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Abstract: The sedimentary basin of Podillya (Volyno-Podillya-Moldavia) is situated in the southwest
of the Ukrainian crystalline shield and belongs to the middle part of the Upper Neoproterozoic
section of the Moguiliv-Podilska Group. By analyzing the primary oxide, trace, and rare-earth
element compositions of the phosphate nodules in the area, this study sought to shed light on the
potential precipitation characteristics of the Ediacaran Sea, where phosphate nodules were created.
The mean major oxide contents of the nodules were 50.8 wt.% CaO, 34.2 wt.% P2O5, 5.29 wt.% SiO2,
4.77 wt.% LOI, 1.69 wt% Fe2O3, 1.63 wt% Al2O3, and 0.35 wt.% MnO. The average trace element
concentrations were 183 ppm Ba, 395 ppm Sr, 13.4 ppm Ni, 32.7 ppm Cr, 62.2 ppm Zn, 764 ppm Y,
16 ppm V, 10.8 ppm As, 75.8 ppm Cu, 84 ppm Pb, 2.1 ppm U, 1.7 ppm Th, and 4.2 ppm Co. The
trace element contents were generally low and indicated an assemblage of Cu, Y, As, Cd, and Pb
enrichments in comparison to PAAS. The total REE concentrations varied from 1638 ppm to 3602 ppm.
The nodules had medium REE (MREE) enrichments and showed similar REE patterns normalized to
PAAS. All the nodules had strongly negative Ce, Pr, and Y anomalies and substantially negative Eu
anomalies, with four samples being exceptions. These abnormalities suggest that oxic and suboxic
sea conditions existed at the time the nodules formed. The extremely high REE concentrations are
thought to be the result of REEs being redistributed between the authigenic and detrital phases
that were created during the diagenetic equilibration of phosphate with pore water. The genetic
hypothesis for phosphate nodule formation states that the nodules were generally formed in oxic and
suboxic seawater and were precipitated on slopes in response to a significant upwelling from a deeper
basin with abundant organic matter under anoxic/suboxic conditions. The majority of the organic
material at the water–sediment interface of the seafloor underwent oxidation before phosphate was
released into the pore water of the sediment.

Keywords: phosphate; nodule; ediacaran; REE geochemistry; Podillya Basin; Ukraine

1. Introduction

Over the last 3.85 billion years of Earth’s history, various geological events have
occurred in distinct periods. Notably, atmospheric oxygen levels rose to values higher
than 0.2 atm during the Proterozoic Eon, specifically between 0.80 and 0.54 billion years
ago. This increase in oxygen was accompanied by a similar trend in the shallow oceans [1].
The phosphate deposits between 0.8 Ga and 0.54 Ga began to create sedimentary records
such as sedimentary manganese deposits and banded iron formations [2]. Modern and
historic sea sediments contain a variety of phosphate rocks. The creation of phosphate is
known to occur now in continental margins and continental shelves in upwelling places
such as the Gulf of California, Namibia, Chile, and Peru [3–6]. Phosphorite accumulations
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formed during the Ediacaran–Cambrian transition [7]. Phosphorites formed in this time
period have been well studied in many paleogeographic areas, including Australia [8],
China [9–11], the West African craton [12–14], India [15,16], the Siberian Platform [17,18],
and Mongolia [19,20]. Little research has been conducted on the phosphate accumulations,
both economic and subeconomic, that occurred at the western edges of Gondwana and
Baltica [21,22].

The Ediacaran biota contains the first complex macroscopic organisms observed in
the geological record, overshadowing the radiation of eumetazoan animals during the
Cambrian explosion. However, there is little information about the quality of food sources
and the possible roles of nutrient availability [23]. Moreover, marine sedimentary rocks
in the middle-to-late Ediacaran (575–541 Ma) contain the first samples of macroscopic,
multicellular-bodied fossils, but likewise, little information about their food sources and
environments exists [24]. As has been reported by chemostratigraphic analyses, the Edi-
acaran oceans changed from predominantly oxic (well ventilated) to more thoroughly
oxygenated [25,26]. Trace fossils also show a marked increase in diversity during this time
interval (Middle and Late Ediacaran (ca. 575–541 Ma)) [27,28]. Oxygen has been offered as a
factor for the evolution and rise of metazoans and multicellular biota. Isotopic records and
trace element changes show the ocean surface oxygenation event at about 850 Ma [25,29,30].
Although anoxic and even euxinic marine environments were defined in the Ediacaran
period, the redox conditions of the environments containing Ediacaran biota indicate oxic
conditions [31–33].

The abundance of REEs, as well as Ce and Eu anomalies, in the phosphate samples
in different regions has been investigated by various researchers [34–43]. Due to the
redox conditions and composition of the depositional environment, phosphates typically
contain a lot of REEs and exhibit negative Ce anomalies [44–46]. The Volyno-Podillya-
Moldavia Basin is a very interesting region for investigating the redox conditions and
composition of the depositional environment. Whereas there have been many studies
about the mineralogy, geology, and formation of phosphate nodules in the Volyno-Podillya-
Moldavia Basin [47–53], there has not been a study focused on the trace element and REE
geochemistry. The objectives of this research are to examine the major oxide, trace, and rare-
earth element concentrations of the phosphate nodules under study, as well as to identify
the physicochemical properties of the paleoenvironment in which they were deposited.

2. Geological Setting

The Volyno-Podillya-Moldavia Basin is located in the southwest of Ukraine at the
edge of the Ukrainian crystalline shield (Figures 1 and 2) and is one of a complex network
of Neoproterozoic and Paleozoic sedimentary basins that developed on the western edge
of the East European Craton. The host rocks containing phosphates in Transnistria are
represented by siltstones of greenish gray, blue-gray, and brown colors, as well as typical
dark-brown and black clayey shales with thin layers of argillites of dark-gray, light-green,
greenish-gray, and brown colors. Phosphate nodules are always confined to the upper part
of the horizon of dark-gray argillites, except for the Chocin area. From the northeast to the
southwest, the sedimentary strata of Ediacaran time overlie a granitic basement complex
rock; sedimentary rocks lie at a low angle. Above, they are covered by younger Paleozoic
rocks; they outcrop to the western part of the basin (Figure 2). This sedimentary basin is
constrained to the Ediacaran Period by biostratigraphical and geochronological proxies [54].
The Neoproterozoic Podillya Sedimentary Basin is known to host imprints of Ediacaran
soft-bodied fauna [50–57]. From this period, fossil-rich silisiclastic sediments, recognized
as traces of early metazoans, also contain evidence of significant microbiological activity.
Many structures in these Ediacaran sediments can be interpreted as microbial-induced
sedimentary structures [55,57].
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The outcrops from which phosphate nodule samples were taken for this study are
located along the Dniester basin. The main two locations for sampling were around the
villages of Lipchany and Voloshkove (Figure 2). Stratigraphically, the phosphate nodules
belong to the middle part of the upper Neoproterozoic section of the Moguiliv-Podilska
Group, Nagoryanska Formation, Kalus Sequence (Figure 3). This section is characterized by
either clayey sand or sandy units, with an absolute dominance of clayey, thin-layered, dark-
colored, sometimes black shales, according to several studies [50,56]. Phosphate nodules
close to the village of the Voloshkove are located on the border between Ukraine and
Moldova. These layers, containing dense phosphate nodules, are composed of fine, clayey
and sandy, nonrhythmic levels varying from greenish brown to dark brown at a distance of
less than one meter (Figure 4a). These nodules are arranged regularly between the layers
with a diameter of 8–10 cm (Figure 4b,c). Phosphate nodules have been observed in the
argillitic facies, where they form alignments parallel to the stratification of the host sediment.
The whole sequence consists of arrhythmic alternation of fine argillitic material, more or less
massive, of general greenish brown color (Figure 4a). The nodules begin to grow around a
light-colored phosphate-rich unit in the center, then grow outward as spindle-shaped rods,
surrounded by thin pelitic material, as darker phosphates (Figure 4b,c).
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3. Samples and Analytical Method
3.1. Samples

The phosphorite-bearing strata have a width of 15–20 km in the southern region
and may continue into Moldovan territory, depending on the geological formations and
their distribution in the area. There are very interesting relationships between phosphate
nodules and their argillaceous slates. The nodules are typically surrounded by clay shale,
forming an eye-like structure. These nodules have diameters ranging from 2–5 cm to
25 cm and can weigh between 0.05 and 15 kg, as shown in Figure 4a. Their outer surface
is mostly spherical, often brown, resembling a rusty iron core. They exhibit a mostly
rounded shape, with some being flattened or arranged in layers that have grown together,
forming concentric rings that expand outward from an independent center. In many
instances, smaller balls are found among the larger ones, forming a cluster-like structure
(Figure 4b–d). Thirteen representative phosphate nodule samples were collected from the
clay layers in the Neoproterozoic Podillya Sedimentary Basin for the analysis of major
oxides, trace elements, and rare-earth elements (REEs). The samples, which varied in size,
were divided into two sections: one was used for element analysis, while the other was
used for mineralogical and petrographic investigations.
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3.2. Analytical Method

The phosphate nodules were cut and crushed to a 200-mesh size and then analyzed
for rare-earth elements, trace elements, and major oxides. Analytical uncertainties were
observed within 5% for each element. Using inductively coupled plasma atomic emis-
sion spectroscopy, the main oxides were examined, while rare-earth and trace element
concentrations were examined using inductively coupled plasma mass spectrometry. All
analyses were carried out at the Bureau Veritas Minerals (BVM) Laboratory (commercial
laboratory) in Vancouver, Canada. Powdered phosphate nodules were dissolved by mixing
HNO3:HCl:H2O (1:1:1, v/v; 6 mL per 1.0 g of phosphate samples) for one hour.

The analytical data were analyzed statistically using the Student–Newman–Keuls
Procedure (SNK) with SPSS 15.0 software (IBM Corp., Armonk, NY, USA) and ANOVA
(analysis of variance).

The Ce, Eu, and Y anomaly values of the phosphate nodules were calculated accord-
ing to Taylor and McLennan’s [60] PAAS values using the following formulas: Y/Y * =
Yn/
√

[Dyn * Hon], Eu/Eu * = Eun/
√

[Smn * Gdn] and Ce/Ce * = Cen/
√

[Lan * Prn].

3.3. Quality Assurance

The Bureau Veritas Minerals (BVM) Analytical Laboratory has ISO registrations and
accreditations at all of its sites. These certifications and registrations offer third-party
verification and abide by ISO standards. All BVM facilities have ISO 9001 registrations and
are awaiting Bureau Veritas corporate registration. The ISO/IEC 17025 accreditation for
particular laboratory techniques has also been granted to a number of analytical centers.

4. Results and Discussion
4.1. Major Oxide Geochemistry

CaO was the most abundant major oxide in the studied samples with an average of
50.8 ± 2.32 wt.%. The average P2O5 concentration was 34.2 ± 1.82 wt.%, making it the
second most abundant oxide within the studied phosphate samples, with high average
contents varying from 29.6 to 38.4 wt.%. The average concentrations of SiO2 and Fe2O3
were 5.29 ± 0.23 wt.% and 1.69 ± 0.12 wt.%, respectively (Table 1). The average contents of
Al2O3 and LOI were 1.63± 0.11 and 4.77± 0.36 wt%, respectively. The averages of the other
major oxides were MnO: 0.35 ± 0.02 wt%; K2O: 0.31 ± 0.02 wt.%; MgO: 0.24 ± 0.01 wt.%;
Na2O: 0.20 ± 0.01 wt.%; TiO2: 0.04 ± 0.01 wt.%; and Cr2O3: 0.003 ± 0.01 wt.%) (Table 1).
The major oxide concentrations of the nodules decreased in the following order: CaO >
P2O5 > SiO2 > Fe2O3 > Al2O3 > MnO > K2O > MgO > Na2O > TiO2 > Fe2O3. The CaO/P2O5
ratios varied from 1.36 to 1.70 with a mean of 1.49. This ratio is important for the economic
significance of phosphate raw materials [61]. The CaO/P2O5 ratio in phosphate rocks was
higher than 1.31, and this may be related to either the occurrence of calcite or dolomite in
whole rocks or the substitution of PO4 by CO3 [62,63]. The analysis showed that P2O5 was
highly positively correlated with K2O (r = 0.87), MgO (r = 0.68), and Rb (r = 0.62) and had
weak positive correlations with Ta (r = 0.48), Hf (r = 0.38), and CaO (r = 0.34). In contrast,
P2O5 exhibited strong negative correlations with MnO (r = −0.73) and Fe2O3 (r = −0.52)
and weak negative correlations with Al2O3 (r = −0.31) and Na2O (r = −0.31) (Table 2;
Figure 5).

Table 1. Major oxide contents (%) of the phosphate nodule samples (DL: detection limit of ICP-MS).

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO LOI Sum CaO/P2O5

Det. Limit 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 −5.1 0.01
STD SO-19 60.5 13.9 7.47 2.92 5.94 4.02 1.29 0.70 0.31 0.21 1.9 99.78

PH-01 6.07 2.11 1.77 0.26 50.1 0.20 0.33 0.04 35.3 0.14 3.1 99.48 1.42
PH-02 4.48 1.35 1.57 0.28 52.3 0.13 0.34 0.03 36.9 0.08 2.2 99.67 1.41
PH-03 5.80 1.43 1.75 0.22 50.3 0.27 0.31 0.03 34.0 0.32 4.9 99.41 1.47
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Table 1. Cont.

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO LOI Sum CaO/P2O5

PH-04 5.59 1.34 1.54 0.22 51.3 0.24 0.31 0.03 36.0 0.15 2.6 99.39 1.42
PH-05 4.14 1.08 1.50 0.26 52.1 0.14 0.36 0.03 38.4 0.04 1.6 99.57 1.36
PH-06 5.72 1.91 1.61 0.28 50.8 0.17 0.37 0.05 36.6 0.04 1.9 99.52 1.39
PH-07 4.52 0.77 1.66 0.19 51.6 0.32 0.26 0.02 32.3 0.55 7.4 99.60 1.59
PH-08 6.39 3.06 1.60 0.18 49.1 0.14 0.28 0.06 30.3 0.41 7.8 99.25 1.62
PH-09 5.30 2.43 2.22 0.22 49.6 0.16 0.19 0.04 29.6 0.55 9.1 99.41 1.67
PH-10 5.66 1.86 1.82 0.25 50.1 0.16 0.31 0.04 34.7 0.50 4.3 99.88 1.44
PH-11 5.27 1.30 1.74 0.22 50.8 0.24 0.30 0.03 34.0 0.43 5.4 99.92 1.50
PH-12 6.13 1.84 1.68 0.35 49.7 0.15 0.39 0.05 35.6 0.62 3.2 99.92 1.40
PH-13 3.70 0.71 1.57 0.17 52.8 0.29 0.23 0.02 31.1 0.66 8.5 99.93 1.70

Average 5.29 1.63 1.69 0.24 50.8 0.20 0.31 0.04 34.2 0.35 4.77 99.61 1.49

Table 2. Correlation coefficients between P2O5 and other major oxides in the phosphate nodules.

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO Cr2O3 V Co Ni Cu Rb

P2O5 −0.05 −0.31 −0.52 0.68 0.34 −0.31 0.87 −0.06 −0.73 −0.19 −0.10 0.17 −0.23 0.15 0.62
Sr Y Zr Nb Ba Hf As Cd U Th Pb Zn Ta Sc ΣREE

P2O5 −0.29 −0.27 0.21 −0.19 −0.39 0.38 0.22 0.07 0.12 0.31 −0.01 0.10 0.48 −0.10 −0.15
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4.2. Trace Element Geochemistry

Table 3 contains the results of the trace elements determined by ICP-MS at the Bureau
Veritas Minerals (BVM) Laboratory. The mean trace elements contents for the phosphate
nodule samples were 16 ppm for V, 32.7 ppm for Cr, 4.2 ppm for Co, 13.4 ppm for Ni,
75.8 ppm for Cu, 11.5 ppm for Rb, 395 ppm for Sr, 764 ppm for Y, 12.9 ppm for Zr, 0.7 ppm
for Nb, 183 ppm for Ba, 0.09 ppm for Hf, 10.8 ppm for As, 0.26 ppm for Cd, 2.1 ppm for U,
1.7 ppm for Th, 84 ppm for Pb, 62.2 ppm for Zn, 0.13 ppm for Ta, and 3.1 ppm for Sc. In
comparison to PAAS, the nodules were enriched in Cu, Cd, Sr, Y, As, Pb, Ni, V, Cr, Co, Zn,
Hf, Zr, Nb, Ba, U, Th, and Rb [60] (Figure 6). Rb and Ba were lower compared to PAAS,
whereas Sr, a large-ion lithophile element, was substantially enriched. Except for Y, all of
the high-field-strength elements (HFSE; Nb, Hf, Th, Zr, U, and Y) were substantially lower
than PAAS (Figure 6).

Table 3. Trace element concentrations (ppm) of the phosphate nodules.

V Cr Co Ni Cu Rb Sr Y Zr Nb Ba Hf As Cd U Th Pb Zn Th/U V/Sc V/Cr Ni/Co

DL 1 0.5 0.1 0.1 0.01 0.1 0.5 0.01 0.1 0.02 5 0.02 0.1 0.01 0.1 0.1 0.1 0.1
PH-01 21 36 1.6 12.8 178 11.7 358 696 15.5 1.3 162 0.19 14.2 0.38 1.9 3.1 85 132 1.6 5 0.58 8.00
PH-02 12 16 5.7 11.5 52 12.2 294 528 11.9 0.8 102 0.08 10.4 0.22 1.3 1.8 68 55 1.4 6 0.75 2.02
PH-03 15 45 7.5 13.8 22 11.9 525 862 13.2 0.3 304 0.05 6.3 0.08 2.7 1.0 17 12 0.4 4 0.33 1.84
PH-04 19 48 6.6 9.5 48 11.3 454 946 13.8 0.3 221 0.09 8.8 0.15 3.1 1.1 115 28 0.4 5 0.40 1.44
PH-05 11 15 4.0 14.6 116 13.4 327 699 10.0 0.2 119 0.13 11.7 0.31 2.0 1.7 178 68 0.9 6 0.73 3.65
PH-06 17 27 2.3 13.5 66 13.2 362 695 17.2 0.8 147 0.06 12.5 0.27 2.5 2.7 44 74 1.1 6 0.63 5.87
PH-07 18 33 5.8 10.7 14 10.1 550 574 9.6 0.1 250 0.13 16.4 0.44 3.4 0.8 23 57 0.2 9 0.55 1.84
PH-08 13 31 1.7 17.8 78 11.5 322 935 15.3 0.8 143 0.01 8.4 0.25 1.0 2.1 87 36 2.1 3 0.42 10.47
PH-09 18 43 2.2 16.2 108 8.3 361 940 9.4 1.2 201 0.04 8.7 0.26 1.4 0.7 135 98 0.5 6 0.42 7.36
PH-10 13 42 5.7 7.6 218 10.2 326 646 8.1 0.8 202 0.17 15.1 0.43 2.2 4.2 76 145 1.9 3 0.31 1.33
PH-11 12 38 8.9 12.8 15 10.6 552 793 7.4 0.7 310 0.13 6.3 0.03 3.1 1.6 14 144 0.5 3 0.32 1.44
PH-12 11 32 5.2 6.6 8 8.0 439 636 3.2 0.6 182 0.06 6.7 0.01 3.1 0.8 212 9 0.3 4 0.34 1.27
PH-13 11 18 5.4 7.4 8 8.1 543 497 3.0 0.4 252 0.09 7.2 0.01 3.1 0.8 212 9 0.3 6 0.61 1.37
Mean 16 32.7 4.2 13.4 75.8 11.5 395 764 12.9 0.6 183 0.09 10.8 0.26 2.1 1.7 84 62 0.88 4.97 0.49 3.69

Minerals 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

ppm for U, 1.7 ppm for Th, 84 ppm for Pb, 62.2 ppm for Zn, 0.13 ppm for Ta, and 3.1 ppm 

for Sc. In comparison to PAAS, the nodules were enriched in Cu, Cd, Sr, Y, As, Pb, Ni, V, 

Cr, Co, Zn, Hf, Zr, Nb, Ba, U, Th, and Rb [60] (Figure 6). Rb and Ba were lower compared 

to PAAS, whereas Sr, a large-ion lithophile element, was substantially enriched. Except 

for Y, all of the high-field-strength elements (HFSE; Nb, Hf, Th, Zr, U, and Y) were sub-

stantially lower than PAAS (Figure 6). 

Table 3. Trace element concentrations (ppm) of the phosphate nodules. 

  V Cr Co Ni Cu Rb Sr Y Zr Nb Ba Hf As Cd U Th Pb Zn Th/U V/Sc V/Cr Ni/Co 

DL 1 0.5 0.1 0.1 0.01 0.1 0.5 0.01 0.1 0.02 5 0.02 0.1 0.01 0.1 0.1 0.1 0.1         

PH-01 21 36 1.6 12.8 178 11.7 358 696 15.5 1.3 162 0.19 14.2 0.38 1.9 3.1 85 132 1.6 5 0.58 8.00 

PH-02 12 16 5.7 11.5 52 12.2 294 528 11.9 0.8 102 0.08 10.4 0.22 1.3 1.8 68 55 1.4 6 0.75 2.02 

PH-03 15 45 7.5 13.8 22 11.9 525 862 13.2 0.3 304 0.05 6.3 0.08 2.7 1.0 17 12 0.4 4 0.33 1.84 

PH-04 19 48 6.6 9.5 48 11.3 454 946 13.8 0.3 221 0.09 8.8 0.15 3.1 1.1 115 28 0.4 5 0.40 1.44 

PH-05 11 15 4.0 14.6 116 13.4 327 699 10.0 0.2 119 0.13 11.7 0.31 2.0 1.7 178 68 0.9 6 0.73 3.65 

PH-06 17 27 2.3 13.5 66 13.2 362 695 17.2 0.8 147 0.06 12.5 0.27 2.5 2.7 44 74 1.1 6 0.63 5.87 

PH-07 18 33 5.8 10.7 14 10.1 550 574 9.6 0.1 250 0.13 16.4 0.44 3.4 0.8 23 57 0.2 9 0.55 1.84 

PH-08 13 31 1.7 17.8 78 11.5 322 935 15.3 0.8 143 0.01 8.4 0.25 1.0 2.1 87 36 2.1 3 0.42 10.47 

PH-09 18 43 2.2 16.2 108 8.3 361 940 9.4 1.2 201 0.04 8.7 0.26 1.4 0.7 135 98 0.5 6 0.42 7.36 

PH-10 13 42 5.7 7.6 218 10.2 326 646 8.1 0.8 202 0.17 15.1 0.43 2.2 4.2 76 145 1.9 3 0.31 1.33 

PH-11 12 38 8.9 12.8 15 10.6 552 793 7.4 0.7 310 0.13 6.3 0.03 3.1 1.6 14 144 0.5 3 0.32 1.44 

PH-12 11 32 5.2 6.6 8 8.0 439 636 3.2 0.6 182 0.06 6.7 0.01 3.1 0.8 212 9 0.3 4 0.34 1.27 

PH-13 11 18 5.4 7.4 8 8.1 543 497 3.0 0.4 252 0.09 7.2 0.01 3.1 0.8 212 9 0.3 6 0.61 1.37 

Mean 16 32.7 4.2 13.4 75.8 11.5 395 764 12.9 0.6 183 0.09 10.8 0.26 2.1 1.7 84 62 0.88 4.97 0.49 3.69 

 

 
Figure 6. Cont.



Minerals 2023, 13, 539 9 of 19

Minerals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

 

 

Figure 6. PAAS-normalized trace element (a) and REE (b) patterns of the phosphate nodules [60]. 

The Th/U ratios in the studied phosphate samples varied from 0.2 to 2.1. The Ni/Co 

ratios varied from 1.3 to 10.5. The V/Sc and V/Cr ratios were 4.97 (3 to 9) and 0.49 (0.31 to 

0.75), respectively (Tables 3 and 4). The oxic/suboxic relationship between redox condi-

tions and the precipitation of phosphate nodules is shown by these element ratios. The 

oxidation level of the water column affected some elements’ solubility. According to the 

redox status of the water column, these elements may therefore be enriched or deficient 

in marine sediments. Low dissolved oxygen concentrations and moderate H2S concen-

trations are characteristics of suboxic settings. The absence of dissolved oxygen and the 

presence of H2S are characteristics of anoxic settings [64]. The redox environment of the 

paleo-ocean can be determined by redox-sensitive replacements (Ni/Co, Th/U, V/Cr, 

V/Sc, and REEs) [65]. In addition, the enrichment of both Mo (>5 μg g−1) and V (>23 μg 

g−1), with V not exceeding 46 μg g−1, provides compelling evidence for a euxinic ba-

sin-type depositional environment [66], while the enrichment of V (>46 μg g−1), U (>5 μg 

g−1), and Mo (>5 μg g−1) serves as robust evidence for sediment deposition [67]. Con-

versely, U enrichment (>1 μg g−1/%), consistent with the low enrichment of V (<23 μg g−1) 

and Mo (<5 μg g−1), provides strong evidence of sediment precipitation in oxic waters 

[13,68]. Furthermore, both U and V were readily incorporated into the crystal structure of 

apatite, and this process continued during diagenesis [69], Suboxic conditions are char-

acterized by low dissolved oxygen content (0.2–0.0 mL L−1), while anoxic conditions are 

characterized by the absence of oxygen [70,71]. The presence of free sulfides in the water 

column indicates the precipitation of anoxic sediments and the presence of sul-

fidic/euxinic conditions. In addition, dissolved sulfites are not found in suboxic envi-

ronments. 

Table 4. Redox classification of the depositional environment. 

Indicator Oxic Suboxic Anoxic Euxinic 
Studied  

Nodules 

H2S  No free H2S in the  Free H2S present in  

Figure 6. PAAS-normalized trace element (a) and REE (b) patterns of the phosphate nodules [60].

The Th/U ratios in the studied phosphate samples varied from 0.2 to 2.1. The Ni/Co
ratios varied from 1.3 to 10.5. The V/Sc and V/Cr ratios were 4.97 (3 to 9) and 0.49 (0.31 to
0.75), respectively (Tables 3 and 4). The oxic/suboxic relationship between redox conditions
and the precipitation of phosphate nodules is shown by these element ratios. The oxidation
level of the water column affected some elements’ solubility. According to the redox status
of the water column, these elements may therefore be enriched or deficient in marine
sediments. Low dissolved oxygen concentrations and moderate H2S concentrations are
characteristics of suboxic settings. The absence of dissolved oxygen and the presence
of H2S are characteristics of anoxic settings [64]. The redox environment of the paleo-
ocean can be determined by redox-sensitive replacements (Ni/Co, Th/U, V/Cr, V/Sc,
and REEs) [65]. In addition, the enrichment of both Mo (>5 µg g−1) and V (>23 µg g−1),
with V not exceeding 46 µg g−1, provides compelling evidence for a euxinic basin-type
depositional environment [66], while the enrichment of V (>46 µg g−1), U (>5 µg g−1),
and Mo (>5 µg g−1) serves as robust evidence for sediment deposition [67]. Conversely,
U enrichment (>1 µg g−1/%), consistent with the low enrichment of V (<23 µg g−1) and
Mo (<5 µg g−1), provides strong evidence of sediment precipitation in oxic waters [13,68].
Furthermore, both U and V were readily incorporated into the crystal structure of apatite,
and this process continued during diagenesis [69], Suboxic conditions are characterized by
low dissolved oxygen content (0.2–0.0 mL L−1), while anoxic conditions are characterized
by the absence of oxygen [70,71]. The presence of free sulfides in the water column indicates
the precipitation of anoxic sediments and the presence of sulfidic/euxinic conditions. In
addition, dissolved sulfites are not found in suboxic environments.
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Table 4. Redox classification of the depositional environment.

Indicator Oxic Suboxic Anoxic Euxinic Studied
Nodules

H2S No free H2S in the
water column

Free H2S present in
the water column

O2 concentration
in bottom waters a

(mLO2/LH2O)
O2 > 2 0.2 < O2 < 2 O2 < 0.2 O2 = 0

Th/U b >7 2–7 0–2 - 0.88
V/Cr c <2 2–4.25 >4.25 >4.25 0.49

Ni/Co c <5 5–7 >7 - 3.69
V/Sc d - - - >24 4.97

a [71], b [64], c [72], d [73].

4.3. Rare-Earth Element Geochemistry

Table 5 lists the concentrations of rare-earth elements present in the phosphate nodules.
The REE concentrations of nodule samples varied from 1638 ppm to 3602 ppm (mean:
2684 ± 62 ppm), except for Y. Figure 6 depicts both PAAS-normalized trace element and
REE patterns of the phosphate nodules according to Taylor and McLennan [60]. When the
REE values of the nodules were normalized with PAAS, the medium REEs were enriched
in the nodules, while the light and heavy REEs were depleted. The normalized average
REE abundances are as follows: medium REEs (350) were followed by heavy (58) then light
REEs (44.8) (Figure 6). Consistent with the REE trend observed in the study area (Figure 7),
previous studies by Emsbo et al. [74] and Yu et al. [75] have proposed that the formation of
MREE-rich phosphates is influenced by variations in seawater composition across different
time periods and regions (Figure 7). The Lan/Ybn ratios showed the enrichment patterns
between heavy and light REEs. The Lan/Ybn values of the phosphate nodules ranged
between 0.31 and 0.78 with a mean of 0.52 ± 0.02 (Table 5), which is comparable to the
corresponding values of modern seawater (0.2–0.5; [76]) in the phosphate nodules, verifying
the HREE enrichments [77]. Low Lan/Ybn ratios in phosphate nodules indicate that REE
concentration is associated with both the adsorption of REEs during the evolution of these
nodules and the substitution mechanism by recrystallization [77]. The Lan/Hon ratios
changed from 0.05 to 0.11 with a mean of 0.08 ± 0.01 (Table 5), and this also indicates that
the MREE contents of the phosphate nodules were enriched more than the LREE contents.
The (Sm/Pr)n and (Sm/Yb)n values show that all of the studied phosphate nodules had
MREE enrichment (Figure 8). Looking at Figure 8, the phosphate nodules of Podillya,
Sonrai, and Gorgan were enriched by MREEs, while the Yangtze deposits were depleted by
MREEs. Tebessa, Alborz, and Hazm Al-Jalamid deposits were enriched in HREEs. One
significant finding of this study is that the patterns of rare-earth elements are specific to
certain time periods, which indicates the geological age of the deposits. This discovery
serves as a robust predictive tool for exploring high-REE deposits [74].

Table 5. Rare-earth element concentrations (ppm) of phosphate nodules.

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu REE (Ce/
Ce*)n

(Eu/
Eu*)n

(Y/
Y*)n

(Pr/
Pr)n

(Sm/
Yb)n

DL 3 0.5 0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
PH-01 696 77 448 118 907 396 80 428 55 227 29 44 3.2 13 1.33 2825 0.74 0.91 0.67 0.82 16
PH-02 528 50 354 94 618 195 54 226 28 124 18 30 2.3 10 1.03 1805 0.74 1.20 0.88 0.94 10
PH-03 862 100 547 137 1027 494 97 581 70 273 33 50 3.6 17 1.72 3431 0.76 0.84 0.69 0.84 15
PH-04 946 111 558 138 1074 520 104 616 75 291 36 56 3.9 17 1.88 3602 0.76 0.85 0.71 0.81 15
PH-05 699 52 348 103 828 356 84 398 49 198 25 39 2.8 12 1.26 2497 0.68 1.05 0.76 0.82 15
PH-06 695 80 446 114 868 360 76 393 51 213 28 43 3.0 13 1.33 2689 0.75 0.94 0.70 0.83 14
PH-07 574 87 349 82 616 253 59 295 37 154 20 34 2.7 12 1.31 2000 0.78 1.01 0.78 0.80 11
PH-08 935 83 459 117 933 490 107 619 73 284 35 54 4.0 19 1.90 3279 0.75 0.90 0.72 0.77 13
PH-09 940 106 505 116 922 470 106 606 72 279 34 53 4.0 19 1.94 3294 0.81 0.91 0.74 0.78 13
PH-10 646 86 502 122 926 404 83 405 53 225 29 44 3.0 8 0.91 2891 0.78 0.95 0.62 0.83 25
PH-11 793 96 553 138 1010 467 94 516 63 251 32 47 3.4 10 1.14 3282 0.75 0.89 0.67 0.87 24
PH-12 636 74 294 70 516 210 52 230 29 128 17 30 2.3 8 0.86 1662 0.76 1.11 1.05 0.85 14
PH-13 497 73 294 69 501 205 52 229 29 128 17 30 2.3 7 0.86 1638 0.76 1.10 0.82 0.84 14
Avrg 727 82 435 109 827 371 81 425 53 214 27 43 3.1 13 1.34 2684 0.76 0.94 0.74 0.83 15
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In order to study the redox potentials of various sedimentary environments, cerium
is the most helpful rare-earth element. Ce actually oxidizes quickly and is continuously
and irrevocably eliminated from seawater’s oxide minerals [81]. Therefore, a positive Ce
anomaly in sedimentary basins indicates hydrogenetic deposition. Ce mostly enriches
in hydrogenetic deposits due to irreversible Ce accumulation from seawater, but this is
lower in hydrothermal and diagenetic nodules [82]. The precipitation conditions of the
depositional environment, such as the temperature, pH, and ƒO2, are found using the
Eu/Eu* and Ce/Ce* ratios [83–85]. Under seawater pH and Eh conditions, Ce is primarily
Ce4+ and has very poor solubility. As a result of the seawater’s severe depletion of Ce, it
precipitated as Ce4+ (CeO4). Ce can exist in both +3 and +4 oxidation states. Only oxic
environments experience this [86,87]. A negative Ce anomaly indicates well-oxygenated
modern oceans, and this also points out the rapid deposition of oxide minerals [88]. The
Ce/Ce* values of the examined phosphate nodules ranged from 0.68 to 0.81 and had
significant negative Ce anomalies (Table 5).

The positive Eu anomalies indicate low oxygen fugacity in the hydrothermal waters
and the existence of Eu2+ during deposition. The phosphate was precipitated from solutions
with increasing ƒO2 or coprecipitated together with Eu-enriched phases or decreasing
temperature. Eu anomalies can be associated with factors such as a decrease in temperature
or increases in in ƒO2 and pH [89]. Whereas positive Eu-anomalies are indicative of
(extremely) reductive conditions, negative Eu-anomalies do not form under oxic conditions.
Under normal surface conditions (i.e., seawater or pore water), the Eu/Eu* ratios do
not change significantly, and the negative Eu-anomaly is likely due to other factors such
as volcanic ash intrusion [35,90–93]. The average (Eu/Eu*)n anomaly of the phosphate
nodules in the study area was close to 1 (mean: 0.94 ± 0.03) (Table 5). Five of the phosphate
nodules had a slightly positive Eu anomaly (>1); eight of the phosphate nodules were lower
than 1 and had a slightly negative Eu anomaly.

In contrast to anoxic conditions, the oxic water samples show a REY trend with heavier
REE enrichment and a negative Y anomaly. In comparison to the oxic saltwater above, the
anoxic hypersaline brine waters in the Tyro sub-basin exhibited a negative Y anomaly [94].
The Y contents in the phosphate nodules changed from 497 to 946 ppm, with an average of
727 ± 43 ppm. The phosphate nodules had negative Y anomalies, except for one sample
between 0.62 and 1.05 with a mean of 0.74 ± 0.02 (Table 4). These data also indicate that
the phosphate nodules not only formed in environments where anoxia prevailed but also
where episodes of oxic conditions could occur. Similarly, Chen et al. [95] reported that
the ferromanganese oxides from 4071m water depth in the Gagua Ridge had negative Y
anomalies. Lumiste et al. [96] indicated that the negative Y-anomalies were inherited from
Fe-Mn oxides that delivered the REE to the pore water.

4.4. Source of REEs in Phosphate Nodules

According to Emsbo et al. [74], REE levels in phosphate nodules are typically homoge-
neous over the course of a geologic time, although they can vary between geologic times.
Rare-earth elements are only a little fractionated, as evidenced by the low REE abundance
and patterns of contemporary phosphate rocks that resemble those of contemporary salt-
water [97]. The Ediacaran phosphates studied in this work were observed to have more
REE contents than those in different geologic ages, except for Upper Silurian, Upper Devo-
nian, and Upper Mississippian phosphates [36]. Several scientists believe that the primary
REE content of phosphates is closely related to that of current saltwater because geologic
processes have such strong control over REE content [45,98]. REE abundance variations
have been linked to facies, particle size, depth, and the duration of precipitation [99,100].
REE concentrations in phosphate nodules have been formed as a direct product of ocean
chemistry [45,76,101]. As an alternative, it is thought that the extremely high REE con-
centrations in phosphates are a byproduct of the REEs being redistributed between the
authigenic and detrital phases of the phosphate during its diagenetic equilibration with
pore water [100–102].
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4.5. Origin and Genetic Model of the Phosphate Nodules

At the continental edges during various periods, marine phosphates produced ir-
regular masses, nodules, sands, oolites, and pellets [103]. Burnett [103] found that pore
fluids contained higher phosphate levels than bottom waters, contrary to some scientists’
theories that phosphate production was directly caused by the inorganic precipitation
of phosphates from seawater. Hence, it has been proposed that phosphate precipitation
in the pore fluids of anoxic sediments may be the source of the development of marine
phosphates. For phosphate to develop, dissolved phosphates must be present in the pore
fluids. According to Stumm and Leckie [104], there are different mechanisms to supply
phosphate ions to anoxic pore waters: (1) the decomposition of phosphorus-containing
organic materials, (2) the reduction of hydrous ferric oxides that bind phosphate to their
surfaces under reducing conditions, and (3) a possible pathway for modifying pore water
phosphate concentrations is polyphosphate hydrolysis by Large Sulfur Bacteria. Relative
to shale-normalized values and the bulk REE content of contemporary saltwater, the REE
concentration in phosphates is up to 50–100 times greater [105]. Direct precipitation of
phosphates from saltwater is therefore implausible. By far, the most significant source of
REE in phosphate nodules, according to Felitsyn and Morad [105], is organic matter. They
also agreed that the direct ejection of REEs from marine pore fluids is the most significant
mechanism to account for the REE enrichment in authigenic phosphate. The possibility
of hydrothermal fluids being sources of phosphate and REE has also been raised [106]. In
addition to hydrogenous and hydrothermal sources, pore water diagenesis is an important
source for REE in phosphates [107].

In Figure 9, a genetic model is suggested to account for the development of phosphate
nodules. The model shown in this figure suggests that seawater can be divided into
different layers based on redox conditions, including the top oxic layer (oxygen content:
2.0–8.0 mL/L), the dysoxic layer (oxygen content: 0.2–2.0 mL/L), the suboxic layer (oxygen
content: 0.0–0.2 mL/L), and the bottom anoxic layer (oxygen content: 0.0 mL/L) [71].
In a deeper, organic-rich basin with anoxic/suboxic conditions, the phosphate nodules
precipitated on slopes in relation to the strong upwelling stage [108]. The majority of
the organic material that has accumulated at the seafloor’s sediment–water interface was
first oxidized before phosphate was transported there with the sediment pore water [109].
Iron/manganese oxides simultaneously adsorbed phosphorus as it flowed up slopes with
a benthic flux that contained considerable levels of trace elements and REEs [110]. The
phosphate nodules formed by the combination of the Fe-Mn oxides in the benthic flow with
the REEs and P ultimately contained a significant amount of REE phases, trace elements,
and PO4

3− [10].
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Figure 9. Genetic model for the phosphate nodules formed in areas of upwelling on open ocean
shelves. Zone 1 forms from near-shore, shallow-water siliciclastic deposits. Zone 2 contains both
phosphate-rich biogenic detritus in sediments and phosphate nodules formed in this zone by diage-
netic processes. Zone 3 consists of carbonate sediments containing local phosphate nodules in the
deeper water zone. Data from [111,112].

5. Conclusions

The Volyn-Podillya-Moldavia Basin, located in the southwest of Ukraine at the edge of
the Ukrainian crystalline shield, is part of an extensive system of Neoproterozoic-Paleozoic
sedimentary basins that developed along the western slope of the East European Craton.
It is covered by younger Paleozoic rocks; their outcrops extend to the western part of
the basin. The major oxide contents mainly consist of CaO and P2O5, and lower SiO2,
Fe2O3, Al2O3, MnO, K2O, MgO, Na2O, TiO2, and Fe2O3. The total trace element contents
in the studied phosphate nodules varied from 1638 and 3602 ppm. The phosphate nodules
contained more Sr, Cu, Y, Cd, As, and Pb and lower Cr, V, Co, Ni, Nb, Zr, Rb, Ba, Hf, U, Zn,
and Th compared to PAAS. Some trace element ratios mainly indicate the oxic and suboxic
zones for the precipitation of the phosphate nodules. The nodules had very high total REE
concentrations, between 1638 and 3602 ppm, and have been enriched mostly in regard to
medium REEs, and less to heavy REEs, compared to PAAS. All nodules showed negative Ce,
Y, and Pr anomalies and mostly negative Eu anomalies. These anomalies further indicate
oxic and suboxic conditions during nodule formation. We propose the following genetic
model for phosphate nodule formation and indicate that our phosphorite was formed by
early diagenetic reactions starting at the sediment–water interface. Seawater was separated
into three layers based on redox conditions: the bottom anoxic zone, the suboxic zone, and
the oxic zone. The vigorous upwelling from an organic-rich region in deeper seas under
anoxic/suboxic conditions caused the phosphate nodules to form on slopes. Upwelling
is a great source of nutrients. This permitted an increase in bioproductivity and then the
accumulation of organic matter. The biodegradation of this organic matter permitted the
P-release, which was incorporated inside the nodules during the diagenetic process. The
majority of the organic material that settled at the seafloor’s sediment–water interface was
first oxidized, and then phosphate filled the sediment’s pore water by migrating to the
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water in the upper zone. The most important source of REE in phosphate nodules was
organic matter, and this REE was enriched in authigenic phosphate as a result of the direct
evacuation of REE from marine pore fluids. In addition to hydrogen and hydrothermal
sources, pore water diagenesis is among the important sources of REE in phosphates.
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