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Abstract: X-ray diffraction (XRD) analysis, as one of the most powerful methods, has been widely
used to identify and quantify minerals in earth science. How to improve the precision of mineral
quantitative analysis is still a hot topic. To date, several quantitative methods have been proposed
for different purposes and accompanied by diverse software. In this study, three quantitative
mineral analysis methods, including the reference intensity ratio (RIR), Rietveld, and full pattern
summation (FPS) methods, are compared and evaluated to systematically investigate their accuracy
and applicability. The results show that the analytical accuracy of these methods is basically consistent
for mixtures free from clay minerals. However, there are significant differences in accuracy for clay-
mineral-containing samples. In comparison, it seems that the FPS method has wide applicability,
which is more appropriate for sediments. The Rietveld method has been shown to be capable
of quantifying complicated non-clay samples with a high analytical accuracy; nevertheless, most
conventional Rietveld software fails to accurately quantify phases with a disordered or unknown
structure. The RIR method represents a handy approach but with lower analytical accuracy. Overall,
the present results are expected to provide a potentially important reference for the quantitative
analysis of minerals in sediments.

Keywords: limit of detection; Rietveld; reference intensity ratio; full pattern summation methods

1. Introduction

X-ray diffraction (XRD), as an important mineral analysis technique, has been widely
employed in geologic research [1–6]. Meanwhile, quantitative analysis of minerals, espe-
cially for clay minerals, represents a very promising approach to obtain information on
the provenance and weathering intensity of sediment [7–13] and climate change [14–16].
However, it is still a real challenge to accurately quantify mineral composition. The most
extensive efforts by far have gone into the mineral quantitative methods, which include
the traditional internal standard method [17], external standard method [18], full pat-
tern summation (FPS) [19–22], the reference intensity ratio (RIR) method [23–25], and
the increasingly improved Rietveld method [26,27]. However, conventional methods are
time-consuming because either pure materials or additional standard materials are artifi-
cially added during these test procedures, therefore hampering extensive application. By
contrast, the FPS, the RIR, and the Rietveld methods have made considerable progress
and been widely used in the last decades, partly due to rapid developments in computer
hardware and software [28–31]. The FPS method is based on the principal that the ob-
served diffraction pattern is the sum of signals from the individual phases that compose a
sample [19,20,22,32]. The Rietveld method, which differs from single reflection techniques,
is a process of refinement between observed and calculated patterns by partial least squares
regression based on a crystal structure database [33,34]. The weight of each phase in a
sample is obtained from the optimal value of the scale factor during refinement. The RIR
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method is also known as the ‘matrix flushing’ method, which depends on the intensity of
an individual peak as a reflection of the mineral content by means of the RIR values [23–25].

The accurate quantitative analysis of minerals by XRD is based on the reliable identi-
fication of each phase [31]. Therefore, the limit of detection (LOD) of each mineral phase
needs to be assessed to show the sensitivity of XRD analysis [35]. Simultaneously, although
various software for quantitative mineral analysis have been developed to easily access
each method, the knowledge gap about the accuracy of these methods has not yet been
filled, impeding our better understanding of their applicability. In particular, the relia-
bility of each method and their source of error remain to be determined, which has left
researchers in a dilemma during quantitative analysis. This is largely due to the lack of
a systematic contrastive research. As a result, this study aims to address these issues by
using artificially mixed samples to test the LOD for the XRD analysis and compare the
accuracy and applicability of the three methods. Our results are expected to provide an
important reference for the quantitative analysis of minerals in geologic research.

2. Materials and Methods
2.1. Preparation of Artificial Mixture Samples

The amorphous phases (e.g., soil organic matter, etc.), usually ignored as background
noise, exert a significant influence on the quantitative accuracy of XRD, even for materi-
als with less amorphous materials [36,37]. Consequently, a high purity of the crystalline
phase in the sample should be ensured during quantitative analysis. In this study, seven
high-purity minerals including quartz, albite, calcite, dolomite, halite, montmorillonite,
and kaolinite were used to prepare the artificial mixture samples, which can approxi-
mately represent mineral assemblages in natural sediments. The structural parameters
of the above minerals are listed in Table 1. Their purity meets the experimental require-
ments, as shown by the consistencies of diffraction patterns with corresponding standard
references (Figure 1). All the mixture samples were ground into powders of <45 µm
(325 mesh), which is suitable for XRD quantitative analysis. Fine grain size is essential
to minimize micro-absorption corrections, to give reproducible peak intensities, and to
minimize preferred orientation.

Table 1. The crystal structure parameters of selected minerals.

Phase Quartz Albite Calcite Dolomite Halite Kaolinite Montmorillonite

Purity 98.83% 99.26% 99.87% 99.88% 98.91% 98.22% 100%

JADE-PDF# 97-004-1414 00-009-0466 04-008-0788 04-008-0789 97-002-8948 04-010-4800 00-058-2007

HighScore-COD# 96-900-9667 96-900-1632 96-901-6707 96-900-3509 96-900-3309 96-900-9231 96-900-2780

TOPAS-COD# 96-210-0188 96-900-1630 96-901-6706 96-900-0573 96-900-3308 96-101-1045 96-900-2779

JADE-RIR 4.24 2.1 3.24 2.53 5.21 0.98 19.66

Crystal Structure Hexagonal Anorthic Hexagonal Hexagonal Cubic Monoclinic Anorthic

Space Group P3221 (154) C-1 (2) R-3c (167) R-3 (148) Fm-3m (225) C1 (1) P1 (1)

Lattice Volume 112.9 332.42 368.07 320.22 179.4 164.95 697.75

Lattice
Parameters

a(Å) 4.912 8.144 4.991 4.8064 5.64 5.1554 5.18
b(Å) 4.912 12.787 4.991 4.8064 5.64 8.9448 8.98
c(Å) 5.404 7.16 17.062 16.006 5.64 7.4048 15

Z 3 2 6 3 4 1 2

Although the minerals used here are standard crystalline phases with high purity,
which quantified and verified by HighScore software (version 3.0) (Table 1), the determina-
tion of the LOD value is compulsory for each mineral prior to the quantitative experiment.
This is because the sensitivity of instrument reflected by the LOD value also potentially
determines the accuracy of quantitative analysis result. Thirty-eight samples, each of
which was a two-phase mixture of 1 g, were measured for the LOD analyses. In the
LOD sample, one phase was the mineral listed in Table 2, and the other was quartz or



Minerals 2023, 13, 566 3 of 15

corundum as matrix. The phases were weighed by Mettler XS205 DU electronic balance
with an accuracy of 1D/100,000, and subsequently mixed and homogenized by hand for
30 min in an agate mortar. All samples were equally divided into three subsamples and
then were uniformly filled into the holder for XRD measurements. It was confirmed that
each sample was homogenized if the XRD patterns of its three subsamples did not show
significant differences.
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Figure 1. Comparison of X-ray diffraction patterns between 7 kinds of selected minerals and their
respective matched standard reference. CPS- counts per second.

Table 2. The limits of detection (LOD) for minerals used in this study. LODcal is calculated LOD
value; LODmea is measured LOD value in the experiment; LODref refers to LOD value from Hillier’s
experiment [35].

Quartz Calcite Albite Dolomite Kaolinite Halite Corundum

RIR 4.04 2.73 2.07 1.94 0.53 5.21 1
(1) LODcal 0.06% 0.09% 0.12% 0.13% 0.47% 0.05% /
(2) LODmea 0.07% 0.06% 0.14% 0.10% 0.80% 0.08% 0.25%
(3) LODref 0.17% 0.22% 0.40% 0.25% 0.93% / 0.43%

The artificial mixtures for quantitative analysis were mixed with different proportions
generated randomly in R environment (Appendix A). Six groups of mixtures consisting
of 132 samples in total (including 32 samples without clay minerals and 100 samples
containing clay mineral phases) were measured for comparative experiments. Each mixture
sample had a weight of ~1 g, and the sample preparation method was the same as above.
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2.2. Test Conditions

The samples were measured using a Panalytical X’pert Pro X-ray powder diffractome-
ter (Cu Kα radiation, λ = 1.5418 Å) by continuous scanning at the State Key Laboratory
of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of
Sciences. The diffractometer is equipped with divergence and scattering slits of 1◦, anti-
scatter slit of 6.6 mm, and the sola slit of 0.04 rad. The sample was scanned from 3◦ to 70◦

for the quantitative experiments and from 5◦ to 40◦ for the LOD experiments using 40 mA,
40 kV generator settings with a step size of 0.016711◦, and a scan speed of 2◦/min, under
constant temperature (25 ± 3 ◦C) and humidity conditions (60%).

2.3. Quantitative Analysis Applications

The quantitative analysis programs of each method used in this study include:
(1) the FPS method, which is automated full pattern summation based on reference li-
brary of pure diffraction patterns (‘standards’/‘reference patterns’), such as FULLPAT [20]
and ROCKJOCK [21]; (2) the Rietveld method, which is fitting of the experiment pattern
by continuously modifying many parameters based on calibrated crystal structure model,
such as HighScore (PANalytical™ Company, Almelo, The Netherlands) [38], TOPAS (Total
Pattern Solution, Bruker™ Company, Karlsruhe, Germany) [39], GSAS (General Structure
Analysis System) [40], BGMN [41,42] and Maud [43]; (3) the RIR method, which is carried
out by the intensity of the strongest single diffraction peak of each phase with the RIR
value, such as an ‘easy quantitative’ function on JADE.

In following discussions, the HighScore plus software (version 3.0), JADE software
(version 9.0), TOPAS software (version 6.0), and ROCKJOCK were used to evaluate per-
formance of each quantitative analysis method. The initial structural models for Rietveld
refinement were taken from the International Centre for Diffraction Data (ICDD), Inor-
ganic Crystal Structural Database (ICSD), and Crystallography Open Database (COD).
The following parameters were refined: scale factors for all phases, zero-shift parameter,
background polynomial coefficients, unit cell parameters for each phase, half-width param-
eters, atomic site occupancies, atomic coordinates, and preferred orientation. The Rietveld
refinement strategy has been described in Madsen and Hill [44] and Young et al. [45] in
detail and did not remove background from XRD patterns. The quality of the fit between
the calculated and observed diffraction profiles obtained in a Rietveld refinement is usually
assessed with the standard agreement Indices Rp, Rwp, and Rexp, and the goodness of fit
index (GOF), defined by Young et al. [46].

2.4. Accuracy Evaluation Model

The cross-validation of results from chemical analysis or other supplemental tech-
niques are always untestable, ascribed to their own systematic error; hence, the known
proportion of the artificial mixtures is used as real percentages in this research. The pro-
portion of each phase estimated by different analysis software was the average of three
calculations. Subsequently, the absolute error (∆AE), the relative error (∆RE), and root mean
square error (RMSE) were calculated to indicate the accuracy of these quantitative analysis
methods. Although the ∆AE within 3% was generally defined as “highly accurate” in previ-
ous studies [47], the error tended to be proportional to the weight of minerals [48]. Thus,
the ±3 wt% may not be a good representation of accuracy. The equation y = cXb (where X
= concentration in weight, and c and b are constants), relates accuracy with concentration
for chemical analysis methods [49]. It has been suggested [35,50] that the uncertainty of a
reliable quantitative XRD method should be less than ±50X−0.5 at the 95% confidence level,
which covers all the errors during the analysis, such as weighting errors, counting statistics,
instrument errors, etc. Therefore, the model of y = ±50X−0.5 was introduced to verify the
accuracy of results obtained by different quantitative XRD methods visually. Meanwhile,
the value of RMSE was also applied to evaluate the error level of each method.
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3. Results
3.1. LOD

The LOD values (Table 2) were obtained by extrapolation of the linear regression
model established between the weight and the area of characteristic peak for each mineral
(Figure 2), where the LODS (limit of detection for standard material, which typically
is corundum) value was 0.25%. The theoretical LOD values of the other phases were
calculated based on the known RIR values and the measured LODs according to equation:
LOD = LODs/RIR [24,35]. The LOD value calculated by the formula is roughly equivalent
to that obtained by the linear regression model, which can be verified by each other. It
is interesting that these results of the LOD experiment are generally lower than those in
Hillier’s [35] (Table 2). Thus, it shows that our instrument has high sensitivity to mineral
quantitative analysis.
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3.2. Accuracy

All samples were tested and qualitatively analyzed under the same conditions (repre-
sentative samples are shown in Figure 3), but quantitative analysis was conducted with
different software. We compared the measured results with the known proportions for
each mineral phase in the artificial mixture samples (the raw experiment datasets are
listed in the Supplementary Materials Table S1). As shown in Figure 4, the 1:1 line gives
an indication of high accuracy for our results. The ∆AE values and the ∆RE values are
displayed in Figures 5 and 6, respectively. For the Rietveld method, the earlier findings
showed that statistical parameters such as the Rwp factor within 15% are necessary for
satisfactory quantitative results [51–54]. Thus, we tried to ensure the Rwp values were less
than 15% during the Rietveld analyses.
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Overall, the results show that all kinds of quantitative methods have high accuracy
for well-crystallized non-clay mixtures compared to clay-mineral-containing mixtures,
which is demonstrated well by these mathematical statistical results (Figures 5 and 6c).
In particular, the calculated RMSE results show that TOPAS has the greatest accuracy in
quantifying samples without clay minerals (Figure 6c). In contrast, clay minerals are seri-
ously underestimated by most quantitative methods for samples containing clay minerals
such as montmorillonite, which results in the ∆AE and the value of RMSE being signifi-
cantly increased (Figures 5 and 6d). It is clear that the ROCKJOCK is the only one that
can yield acceptable quantitative analysis results and has the lowest RMSE for multiphase
systems containing clay minerals (Figure 6b,d). Therefore, we hypothesized that setting the
threshold of RMES within 3% would be a good way to evaluate the quantitative error of
the crystalline phase system, which would be more appropriate than the ∆AE within 3%
applied in previous research.

4. Discussion
4.1. LOD

The LOD of each mineral phase is a cornerstone of the XRD measurement, which
is employed to quantitatively evaluate a certain signal-to-noise rate [55]. It is related
to the light intensity of the X-ray tube, test conditions, mass absorption coefficient, and
crystallinity of the sample. Because the corundum used as the standard material has the
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same crystallinity and mass absorption coefficient, the lower experimental results could be
attributed to the internal properties of the instrument, such as the X-ray tube intensity and
the radiation materials. This agrees with the findings that the LOD of Cu radiation is lower
than that of Mo radiation [56].

The results show that the LOD is 0.10% for dolomite and 0.06% for calcite
(Table 2), which are superior to the technique of Fourier transform infrared spectroscopy
(FTIR) [57,58]. Even though the FTIR proves to be a useful complementary quantitative
method for certain minerals such as kaolinite, carbonates, and some Fe oxides, the simi-
larities in the spectra of the silicates (band coincidences) and the spectra band intensity
affected by grain size make it unlikely to replace XRD for quantitative analysis [59–62].
These results highlight the advantage of the identification and quantification of minerals
by XRD.

4.2. Accuracy

The influence of the LOD on the results can be safely ruled out by the fact that
the artificially configured experimental concentration exceeds the LOD measured in our
experiments. Therefore, we only compare and consider the specific performance and
its miscellaneous causes between these quantitative methods in this study. Previous
studies documented that the quantification of clay minerals remains complex due to
their highly variable chemical compositions and structures [5,63–67], and our results also
prove this. The asymmetric (100) peak of montmorillonite in Figure 1 shows that there
is disordered stacking of unit cell in its crystalline structure, which is the main reason
for the underestimation of its quantitative results in this experiment. In fact, the mixed-
layered clay minerals such as weathering products are ubiquitous in exogenous geological
environments, which usually develop disordered stacking structures and generate complex
and variable diffraction patterns [68].

The ROCKJOCK yielded a relatively stable and accurate quantitative result (Figure 5a)
because the FPS method obtains the relative weight of each phase by using their integrated
intensities based on the Solver function in Microsoft Excel [21], with no need for the
crystallographic data and RIR of each phase. These results corroborate that the asymmetric
diffraction patterns caused by lattice distortion and disordered stacking would have a
great impact on the Rietveld and RIR methods [67] but little on the FPS method. It may be
explained by the fact that the integrated intensity of each phase is essentially constant in
theory, which is not influenced by variable diffraction patterns. Thus, the FPS method can
effectively eliminate the effect of the mineral crystallite variability [69].

The Rietveld method presents the highest accuracy of quantitative analysis for known
crystallographic structures and non-clay minerals, especially the TOPAS software (version
6.0) (Figure 6c). It is well known that several common minerals always exhibit their
preferred orientation resulting from cleavage or their layered crystal structure, such as
feldspars, carbonates, and clay minerals [47,70]. The comparison of quantitative results of
the non-clay samples showed that the Rietveld method appears to overcome the problem
about the preferred orientation. On the other hand, the accuracy of Rietveld is greatly
reduced for clay-mineral-containing samples (Figure 6d), partly due to the lack of a specific
crystallographic structure model for clay minerals. More importantly, many clay minerals
also show structural disorder effects, which change the intensity distribution of diffraction
patterns and renders the usual Rietveld codes useless for structure refinement [71]. Despite
great progress in modelling disordered stacking structures via the recursive calculation of
structural factors [72–76], only a few details can be refined.

The JADE shows the largest ∆AE value, which indicates that the RIR method produces
a relatively low analytical accuracy for clay minerals. There are many reasons resulting in
the reduction in accuracy of this single-peak quantitative method. Firstly, the RIR value,
which determines the performance of this quantitative method, is often highly uncertain
due to the polymorphism and isomorphism [47]. For example, the RIR value of montmo-
rillonite varies considerably from 5.51 to 19.22, which could substantially underestimate
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the proportion of montmorillonite. The occupancies and positions of interlayer water
molecules and the layer spacing of the montmorillonite vary under the different prepared
and measured conditions [73], which cause the instability of RIR values. Therefore, the
choice of a standard RIR value is a crucial step. At the same time, there are many reference
materials without RIR values in the database. On the other hand, as phyllosilicates, clay
minerals present a strong tendency for a preferred orientation during sample preparation.
In addition, nanocrystals of autogenic minerals are commonly contained in sediments,
resulting in broadening of the diffraction peak and a significant deviation in quantitation
using the RIR method [77]. It shows the obvious limitations of the RIR quantitative method
in practice.

4.3. Applicability

The absolute errors of each quantification method are listed in Table 3. The comparison
between these datasets shows that the accuracy obtained in this study is slightly less than
those from the previous studies. Although the analysis accuracy will be improved by
adding internal standards (e.g., corundum, zincite), it can also lead to a tedious experimen-
tal and data process. Consequently, we still place an emphasis on the applicability of the
XRD quantitative analysis without standards. In doing so, characteristics of the different
methods used in this study are discussed in the following.

Table 3. A summary of analytical accuracies of various quantitative methods for phyllosilicate
clay minerals.

Methods Programs Type of Samples Number of
Samples

Absolute
Error Range

(wt%)
References

Rietveld

MDI -Jade 6.0 artificial 5 −6.32%~+5.00% (Zhao and Tan, 2018) [15]

SIROQUANT artificial 5 −5.9%~+10.9% (Hillier, 2000) [47]

HighScore nature / ±10% (Kemp et al., 2016) [48]

BGMN artificial 4 ±4.2% (Ufer et al., 2012) [73]
(Kleeberg et al., 2008) [70]

HighScore/TOPAS artificial 132 −12%~+10% this study

FPS
ROCKJOCK

artificial 3 −7%~+3.1%
(Eberl, 2003) [21]

artificial 3 −4.1%~+5.4%

ROCKJOCK artificial 132 −7%~+6% this study

RIR
/ artificial 5 −4.2%~+11.2% (Hillier, 2000) [47]

MDI -Jade 9.0 artificial 132 −19.2%~+17.4% this study

Although the greatest advantage of the FPS method is its much higher analytical
accuracy for clay minerals, its accuracy mostly relies on the pure materials library where
diffraction patterns should be obtained under the same instrumental settings and ex-
perimental conditions [20]. Fortunately, the ROCKJOCK software can autocorrect the
instrument and pure materials’ parameters by input corundum diffraction data, making it
more universal and convenient for practical analysis. Moreover, the FPS method is friendly
to users with little knowledge of crystal structure [20] and suitable to both ordered and
disordered materials, even amorphous materials. However, it is very computationally
intensive and time-consuming for these circular iterative calculations. In spite of many
programs being developed to improve the computational efficiency, they lack an accu-
racy evaluation system to ensure reliable results during quantitative analysis without
standard materials.

The accuracy of the Rietveld method primarily depends on the quality of refinement [67],
which is related to the adjustment of complex parameters, such as preferential orienta-
tion, test conditions, background, peak shape functions, and the correction of structural
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parameters [78]. The Rietveld-based technique can correct these refinable parameters to im-
prove the fitting effect, which reduces the impact caused by the overlapping reflections and
preferred orientation. This sophisticated parametric refinement process has become highly
automatic with the development and popularization of numerous software applications for
the Rietveld method. However, despite the refinement procedure itself being automatic,
the selection of structural models and refinable parameters, which have a strong influence
on the results, is clearly dependent on users’ experience and detailed crystallographic
knowledge [71]. Furthermore, this method is calculated based on the assumption that the
crystal structure of the sample is characterized by three-dimensional periodicity, which is
valid for highly crystalline minerals, not for clay minerals. Consequently, not all Rietveld
programs are capable of adequately modelling disordered phases or phases with unknown
structures. However, it is worth noting that underestimating clay minerals mainly led to a
significant deviation in quartz content, with relatively little effect on carbonate minerals
and feldspar for TOPAS (version 6.0) and HighScore (version 3.0). Thus, this method of
quantitative analysis can be desirable for samples containing clay minerals if only a specific
type of mineral is quantified.

Our results show that the RIR method is the fastest quantitative approach. It is
appropriate for powder samples including few well-crystallized mineral phases. However,
this single-peak method is often plagued by preferred orientation and peak overlap issues,
let alone the disordered minerals. Therefore, it should be applied carefully in complex
samples [30]. Most importantly, the uncertainty or absence of RIR values would directly
affect analysis accuracy. Thus, analysis accuracy is the biggest stumbling block in the
application of the RIR method.

It is noted that the quality of quantification is deeply influenced by sample preparation,
and measurement conditions are as important as the choice of analytical methods [30,71].
However, the latter is often ignored by researchers due to the lack of systematic under-
standing. Moreover, the accuracy of quantitative analysis is inevitably compromised in the
face of hundreds and thousands of samples. As a result, many factors should be taken into
account for the selection of these methods, such as the geological background, sampling
environment, the number of samples, analysis time, etc. It is also necessary to supplement
other analytical techniques for accuracy assessment and cross-validation to avoid erro-
neous conclusions regarding the validity of the analysis data [79–81], especially for samples
containing clay minerals.

5. Conclusions

The determination of mineral composition and concentration is an important task for
the investigation of paleoclimate and paleoenvironmental changes. XRD is currently a
powerful quantitative analysis approach. This study evaluates the accuracy of the Rietveld,
RIR, and FPS methods in the mineral quantitative analysis based on the ROCKJOCK,
TOPAS (version 6.0), HighScore (version 3.0), and JADE software (version 9.0). The results
show that these methods are substitutable for well-crystallized samples without a clay
mineral phase owing to their generally consistent accuracy, while there are many different
performances for clay samples during quantitative analysis. The advantage of the FPS
method is its wide applicability. However, it is difficult to guarantee reliable quantitative
results due to the absence of a results evaluation system if no additional standard materials
are added. Although the problems of overlapping peaks and preferential orientation have
been greatly improve by the Rietveld method, there are many limitations and difficulties
for quantifying disordered phases using the method. The RIR technique is a simple and
quick analytical method. Nevertheless, its accuracy relies heavily on the RIR value of the
mineral. Therefore, the choice of these methods should be made on a case-by-case basis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/min13040566/s1. Table S1: The comparation of weight and software analy-
sis data for artificial mixture samples.
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