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Abstract

:

The North China Block and the South China Block collided in the Middle Triassic, but there is still a lack of consensus regarding the end of collisional orogeny and the closure time of the Paleo-Tethys. In this paper, we report zircon U–Pb ages and geochemistry for the Shimen pluton in the northern margin of the West Qinling Orogenic Belt to investigate its genesis and tectonic environment. The new findings allow to constrain the end time of the Triassic orogeny in the Qinling Orogenic Belt and the closure time of the Paleo-Tethys. The weighted average 206Pb/238U ages of the Shimen pluton are 218.6 ± 1.5 Ma and 221.0 ± 1.7 Ma. Thus, we suggest that the Shimen pluton crystallized at the 218.6 Ma and 221.0 Ma and was formed during the Late Triassic (Norian). The Shimen pluton is mainly syenogranite and has alkaline dark minerals aegirine–augite. It is composed of 73.45 to 77.80 wt.% SiO2, 8.28 to 9.76 wt.% alkali, and 11.35 to 13.58 wt.% Al2O3, with A/CNK ranging from 0.91 to 1.02 and 10,000 Ga/Al ranging from 2.39 to 3.15. These findings indicate that the Shimen pluton is typical A-type granite. The plutons have low rare earth element contents, ranging from 73.92 to 203.58 ppm, with a moderate negative Eu anomaly. All the samples are enriched in large-ion lithophile elements, such as Rb, Nd, Th and U, and light rare earth elements, and are depleted in high field strength elements, such as Nb, P, Zr, Ba, and Sr. The depletion of Ba, Sr, and Zr may be related to the fractionation and evolution of the granite. According to the petrological and geochemical characteristics, the Shimen pluton is an A1-type granite formed in an anorogenic extensional environment. Combined with its tectonic characteristics and petrogenesis, the Shimen pluton was probably formed by the partial melting of the crust under high temperature and low pressure in the intraplate environment after the subduction of the South China Block beneath the North China Block. This observation indicates that the Triassic orogeny in the Qinling Orogenic Belt had ended and the Paleo-Tethys-Mianlve Ocean had also closed by the Late Triassic (Norian).
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1. Introduction


The Qinling Orogenic Belt (QOB) is an essential part of the Central China Orogenic Belt [1] (Figure 1a). It is categorized into three blocks: the southern margin of the North China Block, the Qinling Block, and the northern margin of the South China Block, which are bounded by two suture zones: Shangdan Suture Zone (SDSZ) and Mianlve Suture Zone (MLSZ) [1,2,3]. The North Qinling Belt (NQB) was originally believed to be a part of the North China Block (NCB), but subsequent studies have shown that the Luonan–Luanchuan Fault separates the NQB from the NCB [3,4,5]. The SDSZ represents the ProtoTethys–Shangdan Ocean suture zone and develops an early Paleozoic magmatic intrusion, while the MLSZ represents the Paleo-Tethys-Mianlve Ocean suture zone and forms an E–W-distributed Triassic granite belt along the suture zone [1,6,7,8,9,10,11,12]. The Qinling Mountains are usually divided into the West Qinling and the East Qinling, with the Huicheng Basin as the boundary.



The QOB has undergone a multiphase and multistage evolutionary process, and finally completed the collision in the Triassic, accompanied by intense magmatic activity [1,6,15,16,17,18,19,20,21]. The study of the Triassic pluton in the QOB is of great importance as it elucidates supercontinental events and the evolution of the Paleo-Tethys [13,22,23,24,25,26]. Research shows that numerous magmatic rocks, ophiolites, and metamorphic records are associated with subduction and collision in the MLSZ, which constrained the evolution of the Paleo-Tethys-Mianlve Ocean [12,19,27,28]. Triassic plutons in the study area mainly include (Table 1): (1) Syn-collision environment: Chaijiazhuang pluton [29]; (2) Post-collision environment: Wenquan pluton [30], Shahewan pluton [31], Caoping pluton [31], Zhashui pluton [31], Huangzhuguan pluton [32], Changba pluton [32], and Tianzishan pluton [33]; (3) Post-orogenic environment: Mishuling pluton [26] and Taibai pluton [34]; and (4) Anorogenic environment: Shimen pluton (this paper).



The Shimen pluton is located in the Qinling–Qilian Connecting Zone on the northern margin of the West QOB. It was originally classified as a part of the Devonian Dangchuan pluton [35] but was later separated from the Dangchuan pluton; its Rb–Sr isochron age was determined to be 225 Ma [14], and the zircon U-Pb age was 220 ± 2 Ma [36], confirming its formation in the Triassic period.



During the Triassic period, the collision between the NCB and the South China Block (SCB) produced a large number of magmas, which can be categorized into two stages: the early subduction stage (270–235 Ma), and the late collision to the post-collision stage (245–210 Ma) [21,24,25,29,37,38,39,40,41,42,43]. The evolution of the crust and the formation of orogenic belts can be investigated by studying and analyzing granites [44,45,46,47]. The appearance of A-type granites represents the end of the orogeny, and thus is important for us to understand the end time of the Triassic orogeny in the QOB [48,49,50,51,52,53,54,55,56,57]. Therefore, in this paper, we analyzed the zircon U–Pb geochronology and geochemistry of the Shimen pluton in the QOB and discuss the formation age, petrogenesis, and tectonic setting to constrain the end time of the Triassic orogeny in the QOB.




2. Geological Background


The Shimen pluton is located in the Shanggouli–Shimen–Fangmatan area in the north of Dangchuan Township and is distributed in an NNE stripe with an exposed area of about 35,000 km2 (Figure 1b). The Shimen pluton is located close to the Tianshui–Baoji fault zone, which belongs to the NQB. The Shimen pluton has no evidence of deformation and metamorphism and is clearly distinguishable from its surrounding rocks. In the north, it is in fault contact with the Precambrian granite–gneiss basement Qinling Group [1], and in unconformable contact with the Cretaceous purple conglomerate Maijishan Formation [14]. In the south, it is in intrusive and fault contact with the Late Ordovician low greenschist facies sedimentary and volcanic Caotangou Group [58], and is in contact with a Devonian syenogranite. It should be noted here that the Qinling Group was formed in a post-collision environment or a northward subduction and collision environment of the Shangdan Ocean [8,11,59,60], and the Caotangou Group was formed in an island arc environment [58,61,62,63,64,65].




3. Petrography


The Shimen pluton is a predominantly flesh-red, medium coarse-grained mottled syenogranite with prominent flesh-red field outcrops (Figure 2a,b). It comprises medium-coarse granitic, porphyritic, and massive structures. The syenogranite is composed of orthoclase (40%–45%), plagioclase (20%–25%), quartz (25%–30%), and biotite (3%–5%), with some minor amounts of magnetite, zircon and aegirine–augite (Figure 2c–f). The phenocryst is orthoclase, which is a semi-autogenous columnar, and ranges from 4 mm to 6 mm in size. It occurs as a subhedral columnar texture with cross-hatched twinning, Carlsbad twinning, and is partially kaolinized. In the matrix, orthoclase occurs as a subhedral columnar or allotriomorphic granular texture with Carlsbad twinning and is partially kaolinized, and the crystal size ranges from 0.5 mm to 2 mm. Plagioclase ranges from 0.5 mm to 2.5 mm in size and occurs as grayish white subhedral columnar with polysynthetic twinning and is partially sericitized. Quartz generally measures 0.5 mm to 1.5 mm and occurs as colorless allotriomorphic granules, part of the visible wavy extinction. Biotite is partially altered to chlorite or epidote and occurs as irregular scaly or short columnar, measuring between 0.5 mm and 2.5 mm in size. Aegirine–augite ranges from 0.2 mm to 0.5 mm in size and occurs as yellow-green semi-autogenous columnar shapes.




4. Anaytical Methods


4.1. LA-ICP-MS Testing


The zircon U–Pb dating sample was conducted on flesh-red medium coarse–grained mottled syenogranite from the Shimen pluton, and the locations of the two samples are 34°23′38″ N, 106°06′50″ E (TS21046-2) and 34°27′15″ N, 106°08′45″ E (TS21046-7) (Figure 1b).



For the geochronology study, the samples were crushed, and zircon was separated by Xi’an Ruishi Geological Co., Ltd. (Xi’an China). Zircon target fabrication and cathodoluminescence (CL) imaging were completed by Beijing Geoanalysis Ltd. (Beijing, China). Zircon U–Pb isotope was analyzed using laser denudation system NWR193 on PQMS ICP–MS instrument from Jena, Germany. The international-standard zircon 91,500 was used as the standard sample, while the standard zircon GJ-1 was used as the monitoring sample. The data were calculated using the ICPMS Data Cal [66], and the weighted mean age calculation and concordia diagrams were carried out using the Isoplot software package [67]. The detailed analytical method and instrument parameters have already been reported by Li et al. [68].




4.2. Geochemical Analyses


Major, trace, and rare earth elements (REE) were analyzed at the Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University. The major elements were analyzed by X-ray fluorescence spectrometry (XRF). The national standard GB/T14506.28-1993 was used for the XRF tablet dissolution method and has an accuracy better than 2%–3%. The ten samples were baked in an oven at 1000 °C for 90 min and then weighed to obtain the loss on ignition. Trace elements and REEs were measured with Thermo-X7 Inductively Coupled Plasma Mass Spectrometer (ICP-MS).





5. Results of Analyses


5.1. Zircon U-Pb Age


Zircon crystals in the sample (TS21046-2) are predominantly euhedral, with short to long columns. These crystals measure 50 μm to 150 μm in length, and their length to width ratios range from 4:1 to 2:1. The CL images show obvious magmatic oscillatory zoning within the zircon (Figure 3a), indicating a magmatic origin [69,70,71]. The zircons comprise 183 ppm to 2922 ppm Th and 266 ppm to 4621 ppm U, with the Th/U ratios being 0.35 to 1.14 (Supplementary Table S1). Th and U are positively correlated, and all Th/U ratios are greater than 0.1 (Figure 4a,b), indicating that these zircons are magmatic zircons. The 25 analyses of the sample TS21046-2 show good concordance. A total of 21 concordant analysis points remained after the data with less than 90% concordance were excluded. The weighted average age of 206Pb/238U is 221.0 ± 1.7 Ma (MSWD = 0.68, Figure 5a,b).



Zircon crystals in the sample (TS21046-7) are predominantly euhedral, long columnar, and conical. They measured 50 μm to 200 μm in length, with length/width ratios ranging from 5:1 to 1.5:1. The CL images showed obvious magmatic oscillatory zoning within the zircon (Figure 3b), indicating a magmatic origin. The zircons comprise 61 ppm to 2391 ppm Th and 125 ppm to 4485 ppm U, with the Th/U ratios ranging from 0.13 to 1.71 (Supplementary Table S1). Th and U are found to be positively correlated, and the Th/U ratios are all greater than 0.1 (Figure 4c,d). The 25 analyses of the sample TS21046-7 show good concordance. A total of 21 concordant analysis points remained after the data with less than 90% concordance were excluded. The weighted average age of 206Pb/238U is 218.6 ± 1.5 Ma (MSWD = 0.39, Figure 5c,d).




5.2. Major and Trace Element Geochemistry


In this paper, all the studied samples have few minerals associated with alteration and metamorphism and have been listed in Supplementary Table S2.



5.2.1. Major Elements


The Shimen pluton has 73.45 to 77.80 wt.% SiO2, 8.28 to 9.76 wt.% alkali, 11.35 to 13.58 wt.% Al2O3, 0.34 to 1.12 wt.% CaO, 0.14 to 0.56 wt.% MgO, 0.09 to 0.39 wt.% TiO2, and 0.55 to 2.91 wt.% Fe2O3T (Supplementary Table S2). In addition, it has 10,000Ga/Al values between 2.39 to 3.15, and an alkali rate between 4.34 and 5.83. As shown in the total alkali–silica (TAS) diagram (Figure 6a), all the samples are plotted in the granite field and at the boundary between alkaline and subalkaline. As shown in the QAP diagram (Figure 6b), the samples are plotted in the syenogranite field. In the SiO2–AR diagram (Figure 6c), the samples are plotted in the alkaline field. In the A/NK-A/CNK diagram (Figure 6d), the samples are plotted in the metaluminous field, with A/CNK ranging from 0.91 to 1.02.




5.2.2. Trace Elements


Trace element results indicate that the REE contents of the Shimen pluton range from 73.92 ppm to 203.58 ppm (Supplementary Table S2), ratios of light rare earth element (LREE) to HREE range from 3.92 to 12.64, (La/Yb)N ratios range from 3.32 to 12.84, and δEu range from 0.39 to 0.92. The chondrite-normalized REE distribution diagram (Figure 7a) for the Shimen pluton shows a right-dipping trend and enrichment in LREE. It also shows a moderate negative Eu anomaly caused by the residual feldspar and garnet in the source region [73].



The primitive mantle-normalized spider diagram (Figure 7b) indicates that the Shimen mottled syenogranite is enriched in large-ion lithophile elements (LILEs), such as Rb, Nd, Th, and U, and depleted in high-field-strength elements (HFSE), such as Nb, P, and Zr, Ba, and Sr. The spider diagram and the REE distribution diagram are almost identical for all samples, indicating their cognate source rocks.
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Figure 6. (a) TAS diagrams (after Middlemost [74]); (b) QAP diagrams (after Streckeisen [75]); (c) SiO2-AR diagrams (after Wright [76]); (d) A/NK–A/CNK diagrams (after Maniar and Piccoli [77]) for the Shimen pluton. AR = (Al2O3 + CaO + Na2O + K2O)/(Al2O3 + CaO − Na2O − K2O). 
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Figure 7. (a) Chondrite-normalized rare earth element patterns and (b) primitive mantle-normalized trace element spider diagrams for the Shimen pluton in the WQOB (chondrite data and primitive mantle data for normalization were taken from Sun et al. [72]). The data for A-type granitoids are from Collins et al. [49] and Whalen et al. [50]. 
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6. Discussion


6.1. Petrogenesis


A-type granites were originally defined as “alkaline,” “anhydrous,” and “anorogenic” [48], and later, “aluminous” and “ambiguous” were also added to its definition [56]. A-type granite can be formed in an orogenic environment [50,51,52,53,56,57] and can be categorized into two subclasses, A1 and A2. The A1-type granite is mainly formed in an anorogenic environment. In comparison, the A2-type granite is mainly formed in post-collision and post-orogenic environments [53].



A-type granite is generally characterized by the occurrence of alkaline dark minerals [78,79,80]. The Shimen pluton is mainly syenogranite and has alkaline dark minerals aegirine–augite. With respect to geochemistry, the Shimen pluton has high SiO2 and alkali contents and low Al2O3 contents, 0.55 to 2.91 FeOT/FeoT + MgO values, and 2.39 to 3.15 10,000Ga/Al values. Its chondrite-normalized REE distribution diagram exhibited a right-dip trend with enrichment in LREE and depletion in HREE and a moderate negative Eu anomaly. The primitive mantle-normalized trace element spider diagram indicates that the syenogranite is enriched in LILEs, such as Rb, Nd, Th, and U, and depleted in HFSEs, such as Nb, P, and Zr. All these above are consistent with the characteristics of A-type granites [49,50,52,56,81,82,83,84,85]. In addition, the depletion of Ba, Sr, and Zr may be related to the fractionation and evolution of the granite [86,87,88].



The syenogranite has high SiO2 content, but low Zr/Hf values of the whole rock (16.95–22.01), indicating that the Shimen pluton is a highly fractionated granite [89,90,91]. The compositions of highly fractionated A-type, I-type, and S-type granites showed a strong similarity [54,83,92]. Highly fractionated S-type granites generally have a higher P2O5 content (about 0.14%) that decreases with increasing fractionation, while the A-type granites do not show this relationship [54,56]. The P2O5 content of the Shimen pluton averages 0.04%, which is much lower than that of highly fractionated S-type granites. In addition, no correlation was observed between content and fractionation, so the Shimen pluton is excluded as an S-type granite. The diagrams presented by Collins [49] and Whalen [50] can be used to distinguish between highly fractionated A-type granite and highly fractionated I-type granite. In the Na2O + K2O vs. 10,000Ga/Al diagram, Nb vs. 10,000Ga/Al diagram, MgO/K2O vs. 10,000Ga/Al diagram, and (K2O + Na2O)/CaO vs. 10,000Ga/Al diagram, the samples are located in the field of A-type granite (Figure 8c–f), indicating that the Shimen pluton is an A-type granite.



With respect to field geology, the Shimen pluton is NNE-trending, not constrained by the regional tectonic line, and has no obvious deformation and metamorphism [14]. This indicates that the Shimen pluton was formed after the regional tectonic deformation. With respect to geochemistry, the Shimen pluton is a metaluminous alkaline A-type granite, having Y/Nb values between 0.37 to 0.60 and an average of 0.52 (less than 1.2), which corresponds to the characteristics of A-type granite. As shown in the Nb-Y diagram and Ta-Yb diagram (Figure 9a,b), the samples are plotted in the within-plate granites field and the syn-collision granites field. In the Nb-Y-3Ga and Nb-Y-Ce diagrams, all samples are plotted in the A1-type granite area (Figure 9c,d), indicating that the Shimen pluton is an A1-type granite and formed in an anorogenic environment.



A-type granites are formed in an extensional environment [50,52,77,80,96,97,98,99]. Researchers have proposed several views on the formation mechanism of A-type granite: crystallization differentiation of mantle basaltic magma [53,55,100,101,102], mantle-derived magma mixed with crust-derived magma [102,103,104,105,106], and partial melting of crustal materials [49,54,107,108].



There are no large-scale basaltic rocks and no contemporaneous product of the separation and crystallization of mantle basaltic magma in the vicinity of the Shimen pluton. Therefore, the available geological evidence suggests that the Shimen pluton is not a mantle source. The Shimen pluton is a metaluminous A-type granite (Figure 6d), and the study suggests that the metaluminous A-type granite formed in a high-temperature and low-pressure environment associated with the partial melting of crustal materials [84,98]. The Shimen pluton has 7.61 to 13.64 Nb/Ta values, 1.11 to 3.97 Rb/Sr values, and 16.95 to 22.01 Zr/Hf values. These values are close to the values of crust-derived magma (Nb/Ta value is 11 to 12 in crust-derived magma and 17.5 ± 2 in mantle-derived magma, Rb/Sr value is 3 in crust-derived magma and 15 in mantle-derived magma, Zr/Hf value is 33 in mantle-derived magma) [109,110,111,112]. The samples show a partial melting trend in the Rb/Nd–Rb diagram, and on the Th/Yb vs. Ta/Yb diagram, the samples are all located near the crustal field (Figure 8a,b). Previous studies have suggested that the Shimen pluton was formed by the partial melting of crustal materials [36]. In summary, Shimen A-type granite is a crustal source. However, this conclusion is inconsistent with the typical characteristics of A1-type granite. Therefore, we propose that the Shimen pluton was probably formed by low degree partial melting of crustal materials. Research shows that when the rock is partially melted at a low degree, Nb will be more enriched compared to Y in the molten products [113], so the Y/Nb value will be lower, resulting in the occurrence of A1-type granite formed by the partial melting of crustal materials, such as China Baicha A1-type granite [114]. Based on its tectonic characteristics and petrogenesis, it may be the crustal thickening and lithospheric detachment after the subduction between the South China Block and the North China Block, which resulted in the low-level partial melting of crustal materials and the formation of the Shimen A1-type granite.




6.2. Tectonic Significance


The Qinling Mianlve Ocean existed in the Late Paleozoic to the beginning of the Mesozoic period and was part of the East Paleo-Tethys. It finally closed in the Triassic, accompanied by the collision between the NCB and the SCB, which brought the Chinese mainland into a new evolutionary stage [1,11,12,19,27,28,38,115,116]. The peak time of the collision between the NCB and the SCB was between 235 Ma and 242 Ma, and this collision resulted in the formation of a large number of Mesozoic magmatic rocks [20,38,117,118]. These magmatic rocks were formed between 210 Ma and 242 Ma, with those formed in the syn-collision environment crystallizing at 236 Ma and those formed in the post-collision and post-orogenic environment crystallizing between 210 Ma and 230 Ma [26,30,32,34,38,42,119,120,121,122,123]. The weighted average ages of the Shimen pluton are 218.6 Ma and 221.0 Ma, which is similar to previous research results [14,36], indicating that the Shimen pluton should have been formed in the post-collision and post-orogenic environment. However, the above-mentioned plutons formed in the post-collision and post-orogenic environments are mostly located in the SQB (Table 1) [26,32,38,120], while in the NQB, where the Shimen pluton is located, the Chaijiazhuang pluton crystallized at 236.6 Ma and formed in a syn-collision environment [29], and the Tianzishan pluton crystallized at 241 Ma and formed in a post-collision environment [33], which is not inconsistent with the conclusions reached. The reason for this situation may be that the NQB is located north of the SQB, and the NQB is closer to the collision zone, indicating an earlier occurrence during the collision, so the NQB has probably entered the anorogenic stage and transformed into an intraplate environment, while the SQB is still in the post-collision and post-orogenic stage.



The Triassic orogeny of the QOB has been studied in various aspects. The research on the Early Triassic palaeogeographical characteristics of South Qinling showed that the Early Triassic SQB and the Early Triassic NCB exhibited similar paleolatitude, which is different from that of the Early Triassic SCB. This observation indicates that the SQB was already integrated with the NCB in the Early Triassic, but the SQB and the SCB were still separated by the Paleo-Tethys-Mianlve Ocean [124]. The research on the Triassic granites in the QOB shows that these granites have recorded complete orogenic processes from syn-collision [29], post-collision [30,31,32,33], post-orogenic [26,34] to anorogenic environment (this study). The petrogenesis can reflect different tectonic environments and geodynamic backgrounds [46,77,95,125,126,127]. In this paper, we suggest that the Shimen pluton is A1-type granite, indicating the continental rifts or intraplate environments [53]. In conclusion, when the Shimen pluton was emplaced (218.6 Ma and 221.0 Ma), the orogeny in this area had already ended, i.e., the Triassic orogeny in the QOB had ended and the Paleo-Tethys-Mianlve Ocean had also closed by the Late Triassic (Norian).





7. Conclusions


From a comprehensive study of the Shimen pluton in the QOB based on geochronology, geochemistry and petrology, we conclude the following.



(1) The LA–ICP–MS zircon ages of the Shimen pluton are 218.6 ± 1.5 Ma and 221.0 ± 1.7 Ma, indicating that the intrusion formed in the Late Triassic (Norian).



(2) The Shimen pluton has high SiO2 and alkali contents and low Al2O3 contents. It belongs to metaluminous series and is enriched in LILEs, such as Rb, Nd, Th, and U, and LREE. In addition, it is depleted in HFSE, such as Nb, P, Zr, Ba, and Sr. The Shimen pluton has 10,000Ga/Al values between 2.39 to 3.15, indicating that it is A1-type granite.



(3) The Shimen pluton is an A1-type granite formed by the low degree partial melting of the crust in an anorogenic environment. This indicates that the Triassic orogeny in the QOB had ended and the Paleo-Tethys-Mianlve Ocean had also closed by the Late Triassic (Norian).
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Figure 1. (a) Map showing the regional context of the West Qingling Orogenic Belt (WQOB). Geological map modified from Dong et al. [13]. SDSZ = Shangdan Suture Zone; MLSZ = Mianlve Suture Zone; (b) Map showing the regional geology of the Shimen pluton in the West Qingling Orogenic Belt. Geological map modified after Pei et al. [14]. 1. Quaternary; 2. Cretaceous Maijishan Formation; 3. Upper Ordovician Caotangou Formation; 4. Lower Proterozoic Qinling Group; 5. Late Triassic Syenogranite; 6. Devonian Syenogranite; 7. Devonian Monzogranite; 8. Granite dikes; 9. Line of Geological limitation; 10. Line of angular unconformity; 11. Fault; 12. Occurrence; 13. Sample location and number. 
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Figure 2. Field photographs and photomicrographs of the Shimen pluton in the WQOB. (a,b) field photographs of the Shimen pluton; (c,d) photomicrographs of the Shimen pluton (sample TS21046-7); (e,f) photomicrographs of the Shimen pluton (sample TS21046-5). Mineral abbreviations are as follows: Pl = plagioclase, Or = orthoclase, Ep = epidote, Agt = aegirine–augite, Qz = quartz, Bt = biotite, Chl = chlorite. 
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Figure 3. CL images and single-zircon 206Pb/238U ages of zircons. (a) Sample TS21046-2; (b) sample TS21046-7. 
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Figure 4. (a) Th/U vs. age of zircon diagram of sample TS21046-2; (b) Th vs. U content of zircon diagram of sample TS21046-2; (c) Th/U vs. age of zircon diagram of sample TS21046-7; (d) Th vs. U content of zircon diagram of sample TS21046-7. In subfigure (a,b), chondrite data for normalization were taken from Sun et al. [72]. 
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Figure 5. (a,b) LA-ICP-MS zircon U-Pb concordia diagram of sample TS21046-2; (c,d) LA-ICP-MS zircon U-Pb concordia diagram of sample TS21046-7 of the Shimen pluton in the WQOB. 
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Figure 8. (a) Rb/Nd-Rb diagrams (after Schiano et al. [93]); (b) Th/Yb vs. Ta/Yb diagrams for the Shimen pluton (after Jahn et al. [94]); (c) (Na2O + K2O), (d)Nb, (e)MgO/K2O and (f)((K2O + Na2O)/CaO) vs. 10,000Ga/Al discrimination diagrams for the Shimen pluton in the WQOB (after Whalen et al. [50]). A = A-type granitoids; I = I-type granitoids; S = S-type granitoids. 
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Figure 9. (a) Nb-Y diagrams; (b) Ta-Yb diagrams for the Shimen Pluton in the WQOB (after Pearce et al. [95]); (c) Nb-Y-3Ga diagrams; (d) Nb-Y-Ce diagrams for the Shimen Pluton in the WQOB (after Eby [53]). VAG = Volcanic arc granites; Syn-COLG = Syn-collision granites; WPG = Within-plate granites; ORG = Ocean ridge granites. A1-type = anorogenic environment; A2-type = post-orogenic environment. 
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Table 1. Triassic plutons in the study area.
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	Environment
	Pluton
	Age (Ma)
	Position





	Syn-collision
	Chaijiazhuang
	236.6 ± 2.9
	NQB



	Post-collision
	Tianzishan
	241 ± 1.7
	NQB



	Post-collision
	Changba
	209.4 ± 0.8~218.3 ± 1.2
	SQB



	Post-collision
	Shahewan
	212 ± 0.93
	SQB



	Post-collision
	Wenquan
	214 ± 7.1
	SQB



	Post-collision
	Caoping
	224.1 ± 1.1
	SQB



	Post-collision
	Zhashui
	224.8 ± 1.1
	SQB



	Post-collision
	Huangzhuguan
	215.8 ± 0.8~229.2 ± 1.0
	SQB



	Post-orogenic
	Mishuling
	214.5 ± 1.6
	SQB



	Post-orogenic
	Taibai
	221.8 ± 1.5
	SQB



	Anorogenic
	Shimen
	218.6 ± 1.5 and 221.0 ± 1.7
	NQB







[SQB] = South Qinling Belt, [NQB] = North Qinling Belt.
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