumation of ca. 4.2 ± 1.4 km, (3) the
Triassic Gondwana breakup initiation, and (4) the Oligocene–Miocene Gulf of Suez rifting which
caused flanks uplift in the studied region of ca. 1.2 ± 0.4 km. The Gulf of Suez is a passive rift with a
dominant mechanical component that is divided into two differently exhumed northern and southern
segments, where an additional far-field thermal overprint was restricted to the southern segment.

Keywords: the Gulf of Suez rifting; rift flanks; fission-track; Egypt thermochronology; LA-ICP-MS;
thermal history; Sinai; Arabian–Nubian Shield

1. Introduction

The Arabian–Nubian Shield (ANS) that represents the basement rocks beneath north-
eastern Africa and Arabia was primarily developed by the accretion of micro-continents and
island arcs in the Archean crust during the East African Orogeny (EAO; ca. 900–650 Ma)
(e.g., [1]). The ANS is composed mainly of granitoids and lesser occurrences of metavol-
canics and metasediments. It is exposed around the Red Sea/Gulf of Suez/Gulf of Aqaba
rift system. Shortly after its development, the Egyptian portion of the ANS (Figure 1)
was entirely eroded by the Cambrian to form a peneplain surface (e.g., [2]). Then, it was
buried beneath a Lower Paleozoic sedimentary succession of ca. 2.5 km thickness [3].
During the Devonian–Carboniferous, the Hercynian tectonic event affected northern Egypt
through uplifts and erosions [4]. Then, a period of tectonic stability and localized uplifts
and unconformities was dominated until the Cretaceous [5,6], when the Gondwana started
to break up, affecting the region with significant exhumations [7–9]. Finally, During the
Oligocene–Miocene, the Red Sea/Gulf of Suez rift was developed to form grabens along
their axis and elevated rift flanks [10,11]. The Suez rift flanks consist of the ANS basement
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rocks [12] that comprise the whole prolonged regional geological history (Figure 1). Many
thermochronological studies have been conducted on the ANS [3,13–21], and few of them
were applied to the Suez rift’s eastern flank [22–24]. This caused a shortage of detailed
information on the ANS construction in the region; consequently, the following important
questions remain unanswered: (1) What is the effect and extent of each of the successive
regional tectonic events on the northern ANS in Sinai? (2) Why are the highly elevated
flanks restricted farther to the south (Figure 1)? (3) Is there any role for a mantle plume
in the rifting processes? Reconstructing the thermal-tectonic history of the ANS basement
rocks in the Gulf of Suez’s eastern flank using an integration of different low-temperature
thermochronology could answer these questions [17,23,25,26].
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Figure 1. (A) Location map based on digital elevation model (www.geomapapp.org, accessed on
25 October 2022) representing the previous thermochronologic studies in the northern ANS and
Sinai [6,14,15,17,20,22–24]. Where NED = Northeastern Desert; Ar = Ar-Ar dating; ZFT = zircon
fission-track, ZHe; zircon (U-Th)/He, AFT = apatite fission-track, and AHe; apatite (U-Th)/He.
(B) Digital elevation model (www.geomapapp.org) for the ANS representing the location of topo-
graphic cross sections (C) across the ANS in NED, the Gulf of Suez, the northern exposure of the ANS
in Sinai, the Gulf of Aqaba, and the ANS in northern Arabia, (D) across the ANS in NED, the Gulf of
Suez, the southern exposure of the ANS in Sinai, the Gulf of Aqaba, and the ANS in northern Arabia,
(E) across the ANS in CED, the Red Sea, and the ANS in central Arabia.

www.geomapapp.org
www.geomapapp.org
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For this study, we collected 10 samples from the Wadi Agar area (Figure 2), which
represents the ANS northern exposure in Sinai, and the low-elevated northeastern flank of
the Gulf of Suez (Figure 1).
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The Problem and Reported Thermochronological Data

There is debate about what tectonic events affected the ANS in Southern Sinai and
to what extent. The additional debate concerning the Suez rift type is raised by the topo-
graphic growth variation between the Gulf of Suez rift flanks, and between rift flanks on the
African and the Arabian plates (Figure 1B). One model suggests only the isostatic rebound
effect following the early development of the rift axis [18,20]. A second model considers
the presence of an additional thermal component based on an apparent southward increase
in both heat flow and elevation [21,27]. A third model proposes a role of the so-called
Cairo mini mantle plume [24,28], or the Arabian marginal plume [23]. Thermochronology
techniques are effective tools to address this issue as they introduce cooling ages which are
sensitive to temperature changes, that may or may not accompany any of the aforemen-
tioned models. Therefore, thermochronology techniques are the best methods to be used to
solve this conflict.

Previous thermochronological studies on the northern ANS represent an extended cooling
history characterized by non-uniform uplift between fault-bound blocks [6,15,19,20,22,23,27].
Flanks of the Suez rift yielded AFT ages between 485± 18 Ma and 11 ± 2 Ma [12,15,17,20,22,24],
ZFT ages between 674 ± 77 Ma and 381 ± 26 Ma [23], and AHe ages between 126 ± 4 Ma
and 19 ± 1 Ma [24]. Flanks of the Aqaba rift reveal AFT ages ranging from 265 ± 13 Ma
to 10 ± 0.3 Ma [14,22]. In the Eilat area, 40Ar/39Ar ages group around 535 Ma [6], ZFT ages
range from 373 ± 26 Ma to 293 ± 21 Ma [3,6], and AHe ages between 458 Ma and 205 Ma [29].
From detrital rocks, AFT ages range from 328 ± 36 Ma to 259 ± 17 Ma, and AHe ages from
207 Ma to 11 Ma [3,6]. The northern Red Sea western flank reveals that sphene FT ages range
from 410 to 339 Ma [13], ZFT ages from 366 to 315 Ma [13], and AFT ages from 191 ± 7 Ma to
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29 ± 2 Ma [19]. Noticeably, these cooling ages range over a wide time span; the majority of
them predate the rifting process. This would raise questions about the nature of rock exhuma-
tion as a response to the different tectonic events and the cause behind the limited rock uplift
that accompanied the Oligocene–Miocene rifting event.

2. Geologic Setting and Regional Tectonics

The ANS formed through multi-stage orogeny development by accretion of island
arcs, continental fragments, and oceanic plateaus in Archean nuclei between ca. 900 Ma
and 650 Ma [1,12,30]. The basement rocks in the southern Sinai Peninsula exposed over
ca. 14,000 km2 in area represent a small portion of the ANS composed mainly of granites
along with lesser outcrops of metamorphic and volcanic lithologies. The Sinai Peninsula
itself is squeezed between the African, Eurasian, and Arabian plates in a tectonically active
region; hence, these plates’ intra-activities are expected to be recorded in the Neoproterozoic
basement of Sinai. The rifting between Africa and Arabia is the most recent tectonic event,
initiated in the eastern proto-Gulf of Aden by ca. 34 Ma. This rifting marked the Red Sea
initiation [18] within the tectonic framework of the Afar triple-junction [31–34] and the
slab-pull of the Bitlis–Zagros convergence zone in modern Anatolia [35].

2.1. The Basement Rocks

The basement rocks of Sinai are composed mainly of the following: (1) Island arc
metamorphic rocks, representing the earliest stage of the EAO that extended from ca. 820 to
750 Ma [12,36]. This phase of metamorphism is generally confined to the lower greenschist
facies [37]. (2) Syn-orogenic suite, representing a compressional regime that dominated
between ca. 750 and 610 Ma [12,38]. (3) Post-orogenic younger suites and dyke swarms,
characterizing the EAO extensional collapse stage that developed with the final orogenic
phase between ca. 610 Ma and 550 Ma [12,17,38–40].

2.2. Tectonic History

The basement complex of the ANS was entirely eroded through the post-accretion
erosional event (PAEE) by the Cambrian, as indicated by the Lower Cambrian fossils
dated in fluvial to near-shore marine sediments [41]. This sedimentation regime developed
ca. 2.5 km of Lower Paleozoic succession (Figure 3) until the Devonian–Carboniferous,
when Gondwana and Laurasia collided to develop the Hercynian (Variscan) tectonic
event [4]. This collision resulted in the reversal of tectonic activity to a southward vergence,
substantial uplift, and erosion of the Lower Paleozoic succession in Sinai by the Late
Carboniferous [13,23,42–44]. Meanwhile, the whole Lower-Paleozoic sequence (ca. 2.5 km
thickness) is preserved in northern Saudi Arabia and southern Jordan [3]. During the
Jurassic–Cretaceous Gondwana started to break up, causing restoration of the northward
tectonic vergence, sinistral shearing, local volcanism, normal NW-SE and N-S trending
faults, and the Syrian Arc domal system in the Egyptian ANS [7–9,45–47]. Finally, the Red
Sea/Gulf of Suez rift system developed during the Oligocene–Miocene causing rift flanks
uplift, erosion, the production of limited basaltic dykes, and the development of normal
faults [10,11].

This rifting process was developed as a response to the Afar superplume [48]. Mean-
while, the major extension phase in the Red Sea/Gulf of Suez axis was activated during the
Oligocene–Miocene [18,20]. A second major flank uplift (ca. 15 Ma) was reported in the
central Arabia Red Sea flank [49].

Structurally, the studied area is dominated by three sets of faults (Figure 2): (1) the
NNW-NW trending faults with (the Oligocene–Miocene) Suez rift age, (2) the NE trending
faults with pre-rift age, and (3) the ENE trending faults, which might have a Precambrian
age [44].
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2.3. Sedimentation Cover

The lithostratigraphic succession of the Gulf of Suez vicinity documents the major
changes in the depositional environments and the uplifting events through frequent un-
conformities (Figure 3). Further details of the sedimentary sequence and the depositional
environments and relations are described in the Supplementary File Section Text S2.

3. Materials and Methods

Fission-track (FT) thermochronology is based on the accumulation and retention of
radiation damage in the crystal lattice. The heavy fragments of spontaneous 238U fission
produce chemically etchable latent tracks [52]. These fission tracks are annealed at specific
temperatures that differ from mineral to mineral [53,54]. This thermal sensitivity can be
modelled to reconstruct the time–temperature (t-T) history of the upper crust.

For this study, 10 samples were collected from the Wadi Agar area at the eastern flank
of the Suez rift (Figure 2). Samples were collected from the Neoproterozoic basement rock
units avoiding any thermal overprinting by any possible Phanerozoic magmatic intrusions.
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From these 10 samples, 7 yielded enough zircons and/or apatites for FT analyses (Figure 2).
Apatite and zircon grains were separated from the collected samples using conventional
techniques as described by Donelick et al. [55]. The etching conditions were chosen for
compatibility with the inverse modelling software [56]. Zircon (ZFT) and apatite fission-
track (AFT) analyses were performed at the Kanazawa University thermochronology lab,
where the Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
technique was used for direct measurement of the U concentrations [57]. Ages and error
ranges are calculated using IsoplotR [58]. The thermal history was modelled using the
well-established computer code HeFTy v1.8.3 [56].

The partial annealing zone (PAZ) of ZFT ranges between ca. 330–190 ◦C/10 Ma based
on the metamictization degree [59,60]. Consequently, for an average degree of metamictiza-
tion, a closure temperature of ca. 240 ◦C/10 Ma is considered [54,61]. Meanwhile, the PAZ
in apatites is controlled by the crystallographic orientation of tracks, where tracks parallel
to the c-axis anneal slower [55,62,63]. The chemical composition of each apatite grain may
have additional effect. The PAZ for the dominant fluorapatite is typically in the range of
ca. 110–60 ◦C/10 Ma [53], with a general closure temperature of ca. 110 ◦C for a 1 ◦C/Ma
cooling rate and ca. 10 Ma holding time [64,65].

Further details of the analytical methods and conditions are described in the
Supplementary File Section Text S3.

4. Results

From the 10 collected samples, 3 yielded reliable zircons for ZFT dating (Table 1), and
5 yielded suitable apatites for AFT dating (Table 2). Out of the five AFT-dated samples,
three samples yielded a sufficient number of horizontal confined tracks (HCTLs) for t-T
modelling. All ZFT and AFT data are presented in Tables 1 and 2 according to Hurford’s [66]
recommendations.

Table 1. Zircon fission-track ages, data, and sample descriptions.

S.-No. Elev.
Coordinates

Lithology
238U

n
ρs Ns χ2

[%]

W.M. Age 1σ

N E [µg/g] (106 Track/cm2) [Ma]

SA-13 789 28.85947◦ 33.5522◦ Gneiss 268.5 15 84.6 3897 0.9 560.1 17.4

SA-16 935 28.83682◦ 33.56992◦ Diorite 403.0 21 125.1 7092 1.0 555.5 14.1

SA-03 624 28.86578◦ 33.48112◦ Diorite 207.6 23 48.5 4028 1.0 421.9 12.8

Sample information and zircon fission-track data are given as weighted mean ages (bold) with an uncertainty
of 1-sigma calculated using IsopltR [58]. S.-No.; samples number, Elev.; elevation in meters above sea-level,
U; uranium concentration in µg/g, n; the number of counted zircon grains, ρs; density of spontaneous tracks
(106 tr/cm2), Ns; the number of spontaneous tracks, χ2; chi-square test: the probability of single grain ages
belonging to one population. The test is passed if P(χ2) > 5% (Galbraith, 1981).

Table 2. Apatite fission-track ages, data, and sample descriptions.

S.-No. Elev.
Coordinates

Lithology
238U

n
ρs Ns χ2

[%]

W.M. Age 1σ Lc 1σ Dpar 1σ

N E [µg/g] (106 Track/cm2) [Ma] (µm) (µm)

SA-01 458 28.86651◦ 33.44047◦ Monzogranite 32.5 21 1.0 405 1.0 82.0 4.7 13.0 0.6 1.5 0.2

SA-03 624 28.86578◦ 33.48112◦ Diorite 18.3 22 2.2 856 1.0 227.1 10.0 12.2 1.3 1.5 0.1

SA-06 595 28.85124◦ 33.51373◦ Syenite 23.7 20 2.6 1048 0.9 228.9 9.6 12.0 1.1 1.4 0.2

SA-13 789 28.85947◦ 33.5522◦ Gneiss 18.7 20 3.4 1290 1.0 303.2 9.7 12.2 1.1 1.5 0.2

SA-16 935 28.83682◦ 33.56992◦ Diorite 23.2 20 3.9 798 1.0 319.2 13.3 11.4 1.0 1.4 0.2

Sample information and apatite fission-track data were given as weighted mean ages (bold) with an uncertainty
of 1-sigma, calculated using IsopltR [58]. S.-No.; samples number, Elev.; elevation in meters above sea-level,
U; uranium concentration in µg/g, n; the number of counted apatite grains, ρs; density of spontaneous tracks
(106 tr/cm2), Ns; the number of spontaneous tracks, χ2; chi-square test: the probability of single grain ages
belonging to one population. The test is passed if P(χ2) > 5% (Galbraith, 1981), W.M. age; weighted mean age
(bold) in million years,1σ; 1-sigma error, Lc: C-axis projected horizontal confined track lengths (bold), Dpar: etch
pit diameter (bold).
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4.1. Zircon Fission-Track Data

All the treated samples pass the Chi-square (χ2) statistical test for age homogeneity
(Table 1). Uranium concentrations vary between ca. 403 and 208 µg/g (Table 1). There is no
relationship between ZFT age and uranium concentration (Figure S1). The yielded ZFT
weighted mean ages and standard errors range between 560 ± 17 Ma and 421 ± 13 Ma
(Figure 2), which can be separated into two ZFT age spans. The first group comprises
samples SA-13 and SA-16 that are close to the sedimentary cover on the eastern border of the
studied region (Figure 2), and comprises the older ZFT ages ranging from ca. 560 ± 17 Ma
to ca. 556 ± 14 Ma (Table 1), indicating an average cooling within/through the ZFT PAZ
(240–200 ◦C; [57] ca. 558 ± 16 Myrs ago. The second consists of samples SA-03 with a ZFT
age of ca. 422 ± 13 Ma (Table 1).

4.2. Apatite Fission-Track Data

The dated AFT ages range between 319 ± 13 Ma and 82 ± 5 Ma. These ages are sepa-
rated into two distinct spatial/temporal groups (Table 2). The older AFT age group consists
of two land-ward samples with Carboniferous ages between 319 ± 13 Ma and 303 ± 10 Ma,
suggesting an average cooling within/through the AFT PAZ (110–60 ◦C; [55,67] at ca.
311 ± 11 Ma. The younger AFT age group consists of two samples closer to the Suez Gulf.
This group consists of two samples with Triassic ages of 229 ± 10 Ma and 227 ± 10 Ma
(Figure 2). These ages indicate an average cooling within/through the AFT PAZ at ca.
228 ± 10 Ma (Figure 2; Table 2).

The c-axis-corrected HCTLs (Lc) range from 13.0 ± 0.6 µm to 11.4 ± 1.0 µm (Table 3).
A total of 235 Dpars were measured yielding values between 1.5 ± 0.2 µm and 1.4 ± 0.2 µm.
There is no systematic relationship between the Dpar values and apatite FT ages (Figure S2).

Table 3. Detailed length and Dpar data of the apatite horizontal confined track.

Sample HCTLs
No.

HCTLs
Mean
(µm)

HCTLs
Std.

(µm)

HCTLs
Skew.

Lc Mean
(µm)

Lc Std.
(µm)

Lc
Skew.

Dpar
No.

Dpar
Mean
(µm)

Dpar
Std.

(µm)

Dpar
Skew.

SA-01 69 10.7 1.0 −0.039 13.0 0.6 0.262 96 1.5 0.2 −0.260

SA-03 73 9.4 2.4 0.466 12.2 1.3 1.071 95 1.5 0.1 −0.153

SA-06* 8 10.3 0.7 0.720 12.0 1.1 −0.839 22 1.4 0.2 0.402

SA-13 79 9.9 1.8 0.664 12.2 1.1 −0.097 99 1.5 0.2 −0.549

SA-16* 6 10.2 0.6 0.570 11.4 1.0 0.627 18 1.4 0.2 0.115

SA-01; sample symbol, SA-06*; sample with insufficient HCTLs number, HCTLs no.; the number of measured
horizontal confined tracks, HCTLs mean; mean horizontal confined track length (bold), std; standard deviation,
skew; skewness of distribution relative to the mean value (a measure of the asymmetry of the distribution), Lc
mean; mean track length after c-axis correction (bold), Dpar no.; the number of measured etch pit diameters, Dpar
mean; mean etch pit diameter (bold).

5. Discussion

Wadi Agar area responded to the Devonian–Carboniferous and the Cretaceous tectonic
events by a non-uniform uplift between fault-bounded blocks. Unfortunately, the fault
systems responsible for such differential responses are difficult to be assigned. Notice-
ably, sample SA-13 which did not respond to either the Devonian–Carboniferous or the
Cretaceous tectonic events are collected from blocks that are bounded by NE-SW, and
NW-SE faults. These different faults’ orientations might have prevented the tectonic uplift
of localized blocks. However, further detailed research considering known differential
movement may reveal the kinematic characters of these fault systems.

5.1. Zircon Fission-Track Thermochronometry

There is no evidence of multiple age populations as indicated by all samples passed
the Chi-square (χ2) homogeneity test (Table 1). The lack of any discernible correlation
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between ZFT age and uranium concentration (Figure S1) indicates that the metamictization
effect on ZFT ages is negligible (Table 1).

The Precambrian ZFT cooling ages (average ca. 558 ± 16 Ma; Table 1, Figure 2) are con-
sistent with the early erosion of the ANS to near sea level before the Cambrian [41,68–70],
which caused the fluvial to near-shore marine nature of the Qebliat Group sediments,
unconformably overlying the ANS (Figure 3). This intense erosional event must have
been accompanied by rock exhumation as an isostatic rebound. Moreover, such old ages
were reported from other parts of the ANS [3,13,14,23,29]. The younger age sample SA-03
(422 ± 12 Ma; Figure 2) is concordant with previously reported ZFT and ZHe ages from
other parts of the ANS [3,6,13,23]. Such ages were previously interpreted as a tectonically
driven uplift during the Devonian–Carboniferous [3,6,13,23]. This exhumation is also
consistent with the change in depositional environment from the marine Lower Carbonifer-
ous Um Bogma Formation to the erosional nonmarine Upper Carboniferous Abu Thora
Formation (Figure 3).

5.2. Apatite Fission-Track Thermochronometry

All the AFT ages are substantially younger than their Precambrian host rocks formation
ages, consistent with previously reported ages from Sinai and the NED [15,19,22–24]. These
AFT ages range between ca. 319 ± 13 Ma and ca. 82 ± 5 Ma, and are differentiated into
three geographically separated age groups, indicating a differential thermo-tectonic history
(Figure 2). This spatial separation is consistent with the non-uniform uplift between fault-
bound blocks that were previously reported in the ANS [6,15,19,20,22,23]. Furthermore,
the AFT ages of the older age group samples (Carboniferous; SA-13, SA-16) are consistent
with the stratigraphic sequence showing multiple unconformities between similarly aged
formations (Figure 3). Additionally, a concurrent tectonically driven uplift during the
Carboniferous was reported [3,6,13,23]. The second age group (Triassic; SA-03, SA-06)
is concordant with the synchronous unconformities and the Permian basaltic flows that
indicate a probable uplift and thermal event (Figure 3). In contrast, the younger AFT sample
(Late Cretaceous; SA-01) represented by AFT age is concurrent with the depositional regime
change from the marine Wata Formation to the nonmarine Matulla Formation (Figure 3),
which recommends a synchronous rock uplift.

Our thermochronologic ages are slightly younger than the corresponding exhumation
events that caused them, which indicates long residence within the upper part of the AFT
PAZ (Figure 4). This is supported by being the youngest dated AFT cooling age during this
study (ca. 82 ± 5 Ma), much older than the Oligocene–Miocene Gulf of Suez rifting, the last
exhumation event, indicating that the rock did not experience any temperature higher than
110 ◦C since the Cretaceous. Additionally, this exhumation from AFT PAZ is confirmed
by the t-T models and the track lengths distribution histograms as most c-axis-corrected
HCTLs’ (Lc) distributions show positive skewness with a tail of longer tracks (Figure 4).
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function value of at least 0.05), purple paths: good fit (all t–T paths with a merit function value
of at least 0.5), black line: best fit, and blue line: the weighted mean path [53,56], the dashed grey
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iterations, A: number of acceptable fit models, G: number of good fit models, D: determined FT age
and CLs (1-σ error), M: modelled FT age and HCTs, G.O.F.: goodness of fit, N: number of single
grains and HCTLs.

5.3. Thermal History Reconstruction

The time–temperature (t–T) history of the studied region was reconstructed using
HeFTy v1.8.3 [56]. HeFTy requires user-defined t-T constraints to guide its Monte Carlo
algorithm. During this study, these constraints were defined based on the obtained ther-
mochronologic ages (ZFT and AFT) and the well-documented geological events: the
post-accretion erosional event (PAEE), during which the entire ANS was eroded by the
Cambrian, and the Oligocene–Miocene rifting of the Gulf of Suez (Figure 3). The width of
these constraints was changed based on the age and degree of uncertainty of each event.
The age-based constraints were drawn as the measured ages show, otherwise, it was drawn
as a wide constraint to provide a high degree of freedom. Detailed information about the
used constraints is provided in the Supplementary File (Table S1). The precision of the
resulting t–T models strongly depends on the number of HCTLs. Therefore, during this
study, the t–T modelling was performed on samples with sufficient HCTLs, and those with
an insufficient number were not modelled (Table 3).

The t–T models categorize the cooling scenarios for the studied region into three
different possibilities: (1) Sample SA-13 (Figure 4), which experienced the first rapid cooling
event during the Neoproterozoic, then a period of slow reheating to stable temperature,
which extended until the Late Oligocene when the sample was exhumed to its current
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elevation (Figure 4). (2) Sample SA-03 (Figure 4), which experienced the first rapid cooling
event during the Neoproterozoic to exhume the sample closer to the surface. Then, the
sample experienced a reheating event extended till the Devonian–Carboniferous, when a
second rapid cooling event affected the sample uplifting it to the upper part of the AFT PAZ.
Then, the sample experienced a period of thermal stability until the Oligocene–Miocene,
when it was exhumed to its current elevation (Figure 4). (3) Sample SA-01 (Figure 4), which
experienced the first rapid cooling event during the Neoproterozoic to exhume a sample
closer to the surface. Then, the sample experienced a reheating event which might have
extended until the Cretaceous, when a second rapid cooling event affected the sample
during the Jurassic–Cretaceous, raising it to the AFT PAZ. Then, the sample experienced
a relatively short period of thermal stability until the Oligocene–Miocene, when it was
exhumed to its current elevation (Figure 4).

The possibility of having sample SA-13 to a similar t-T history to the other samples
(SA-03 and SA-01) was tested and failed (Figure S3).

From all modelled samples, as from the AFT ages, there is no record of thermal
anomaly accompanying the Gulf of Suez rifting on the t-T paths, instead, all rocks were
uplifted from depths equivalent to ca. 60 ◦C temperatures (Figure 4).

The t-T modelling shows differential cooling events which can be interpreted as ex-
humation events when compared to our thermochronologic ages, the well-documented
geological events, and the lithostratigraphic sequence. These exhumation events are
the following: (1) The Neoproterozoic–Cambrian cooling/exhumation event (Figure 4),
which is emphasized by our ZFT ages, the well-documented PAEE, and the deposition
of Cambrian fluvial to near-shore marine sediments. (2) The Devonian–Carboniferous
cooling/exhumation event (Figure 4) when rock uplifted in response to the Hercynian
tectonic events which affected the study area causing the depositional regime to change
from the Lower Carboniferous marine sediments of Um Bogma Formation to the Upper
Carboniferous erosional sediments of Abu Thora Formation (Figure 3). This exhumation
caused the removal of ca. 2.5 km succession of the Lower Paleozoic sediments [44]. (3) The
Cretaceous cooling/exhumation event (Figure 4) when rock uplifted in response to the
Gondwana breakup event which uplifted localities in northern Africa and the Gulf of Suez
region, and caused multiple hiatus and dominance of conglomeratic sandstone erosional
deposits through most of the Cretaceous (Figure 3). Synchronous major cooling events and
strike-slip tectonically driven structures were previously reported [13,14]. This differential
nature of uplift as a response to the aforementioned Hercynian and the Gondwana breakup
events is consistent with the previous thermochronological findings which show tectonic
movement along fault-bound blocks in the ANS [3,6,14,19,20,22,23]. These exhumations
were probably controlled by faults activation through the corresponding stress field di-
rection of each event. (4) The Oligocene–Miocene cooling/exhumation event (Figure 4)
when rock exhumed in response to the Red Sea/Gulf of Suez rifting. Our t-T modelling
(Figure 4) as well as un-reset AFT ages (Table 2) show that no thermal print accompanied
the Gulf of Suez initiation and flanks exhumation from depths equivalent to ca. 60 ◦C
(Figure 4). The possibility of higher thermal overprint was tested using wider AFT and Gulf
of Suez constraints on the temperature axis, and we achieved similar results suggesting a
temperature of ca. 60 ◦C to accompany the rifting event (Figure S4).

5.4. Cooling, and Rocks Exhumation

The cooling events measured by thermochronologic data cannot be countered for
exhumation events; however, coupling them with the regional geological history and sedi-
mentological record could. The rock uplift accompanying each of these tectonic events could
be inferred based on cooling ages and the corresponding PAZ of each thermochronometer.
Here, a range of geothermal gradient possibilities (between 25 ◦C/km; the current, and
50 ◦C/km; expected in active tectonics) were used due to a lack of precise paleo-geothermal
gradient data. Afterwards, the calculated data were compared to the sedimentologic suc-
cession and correlated to the synchronous regional tectonic events. Integration of these
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data provided supporting evidence for being our measured cooling events expressions for
major exhumation events: (1) The PAEE event removed the ANS high topography and
transformed it into a peneplain surface [2], causing the currently exposed rocks to exhume
by an isostatic rebound from the emplacement depths to the surface or close to it. (2) The
Hercynian tectonic event affected parts of the Egyptian ANS by uplifts, and caused erosion
of ca. 2.5 km of the Lower Paleozoic sediments [4]. This event caused rock exhumation in
the studied region from temperatures of the ZFT PAZ (240–200 ◦C) to ca. 60 ◦C, which is
equivalent to ca. 4.2 ± 1.4 km of rock uplift. (3) The Gondwana breakup event caused the
Africa–Eurasia convergence. This event resulted in a reported total uplift of ca. 2.4 km,
domal uplifts of ca. 0.9 km in northern Sinai (Gabals Maghara, Yelleg, and Halal), and
the additional removal of ca. 1.5 km of the Cretaceous sedimentary succession [70] in the
studied region. There are indicators of a localized effect of this event on the area of study
represented by the younger AFT age sample (Table 2), and its t-T modelling (Figure 4),
where its effect is integrated with the Devonian–Carboniferous event to exhume the region
from the ZFT PAZ (240–200 ◦C) to ca. 60 ◦C. (4) The Gulf of Suez rifting caused rift flanks
uplift of more than 2.4 km at Wadi Miar, south of the area of study [24]. In the current study
area, the Suez rift caused rock exhumation from depths equivalent to ca. 60 ◦C, which is
equal to 1.2 ± 0.4 km of rock uplift.

6. Geological History Implications

The ZFT data are separated into two age groups of Ediacaran ages of ca. 558 ± 16 Ma
and the Silurian ages of ca. 422 ± 13 Ma, indicating rapid exhumation shortly after
emplacement to pass through the ZFT isotherm at these times. Meanwhile, the AFT
ages are represented by three age spans of Carboniferous of 311 ± 12 Ma, Triassic of ca.
228 ± 10 Ma, and Cretaceous of ca. 82 ± 5 Ma. This cooling ages differential indicates
different thermo-tectonic histories that are not related to lithology or formation ages but
reflect differences in the exhumation (uplift–erosion) history.

6.1. Thermal-Tectonic History

The obtained thermochronologic ages and the t-T histories represent four cooling/
exhumation events coinciding with four events: (1) The PAEE (Neoproterozoic–Cambrian)
followed the EAO plutonism and continental thickening during the Neoproterozoic and
affected the whole region with weathering and erosion, and a consequent rock uplift by
isostatic rebound causing the studied samples to exhume to near the surface. Afterwards,
the region was buried beneath Lower Paleozoic sediments, where thickness reached ca.
2.5 km. (2) The Hercynian tectonic event (Devonian–Carboniferous) caused uplifts to cool
the studied sample from the ZFT PAZ to ca. 60 ◦C, which is equivalent to ca. 4.2 ± 1.4 km.
This event caused the removal of the whole Lower Paleozoic succession and parts from the
underlying basements. (3) The Gondwana breakup event (Cretaceous), caused localized
uplifts. (4) The Gulf of Suez rifting (Oligocene–Miocene), which caused cooling and
rock exhumation from depths equivalent to ca. 60 ◦C to the surface, which is equal to
1.2 ± 0.4 km of rock uplift.

6.2. The Gulf of Suez Rift

All the treated samples have AFT cooling ages that predate the Suez rifting; the HCTLs
distributions indicate exhumation from the AFT PAZ. The t–T modelling suggests exhuma-
tion from depths equivalent to ca. 60 ◦C during the rift development (Figure 4), which is
equivalent to ca. 1.2 ± 0.4 km of rock uplift. This information documents the absence of any
additional thermal overprint on the northern Suez rift’s eastern flank. Meanwhile, reported
thermochronological studies of the southern the area of study (Figure 1) reported AFT and
AHe ages with the Gulf of Suez rifting event, and greater accompanying rock uplift of more
than 2.4 km [22,24]. This may recommend a differential rift segmentation into the northern
and southern areas. Consequently, the Gulf of Suez can be divided into northern and
southern segments, where the southern segment is marked by increasing flanks tectonic
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uplift, rift axis extension, heat flow, and younger cooling ages, while the northern segment
is marked by a decrease in flanks tectonic uplift, rift axis extension, heat flow, and older
cooling ages (Figure 1). Additionally, the whole rift is characterized by the absence of any
considerable volcanism. Consequently, the Suez rift is a passive mechanical rift type where
the southern segment was probably influenced by a far-field thermal overprint.

7. Conclusions

The Wadi Agar area was constructed as part of the ANS during the EAO. Before
the Cambrian, the ANS was eroded and, as a response, a huge exhumation occurred to
bring rock to near the surface. Afterwards, the Lower Paleozoic sediments were deposited
(ca. 2.5 km) and buried the whole region. Then, the Hercynian tectonic event (Devonian–
Carboniferous) caused a rock uplift of ca. 4.2 ± 1.4 km. During the Cretaceous, the
Gondwana breakup might have affected the region through localized uplifts. During the
Oligocene–Miocene, the Gulf of Suez affected the whole region by ca. 1.2 ± 0.4 km of rift
flanks uplift. Finally, these flanks were non-tectonically eroded to their current elevations.

The Gulf of Suez is a passive rift with a dominant mechanical component that is
divided into two segments; the southern is characterized by an additional far-field thermal
print causing younger cooling ages, elevated rift flanks, and an increase in heat flow. The
northern segment was isolated structurally as indicated by its older cooling ages, low rift
flanks, and decrease in heat flow.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13040574/s1. Datasets for this research are included in this
paper and in the accompanying Supporting Information, which includes a detailed discussion about
the sedimentological succession and the used methods. Furthermore, ZFT age versus uranium
concentration and Dpar-AFT age plots as well as a table for the time–temperature modelling used
constraints are provided. Figure S1: A plot of ZFT age versus uranium concentration does not show
any systematic trend, thus ruling out a major effect of Metamictization on the ZFT data; Figure S2:
Dpar-AFT age plot. AFT ages show no significant change with a change in Dpar values indicating
the absence of apatites chemistry differentiation on the corresponding AFT ages; Figure S3: Thermal
history modeling was obtained using HeFTy [56]. This figure show sample SA-13 which belongs to
the older ZFT age group, when tested with the same constraints (as shown here) as other samples,
it shows no possible t-T scenarios even after 200 thousand iterations; Figure S4: Thermal history
modeling was obtained using HeFTy [56]. This figure shows our examination of the possibility of
having higher temperatures during the AFT constraint as the provided t-T paths were restricted
to their top part at ca. 60 ◦C; Table S1: The specifications of the time-temperature modeling used
constraints; Table S2. Operating conditions for the LA-ICP-MS.
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