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Abstract: Porphyry copper ore is a vital strategic mineral resource. It is often associated with
significant hydrothermal alteration, which alters the original mineralogical properties of the rock.
Extracting alteration information from remote sensing data is crucial for porphyry copper exploration.
However, the current method of extracting hydrothermal alteration information from ASTER remote
sensing data does not consider the influence of disturbing factors, such as topography, and ignores
the weak report of surface minerals, which has significant limitations. Therefore, this paper selects
the Gondwana region of the East Tethys–Himalayan tectonic domain as the study area, combines
waveform calculation with principal component analysis methods, proposes a spectral feature-
enhanced principal component analysis (EPCA) method, and constructs a model to complete the
automatic selection of principal components for each scene image. The results show that the etching
information extracted by the EPCA method is significantly better than the traditional Crosta method
in terms of etching area and spatial aggregation and discovers several prospective mineralization
areas that have not yet been explored and exploited, such as Sakya and Xietongmen counties in
Rikaze, providing theoretical support for subsequent mineralization exploration and large-scale
mineral extraction. Meanwhile, obtaining the alteration information of the whole area can help to
understand the distribution of mineralizing elements from a macroscopic perspective in the future,
which is of great scientific significance in order to deeply analyze the formation process of metal
deposits in mineralizing areas and improve the theory of porphyry mineralization.

Keywords: Gondwana region; hydrothermal alteration; porphyry copper ore; spectral feature
enhancement; principal component analysis

1. Introduction

Porphyry copper ore is a vital strategic mineral resource composed of hydrothermal
alteration products, such as porphyry, gabbro-saprolite, and granite [1]. One of the most
important geological conditions for the formation of porphyry copper ore is the intru-
sion of basaltic magma [2]. Basaltic magma is mainly made up of medium-basic, acidic
clastic rocks, with some clastic and volcanic rocks. Due to its particular tectonic position,
basaltic magma often interacts with other rocks during the intrusion. When these rocks
simultaneously undergo secondary hydrothermal metamorphism, altering the original
mineralogical characteristics of the rocks, porphyry copper deposits formed [3]. The ap-
plication of remote sensing technology to extract alteration information has become an
essential tool in porphyry copper ore exploration and discovery, especially in areas with
harsh natural conditions and inaccessibility, where the use of remote sensing technology
has apparent advantages in finding ores [4–6]. Geotectonically, most porphyry copper
mines are developed on plate margins or inland orogenic zones [7]. For these reasons, fast
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and economic multi-source remote sensing satellite data, including multispectral and hy-
perspectral satellite images, are widely used to detect porphyry copper ore mineralization
worldwide [8–11].

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
images on board Terra satellites have higher spectral resolution in the short-wave infrared
compared to multispectral data, such as Landsat. They were used for distinguishing dif-
ferent iron oxides as well as Al-OH and Mg-OH alteration minerals, such as kaolinite,
montmorillonite, dolomite, and yellow potassium–iron alum. In previous studies, they
have also proven to be effective regarding their visible NIR and short-wave IR bands for
hydrothermal alteration extraction and mineral exploration [12–15]. As a result, ASTER
data have become the most commonly used remote sensing data for extracting hydrother-
mal alteration mineral information from porphyry copper mines. However, widely used
ASTER erosion information extraction methods, such as traditional principal component
analysis (PCA), remove band correlation through mathematical dimensionality reduction
and highlight the primary information for principal component analysis, which does not
take into account the influence of distracting factors, such as topography, and ignores the
weak transmission of the data [16].

The East Tethys–Himalayan tectonic domain is one of the three most challenging
mineralized domains in the world [17,18], where the Gangetic region of the southern Tibetan
Plateau is driven by deep aerodynamics and magma-hydrothermal interactions to form
rich magmatic arc porphyry copper ores [19]. The porphyry-type deposits, such as Drive
Dragon and Kema, which are developed within the Gangdis mineralized belt, are world-
class mines of 10 million tons. However, traditional mineral exploration is characterized by
high exploration costs and difficulty in obtaining mineralization information due to the
remote and inaccessible nature of the area. At the same time, the low vegetation cover, the
widespread exposure of rock masses, and the extensive hydrothermal alterations are well
suited to geochemical and remote sensing mineral exploration dominated by alteration
minerals. Scholars have combined geochemistry and infrared spectroscopy to conduct
a pilot investigation with sericite as the object of study, and the results revealed that the
mineral spectra showed distinct zonation, which closely correlated with the ore bodies [20].
The remote sensing alteration information of large mining areas, such as Qulong and Jiama,
has also been extensively studied, but macroscopic mineral alteration studies for the whole
area of the study area still need to be effectively carried out [21,22].

In this context, this paper selects the Gondwana region of the East Tethys–Himalayan
tectonic domain as the study area, proposes a spectral feature-enhanced principal com-
ponent analysis (EPCA) method for ASTER data, constructs an EPCA model to complete
the automatic selection of main components for each scene, completes the extraction of
hydrothermal alteration mineral information for large-scale porphyry copper ore, locates
the strongly altered area based on the extraction results, narrows the target area, and analy-
ses the regional lithology-tectonic-alteration multi-source geological elements to delineate
the target area and reveal the mineralization pattern. The results of this study not only
help the understanding of mineralization exploration in the entire Gondian metallogenic
belt but also have important scientific significance for the later stage of the macroscopic
geochemical distribution of mineralized elements from a geological point of view, for the
in-depth analysis of the formation process of metal deposits in the metallogenic belt, and
for the improvement of the porphyry mineralization theory.

2. Geological Background of the Study Area

The study area (28◦00′–31◦00′ N, 88◦00′–93◦00′ E) is located at the northern edge of
the middle section of the East Tethys–Himalayan tectonic domain, in the zone between
the Yarlung Tsangpo River (suture zone) and the southern Tibetan detachment system
(Figure 1) [23,24]. The area experienced Late Triassic–Late Cretaceous marine sedimentation
on the south side of the Neotethys Ocean, with large-scale magmatism. Continental rifting
in the Early Cretaceous (130–135 Ma), accompanied by the rapid uplift and denudation
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of the Gangetic basement, the intrusion of Miocene mineral-bearing porphyry into the
Gangetic granite basement and Triassic–Cretaceous strata, and multiple phases of complex
and intense tectonic movement and large-scale magmatism that produced a mega porphyry
copper-molybdenum belt dominated by porphyry copper-molybdenum mineralization
and siliciclastic copper–lead–zinc mineralization. Due to climatic factors and altitude, it
is not easy to make breakthroughs in traditional geological prospecting due to difficult
working conditions [25–27]. At the same time, the area is sparsely vegetated, which is
suitable for taking advantage of remote sensing for large-area exploration and is a good
testing ground for carrying out remote sensing for mineral exploration.
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Figure 1. A sketch of the geological background of the East Tethys–Himalayan tectonic belt and
the location of the Gondwanan orogenic belt [28,29]. (Ts, tertiary sedimentary rocks; THS, Tethys–
Himalayan sedimentary sequence; HHM, high Himalayan metamorphic system; LHS, low Himalayan
metasedimentary sequence; IYS, Indus–Yarlung Tsangpo suture zone; BNS, Bengong Lake—Nujiang
suture zone; JS, Jinsha River suture zone; AKMS, Animachin–Kunlun–Muzetag suture zone; GLS,
Ganzi–Litang suture zone; STDS, Southern Tibetan dissociation system; MCT, main central retrograde
fault; MBT, main boundary retrograde fault; GCT, Gondes central retrograde).

3. Data and Methods
3.1. Multi-Source Satellite Remote Sensing Data and Features

The ASTER sensor spatial resolution and spectral resolution are well suited for the
extraction of mineral alteration information. It consists of three independent subsystems
covering a total of 14 bands of data in three channels: visible near-infrared (VNIR), short-
wave infrared (SWIR), and thermal infrared (TIR), with a spatial resolution of 15 m, 30 m,
and 90 m for the three channels, respectively, the main technical parameters of which are
shown in Table 1. Each image is 60 × 60 square kilometers. The data for this paper were
obtained from the NASA website (https://search.earthdata.nasa.gov/search?fi=ASTER
(accessed on 1 June 2007)), and 93 ASTER 1T-scale images were downloaded from the study
area covering the Gondwana porphyry copper belt, for a total study area of more than
150,000 km2. Precisely topographically corrected registered At-Sensor radiance (AST_L1T)
data containing calibrated At-Sensor radiance equivalent to the ASTER Level 1B (AST_L1B),

https://search.earthdata.nasa.gov/search?fi=ASTER
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geometrically corrected and rotated to the northward upper UTM projection, at a total
36.51 GB.

Table 1. ASTER main technical parameters.

Remote Sensing
Data Channel Waveband

Number
Spectral

Range/µm
Spatial

Resolution/m

ASTER

VNIR

1 0.52–0.60

15
2 0.63–0.69

3N 0.78–0.86
3B 0.78–0.86

SWIR

4 1.600–1.700

30

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

3.2. Wave Spectral Characteristics of Alteration Minerals

At this stage, the mineralization alterations that can be identified using multi-spectral
remote sensing data are mainly iron staining anomalies and hydroxyl anomalies [30]. The
iron staining anomaly reflects the richness of hematite, limonite, and yellow potassium
iron oxide in the striatum. The hydroxyl anomaly demonstrates the presence of hydroxyl-
bearing minerals, such as kaolinite, sericite, chlorite, and chlorite, in the strata. Using
ASTER data in multiple bands in the infrared spectral range further distinguishes alu-
minum hydroxyl minerals, such as kaolinite, from magnesium hydroxyl minerals, such as
chlorite and calcite [31–33]. As mineral spectra may vary slightly from region to region,
to gain a more accurate understanding of the spectral distribution of the three alteration
minerals in the Gondwana region, the laboratory spectra of iron oxide minerals, aluminum
hydroxyl minerals, and magnesium hydroxyl minerals were obtained by applying infrared
spectroscopy to the minerals in the study area to remove spurious peak interference, based
on the United States Geological Survey (USGS) wave spectral database for mineral resource
development (Figure 2).
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Figure 2. Laboratory spectra of alteration minerals in the study area [34]. The lines in the figure
indicate the spectral change curve of the mineral or element and the corresponding ASTER image
band, with the arrow pointing to highlight the apparent change of that mineral or element.

3.3. Data Pre-Processing

Pre-processing begins with a band split to separate the channels for better follow-
up. The L1T source image used here has been crosstalk-corrected and does not require
de-crosstalking. Therefore, the image pre-processing consists of three parts: radiomet-
ric calibration, atmospheric correction and resampling, and background feature mask
extraction [35,36].

The correction of the distortion in the image data dependent on the radiant brightness,
the image calibrated by radiation using the internal averaging method for atmospheric
correction, that is, the average radiant brightness of the whole scene image after radiation
calibration, and then divide the radiant brightness of each image element by the average
level to obtain the result of the relative reflectance of the feature, eliminating the influence
of atmospheric and lighting factors on the reflection of the feature [37,38]. The ASTER
L1T image was resampled and cropped to obtain reflectance data, containing only the
visible-near-infrared (VNIR) and shortwave infrared (SWIR) bands in the image’s central
region, a total of nine times and at a resolution of 30 m.

Considering that the spectral information of background features such as clouds, water
bodies, and vegetation can impact the final etching results, they are masked to exclude their
interference with the etching extraction results [39]. Since cloudy features have a strong
reflectivity in the visible first band, they can be removed by high values in this band. Let
the maximum value of the first band of the visible band be B1max, then take [B1max—T1,
B1max] as the threshold interval and remove the pixels contained within it by masking.
For water features, the common normalized difference water index (NDWI) was used to
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enhance the water information in the images, and then T2 was set to remove the mask for
pixels with NDWI > T2. For vegetation features, the normalized difference vegetation index
(NDVI) was calculated to enhance the vegetation information, and T3 was set to remove the
mask from pixels with NDVI > T3. The thresholds T1, T2, and T3 were set to 0.1, 0.2, and
0.8, respectively, considering the study area. Figure 3 designs the methodological flowchart
about ASTER data pre-processing and spectral feature enhancement in this study.
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3.4. Principal Component Analysis Methods for Spectral Feature Enhancement

The principal component analysis is a primary method for extracting remote sensing
alteration information. The main component analysis method analyses all bands of a
multi-spectral image in the visible-shortwave-infrared region in order to generate a series
of principal components, then determines the top features of alteration information based
on the spectral characteristics of the target alteration and the eigenvector matrix and, finally,
uses processing methods, such as threshold segmentation and color synthesis, to highlight
the abnormal alteration information in the principal components [40]. Crosta and Moore
first applied an improved PCA method to extract iron-stained and mud-stained alteration
information and mineralogical mapping from residual soils in the western subtropical
region of Minas Gerais, Brazil [41]. Since then, the Crosta technique has been widely
used to extract iron-stained and mud-stained alteration information from remotely sensed
images and has been improved in the process [42,43]. However, as the actual mineral
spectral features of the ASTER data are not prominent and fit poorly with the typical rock
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reflectance spectral components extracted in the laboratory, the Crosta method is heavily
disturbed by topography in the extraction and weak information is challenging to remove.

Therefore, based on the Crosta method, this paper proposes a spectral feature enhance-
ment using the principal component analysis (EPCA) method to suppress the influence
of topography and enhance weak information. A total of nine bands of VNIR and SWIR
from ASTER remote sensing images were selected to determine the spectral range of the
ratio enhancement process based on the characteristic spectra of minerals to determine
the interval with the most remarkable change in slope, as well as the reflection peak and
absorption valley on the curve. The ratio of the reflection peak and absorption valley is
used to enhance the spectral differences of various lithologies as the principal component
in concert with the Crosta method for the combination of alteration EPCA analysis, color
synthesis with appropriate band ratios, and threshold segmentation using the threshold
method combined with the base map to form images of iron-stained alterations, magnesium
hydroxyl alterations, and aluminum hydroxyl alterations in the study area, highlighting
alteration information [44].

Due to the large number of images used in the study area and the selection of principal
components being a complex mechanical operation, following the basic principles of
principal component analysis, the spectrally enhanced band results with the initial nine
bands of ASTER images were used as ten variables to construct a 93 × 10 matrix (Equations
(1) and (2)) for the 93 scenes of the study area, which was transformed to a 10 × 10 matrix
(Equations (3) and (4)) by principal component transformation. An EPCA model was
written in R to automatically select PC1, PC2, PC3, and PC4 for each image scene and to
determine the primary contribution sources for principal component analysis.

Using ASTER image data as sample information, Here, p represents the number of
image bands and n represents the number of frames used, and observing p variables X1,
X2, . . . , Xp, the data information array for n samples is

X = [

x11 x12 . . . x1p
x21 x22 . . . x2p
. . . . . . . . . . . .
xn1 xn2 . . . xnp

] = [X1, X2, . . . Xp], n = 1, 2, 3, . . . , 93; p = 1, 2, 3, . . . , 10 (1)

Xi = (x1i, x2i, . . . , xni)
T , i = 1, 2, . . . , 10 (2)

The principal component analysis combines p observed variables into p new vari-
ables (composite variables). That is, the dimensionality reduction process of principal
component analysis.

Fi = w1ix1 + w2ix2 + . . . + wpixp, i = 1, 2, . . . , p; p = 1, 2, . . . , 10 (3)

When F satisfies the relevant conditions for principal component analysis, a 10 × 10
transformation matrix W can be constructed:

W = [

w11 w12 . . . w1p
w21 w22 . . . w2p
. . . . . . . . . . . .
wp1 . . . . . . wpp

], p = 1, 2, . . . , 10 (4)

4. Results and Analysis
4.1. Extraction of Alteration Information

The iron-stained alteration in the ASTER data in Figure 2 shows a weak absorption
valley at Band 1 and a high reflection peak at Band 2. The spectral features are first enhanced
by Band 2/Band 1 and then combined with Band 2, 3, and 4 for principal component
analysis, which meets the requirements of iron-stained alteration information extraction.
The Al-OH-like alteration minerals represented by alunite, kaolinite, and montmorillonite
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corresponded to absorption valleys formed by Band 6 of ASTER images and reflection
peaks created at Band 4 and Band 7, selected (Band 4 + Band 7)/Band 6 for spectral feature
enhancement, and also combined with Band 4, 6, and 7 for principal component analysis.
The Mg-OH-like alteration minerals, represented by chlorite and chrysoprase, have a
distinct absorption valley near Band 7 and Band 8 of the ASTER data, a weak reflection
peak at Band 6, and a high reflection peak at Band 9. (Band 6 + Band 9)/(Band 7 + Band 8)
was calculated for spectral feature enhancement. This was combined with Band 7, 8, and 9
for principal component analysis.

To compare the results of the improved spectral feature enhanced principal component
analysis (EPCA) method with the conventional Crosta method in extracting hydrothermal
alteration information. The statistical analysis of the alteration information in the study
area yielded 3.48%, 4.12%, and 6.89% in the study area, extracted with the conventional
Crosta method, of iron-stained alteration (blue), aluminum hydroxyl alteration (yellow),
and magnesium hydroxyl alteration (green), respectively. In contrast, the percentages of
the three alteration results obtained by the EPCA method extraction over the study area
were 8.11%, 6.80%, and 8.34%, respectively.

The further comparison of the selected study areas (Figure 4) shows that the alteration
results obtained by EPCA are significantly better than those of the traditional Crosta
method in terms of spatial aggregation; at the same time, the alteration results are enhanced
considerably after spectral enhancement, especially the iron-stained alteration, and the three
alteration results extracted by the improved EPCA method can be spatially generalized to a
specific aggregation pattern, which can be integrated with multi-source geological elements
through geological mineral analysis. The three alteration results extracted by the improved
EPCA method can be spatially aggregated. They can be analyzed employing geological-
mineralogical analysis and integrated with multi-source geological elements, which has a
tremendous advantage for the subsequently incorporated mineralization exploration.
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Figure 4. Comparison of the results of the traditional Crosta method (left) and the EPCA method
(right) for extracting change information in selected areas of the study area.

The results obtained by the EPCA method for Fe-stained alteration, Al-hydroxy alter-
ation, and Mg-hydroxy alteration in the study area are classified into three levels of intensity,
level 1, level 2, and level 3, respectively. Figures 5–10 show the spectral enhancement effects
calculated for the three warp bands. Finally, the results are overlaid on the ASTER remote
sensing image base map to produce alteration maps, as shown in Figures 11–13.
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Figures 5–10 highlight the better fit of the image spectra to the alteration results after
the band calculation, indicating that the improved EPCA method enhances the image weak
information after the targeted enhancement of the ranges of the target alteration minerals
as the most significant contributing source in the principal component analysis, excluding
the influence of topography and other factors.
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Combining the image features and hydrothermal alteration mineralization theory,
Figures 11–13 reflect that the overall alteration information in the study area is widely
distributed, mainly occurring in folded zones and linear-annular tectonic zones, with solid
spatial signals and some spots showing apparent spatial aggregation, providing a basis for
the further narrowing of the mineralization target area. The yellow dashed box in the figure
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indicates the spatial accumulation of alteration information, and it can be clearly seen that
the three alteration aggregation areas tend to be unified, which is a very encouraging signal
that the study has a vital role in narrowing the mineralization target area. The aggregated
information in these boxes is important for the subsequent delineation of the prospective
mineralized areas.

4.2. Integrated Analysis of Multi-Source Geological Elements

To better visualize the regional overview of alteration occurrence and summarize and
apply the mineralization rules, multi-source geological information, such as stratigraphic
lithology, linear tectonics, ring tectonics, geomorphology, and water systems related to
mineralization, must be integrated to obtain an information-rich image (Figure 14). Known
porphyry copper occurrences are also marked on the map, and these occurrences are
distributed in the areas mentioned above of the solid alteration range. To better understand
the extent to which the above information matches the actual situation, the above elements
are overlaid on the geological and mineral map of the Tibetan Gondian metallogenic
belt prepared by the Chengdu Institute of Geology and Mineral Resources in 2008 based
on comprehensive data. Additionally, the lineaments, including major fracture zones
and general fracture zones, are plotted in a geological rose diagram (Figure 15), and
it is obvious that the geological structures in the WSW-ENE and SW-NE directions are
the most obvious in the area, which are formed due to Himalayan orogeny and plate
collision. This is also the reason for the generation of magmatic hydrothermal activity
mentioned earlier, which is closely related to the development of alteration minerals. Three
representative areas of the Chengba copper mine, Benglong copper mine, and Sangri
copper mine were selected for display (Figures 16–18). Under the comprehensive analysis
of lithology–tectonic alteration multi-source geological information, the mineralization
target area can be effectively located, providing a theoretical basis for actual exploration.
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To enhance the spatial aggregation and delineation of metallogenic prospective areas
based on the laws mentioned above, we divided the study area into 20 × 30 rectangular
blocks using the thermogram concept. We quantified lithology–tectonic alteration multi-
source geological information through visual interpretation on a scale of 0–9, totaling ten
levels (Figure 19). By combining the thermodynamic map with information on the distri-
bution of erosion in the county zones of the study area, we conducted a comprehensive
analysis (Figure 20) and found that the most significant spatial clustering of multi-source
geological elements existed in several areas (Figure 21). These areas include the Neoprotero-
zoic porphyry tectonic window in Sakya County, Shigatse City, located in the southwest
of the study area (a); the Paleoproterozoic porphyry fracture zone in Xietongmen County,
Shigatse City, located in the northwest of the study area (b); the Paleoproterozoic and
Paleocene granite porphyry fracture zone in the southern part of the Nyingchi Tanggula
Range (c); and the Paleoproterozoic porphyry fracture zone in the eastern part of Lhasa
in the central part of the study area (d). These areas can serve as prospective areas for
mineralization and provide a theoretical basis for actual exploration and mineralization.
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Paleoproterozoic porphyry fracture zone in Xaitongmen County, Shigatse City, northwest of the study
area; (c) Paleozoic and Paleocene granite porphyry fracture zone in the southern Tanggula Range,
Nyingchi; (d) Paleozoic porphyry fracture zone in eastern Lhasa, central of the study area.
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Figure 21. Multi-source geoscience element concentration area. (a) Neoproterozoic porphyry tectonic
window in Saga County, Shigatse City, southwest of the study area; (b) Paleoproterozoic porphyry
fracture zone in Xaitongmen County, Shigatse City, northwest of the study area; (c) Paleozoic and
Paleocene granite porphyry fracture zone in the southern Tanggula Range, Nyingchi; (d) Paleozoic
porphyry fracture zone in eastern Lhasa, central of the study area.

5. Discussion

Located in the southern part of the Tibetan Plateau, the Gondwana region is remote
and difficult to access, making traditional mineral exploration challenging. However, due
to the region’s favorable deep dynamics, it has abundant mineral resources, and world-class
porphyry copper deposits in areas such as Qulong and Jiama have been recently developed.
Geologists believe that the region still has significant potential for further exploitation [45].
Therefore, geophysical, chemical, and remote sensing methods have become pioneering
technologies for field exploration, allowing for the efficient targeting of areas for further
investigation [46,47].

Previous studies on remote sensing alteration information extraction methods have
utilized more traditional band ratio and principal component analysis methods [48,49],
which have several limitations, as mentioned in the previous section. Therefore, improving
the various levels of alteration information extraction, such as extraction area and spatial
aggregation, has become a frontier research problem. This paper builds upon previous
work by enhancing the spectral features of remote sensing data through band calculation
and by improving the traditional Crosta principal component analysis method to propose
an EPCA method. Our method demonstrates superior extraction performance compared
to conventional methods when validated against geological survey data.

This paper differs from most studies in this field, which often focus on a particular
mining area. Instead, we expand the research horizon by starting from a specific sizable
metallogenic belt, the Gondwana region [50,51], providing results from a macro perspective.
These results can be effectively integrated with multi-source geological elements for in-
depth analysis and discussion. Detecting and mining large deposits is often part of national
or multinational companies’ investment projects, and results on a large scale are relevant to
the overall understanding of regional mineralization potential and expected targets [52].
However, due to the broad scope of the study, access to field data for validation of the
results is limited. To improve the results’ reliability, this paper combines the geological
guarantee of the results with the geological mineral map of the Gondwana provided by
the Geological Survey. While this approach offers theoretical support, it is important for
relevant personnel to conduct the field exploration of reliable mineralized prospective areas
and obtain field data to carry out more scientific validation [53,54]. Future work could
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consider combining deep learning methods with the large amount of collected data to
achieve better efficiency and accuracy in mineral alteration information extraction.

6. Conclusions

This paper selects the Gondwana mineralized belt in the East Tethys–Himalayan
mineralized domain as the study area and proposes a spectral feature-enhanced principal
component analysis (EPCA) method based on waveband operation in order to extract
the results of alteration information from ASTER remote sensing data for the whole area
of the Gondwana mineralized belt and combines them with lithology–tectonic and other
multi-source geological details to carry out a comprehensive geoscientific evaluation. The
results help the implementation of mineral exploration and mining work in the area
at a macro level. The verification with geological data reveals that the Neoproterozoic
porphyry tectonic window in Saga County and the Paleoproterozoic porphyry fracture
zone in Xietongmen County of Rikaze have apparent spatial aggregation for prospective
mineralization zones, which significantly reduces the scope of field survey and provides an
excellent theoretical basis for this purpose.

Considering the problem that the traditional Crosta method is easily affected by dis-
turbing factors, such as topography and insensitivity to the weak information of images, an
EPCA model was constructed to complete the automatic selection of principal components
of each scene image, which avoids the mechanical and complicated extraction of significant
elements and contributing sources when extracting large-scale etching information and dra-
matically improves the extraction efficiency. The results show that the etching information
extracted by the EPCA method is significantly better than the traditional Crosta method in
terms of etching area and spatial aggregation. Therefore, the procedure can be effectively
applied to exploring porphyry copper ore, which is essential for delineating the target area
of the mineralization search and revealing and utilizing the mineralization pattern.

However, it was also found in the study that ASTER multispectral images still need
improvement in the identification of homogeneous and heterogeneous minerals, and the
future work should optimize the degree of mineral classification and improve the reliability
of the results by trying to refine the means of mineral identification with hyperspectral
images. In addition, future studies should combine regional mineral alteration information
with geophysical and chemical information from a geological perspective. This is of great
scientific importance for the in-depth analysis of the distribution of mineralizing elements,
the formation process of metal deposits in mineralized zones, and the improvement of
porphyry mineralization theory.
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