# Modeling of Sand Triaxial Specimens under Compression: Introducing an Elasto-Plastic Finite Element Model to Capture the Impact of Specimens’ Heterogeneity

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Application of 3D-DIC on Triaxial Tests

#### 2.1. Triaxial Test

#### 2.2. Digital Image Correlation (3D-DIC)

## 3. Finite Element Modeling of Triaxial Tests

#### 3.1. Experimental Behavior of Dense, Loose, and Half-Dense Half-Loose Specimens

#### 3.2. Finite Element Model

#### 3.3. Proposed Elasto-Plastic Constitutive Model and Parameters

#### 3.4. Analysis Cases of Homogeneous and Heterogeneous Specimens

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Medina-Cetina, Z.; Song, A.; Zhu, Y.; Pineda-Contreras, A.R.; Rechenmacher, A. Global and Local Deformation Effects of Dry Vacuum-Consolidated Triaxial Compression Tests on Sand Specimens: Making a Database Available for the Calibration and Development of Forward Models. Materials
**2022**, 15, 1528. [Google Scholar] [CrossRef] [PubMed] - Zhu, Y.; Medina-Cetina, Z.; Pineda-Contreras, A.R. Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens. Materials
**2022**, 15, 2189. [Google Scholar] [CrossRef] [PubMed] - Zhu, Y.; Medina-Cetina, Z. Assessment of Spatio-Temporal Kinematic Phenomena Observed along the Boundary of Triaxial Sand Specimens. Appl. Sci.
**2022**, 12, 8091. [Google Scholar] [CrossRef] - Zhu, Y.; Medina-Cetina, Z. Statistical Characterization of Boundary Kinematics Observed on a Series of Triaxial Sand Specimens. Appl. Sci.
**2022**, 12, 11413. [Google Scholar] [CrossRef] - Duncan, J.M. The role of advanced constitutive relations in practical applications. In Proceedings of the 13th International Conference Soil Mechanics and Foundation Engineering, New Delhi, India, 5–10 January 1994; Volume 5, pp. 31–48. [Google Scholar]
- Potts, D.M. Numerical analysis: A virtual dream or practical reality? Géotechnique
**2003**, 53, 535–573. [Google Scholar] [CrossRef] - Brinkgreve, R.B.J. Selection of Soil Models and Parameters for Geotechnical Engineering Application: Soil Constitutive Models: Evaluation, Selection, and Calibration. Geotech. Spec. Publ.
**2005**, 128, 69–98. [Google Scholar] [CrossRef] - Lade, P.; Kim, M. Single hardening constitutive model for frictional materials III. Comparisons with experimental data. Comput. Geotech.
**1988**, 6, 31–47. [Google Scholar] [CrossRef] - Boldyrev, G.G.; Idrisov, I.K.; Valeev, D.N. Determination of parameters for soil models. Soil Mech. Found. Eng.
**2006**, 43, 101–108. [Google Scholar] [CrossRef] - Lade, P.V. Overview of constitutive models for soils. In Soil Constitutive Models: Evaluation, Selection, and Calibration; Yamamuro, J.A., Kaliakin, V.N., Eds.; ASCE Geotechnical Special Publication No. 128; ASCE: Reston, VA, USA, 2005; pp. 1–34. [Google Scholar] [CrossRef]
- Sutton, M.; Wolters, W.; Peters, W.; Ranson, W.; McNeill, S. Determination of displacements using an improved digital correlation method. Image Vis. Comput.
**1983**, 1, 133–139. [Google Scholar] [CrossRef] - Sutton, M.A.; McNeill, S.R.; Helm, J.D.; Chao, Y.J. Advances in Two-Dimensional and Three-Dimensional Computer Vision. Photomech. Top. Appl. Phys.
**2000**, 77, 323–372. [Google Scholar] [CrossRef] - Sutton, M.; Yan, J.; Tiwari, V.; Schreier, H.; Orteu, J. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt. Lasers Eng.
**2008**, 46, 746–757. [Google Scholar] [CrossRef] [Green Version] - Schreier, H.; Orteu, J.-J.; Sutton, M.A. Image Correlation for Shape, Motion and Deformation Measurements; Springer Science & Business Media: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Hall, S.; Bornert, M.; Desrues, J.; Pannier, Y.; Lenoir, N.; Viggiani, G.; Bésuelle, P. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique
**2010**, 60, 315–322. [Google Scholar] [CrossRef] - Higo, Y.; Oka, F.; Sato, T.; Matsushima, Y.; Kimoto, S. Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils Found.
**2013**, 53, 181–198. [Google Scholar] [CrossRef] [Green Version] - Chaney, R.; Demars, K.; Macari, E.; Parker, J.; Costes, N. Measurement of Volume Changes in Triaxial Tests Using Digital Imaging Techniques. Geotech. Test. J.
**1997**, 20, 103. [Google Scholar] [CrossRef] - Suits, L.D.; Sheahan, T.; Rechenmacher, A.; Finno, R. Digital Image Correlation to Evaluate Shear Banding in Dilative Sands. Geotech. Test. J.
**2004**, 27, 10864. [Google Scholar] [CrossRef] - Rechenmacher, A.L.; Abedi, S.; Chupin, O.; Orlando, A.D. Characterization of mesoscale instabilities in localized granular shear using digital image correlation. Acta Geotech.
**2011**, 6, 205–217. [Google Scholar] [CrossRef] [Green Version] - Wang, P.; Sang, Y.; Shao, L.; Guo, X. Measurement of the deformation of sand in a plane strain compression experiment using incremental digital image correlation. Acta Geotech.
**2018**, 14, 547–557. [Google Scholar] [CrossRef] - Belheine, N.; Plassiard, J.-P.; Donzé, F.-V.; Darve, F.; Seridi, A. Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech.
**2009**, 36, 320–331. [Google Scholar] [CrossRef] - Cil, M.B.; Alshibli, K.A. 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary. Acta Geotech.
**2013**, 9, 287–298. [Google Scholar] [CrossRef] - Lee, S.J.; Hashash, Y.M.; Nezami, E.G. Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech.
**2012**, 43, 92–100. [Google Scholar] [CrossRef] - Lu, Y.; Frost, D. Three-Dimensional DEM Modeling of Triaxial Compression of Sands. In Proceedings of the GeoShanghai International Conference 2010, Shanghai, China, 3–5 June 2010; pp. 220–226. [Google Scholar] [CrossRef]
- Kawamoto, R.; Andò, E.; Viggiani, G.; Andrade, J.E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids
**2016**, 91, 1–13. [Google Scholar] [CrossRef] [Green Version] - Kawamoto, R.; Andò, E.; Viggiani, G.; Andrade, J.E. All you need is shape: Predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids
**2018**, 111, 375–392. [Google Scholar] [CrossRef] [Green Version] - Kozicki, J.; Tejchman, J. Numerical simulations of triaxial test with sand using DEM. Arch. Hydro-Eng. Environ. Mech.
**2009**, 56, 149–172. [Google Scholar] - Huang, W.; Sun, D.; Sloan, S. Analysis of the failure mode and softening behaviour of sands in true triaxial tests. Int. J. Solids Struct.
**2007**, 44, 1423–1437. [Google Scholar] [CrossRef] [Green Version] - Mozaffari, M.; Liu, W.; Ghafghazi, M. Influence of specimen nonuniformity and end restraint conditions on drained triaxial compression test results in sand. Can. Geotech. J.
**2022**, 99, 1–13. [Google Scholar] [CrossRef] - Medina-Cetina, Z.; Rechenmacher, A. Influence of boundary conditions, specimen geometry and material heterogeneity on model calibration from triaxial tests. Int. J. Numer. Anal. Methods Géoméch.
**2009**, 34, 627–643. [Google Scholar] [CrossRef] - ABAQUS Inc. ABAQUS User’s Manual, version 6.14.; ABAQUS Inc.: Palo Alto, CA, USA, 2022. [Google Scholar]
- Song, A.; Medina-Cetina, Z.; Rechenmacher, A.L. Local deformation analysis of a sand specimen using 3D digital image correlation for the calibration of a simple elasto-plastic model. In Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25–29 March 2012; pp. 2292–2301. [Google Scholar] [CrossRef]
- Geocomp Corporation. Geocomp Triaxial Automated System; Geocomp Corporation: Acton, MA, USA, 2002. [Google Scholar]
- Medina-Cetina, Z. Probabilistic Calibration of a Soil Model. Ph.D. Thesis, The John Hopkins University, Baltimore, MD, USA, 2006. [Google Scholar]
- Correlated Solutions, Inc. VIC-3D; Correlated Solutions, Inc.: Irmo, SC, USA, 2010. [Google Scholar]
- Das, B.M. Principles of Geotechnical Engineering, 5th ed.; Thomson Learning: Pacific Grove, CA, USA, 2001. [Google Scholar]
- Finno, R.J.; Rechenmacher, A.L. Effects of Consolidation History on Critical State of Sand. J. Geotech. Geoenviron. Eng.
**2003**, 129, 350–360. [Google Scholar] [CrossRef] - Song, A. Deformation Analysis of Sand Specimens Using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2012. [Google Scholar]
- Gay, O.; Boutonnier, L.; Foray, P.; Flavigny, E. Laboratory characterization of Hostun RF sand at very low confining stresses. In Deformation Characteristics of Geomaterials; Di Benedetto, H., Doanh, T., Geoffroy, H., Sauzeat, C., Eds.; A. A. Balkema: Lisse, The Netherlands, 2003; pp. 423–430. [Google Scholar] [CrossRef]
- Potts, D.M.; Zdravkovic, L. Finite Element Analysis in Geotechnical Engineering; Thomas Telford Publishing: London, UK, 1999; Volume 1-Theory. [Google Scholar]

**Figure 2.**Photo images of deforming specimen 120904c at (

**a**) 0.2% (

**b**) 3.6% (

**c**) 7% (

**d**) 12% of axial strain levels [1].

**Figure 3.**Photo images and cumulative displacement fields in mm at 0.2% of axial strain, representing the elastic state.

**Figure 4.**Photo images and cumulative displacement fields in mm at 12.0% of axial strain, representing the critical state.

**Figure 5.**Averaged displacements of the dense sand specimen (120409c): (

**a**) vertical displacement (

**b**) Radial displacement.

**Figure 6.**Experimental behavior curves (

**a**) axial stress vs. axial strain (

**b**) volumetric strain vs. axial strain for the dense, loose, and half-dense half-loose specimens.

**Figure 7.**Schematic diagram of the triaxial compression test, and of its corresponding finite element model.

**Figure 8.**Vertical profiles of each of the three specimens analyzed (notice that the mean radius figures are the same observations but plotted at different scales).

**Figure 9.**Global stress-strain behavior curves: (

**a**) axial stress vs. axial strain, (

**b**) volumetric strain vs. axial strain.

**Figure 10.**Illustrative hardening and softening model based on the implementation of the ABAQUS Mohr–Coulomb model.

**Figure 11.**Finite element models to reproduce different sand specimen configurations: (

**a**) dense specimen (dense), (

**b**) loose specimen (loose), (

**c**) half-dense half-loose specimen modeled as a homogeneous material (layered_hom), (

**d**) half-dense half-loose specimen modeled as a heterogeneous material (layered_het) (

**e**) half-loose half-dense specimen modeled as a heterogenous material considering a transition zone between the loose and the dense specimen’s segments (layered_het_transition).

**Figure 16.**Contours of model cases at the 12% of axial strain representing the critical state of models (

**a**) dense (

**b**) loose and (

**c**) layered_het_transition for Stress (

**1**), plastic strain (

**2**), and total displacement (

**3**).

**Figure 17.**Displacement vector fields of layered models (

**a**) layered_hom (

**b**) layered_het (

**c**) layered_het_transition.

**Table 1.**Summary of experimental tests used in this study [1].

Case | Test Name | Height (mm) | Diameter (mm) | Initial Density (kg/m ^{3}) | Relative Density (%) | Confinement (kPa) | Sample Preparation |
---|---|---|---|---|---|---|---|

Dense | 120904c | 159.67 | 71.11 | 1713.13 | 91.83 | 40 | Vibratory compaction |

Loose | 121304b | 158.17 | 70.86 | 1588.84 | 46.39 | 40 | Dry pluviation |

Half-densehalf-loose layered | 120704c | 157.67 | 70.88 | 1648.06 (avg.) | 68.90 (avg.) | 40 | Vibratory compaction (two layers) |

Upper | 78.17 | 70.68 | 1549.61 | 30.54 | 40 | ||

Lower | 79.50 | 71.27 | 1764.17 | 98.87 | 40 |

Case | Configuration | Unit Weight (kN/m ^{3}) | Young’s Modulus (kPa) | Poisson’s Ratio | Friction Angle (deg) | Dilation Angle (deg) |
---|---|---|---|---|---|---|

Dense | Dense | 20 | 21,559 | 0.44 | 43.09 | 22.78 |

Loose | Loose | 20 | 15,818 | 0.25 | 32.86 | 14.48 |

Layered_hom | Medium | 20 | 18,164 | 0.20 | 32.12 | 11.97 |

Layered_het | Upper loose | 20 | 15,818 | 0.25 | 32.86 | 14.48 |

Lower dense | 20 | 21,559 | 0.44 | 43.09 | 22.78 | |

Layered_het_transition | Upper loose | 20 | 15,818 | 0.25 | 32.86 | 14.48 |

Transition zone | 20 | 20,361 | 0.37 | 36.86 | 18.19 | |

Lower dense | 20 | 21,559 | 0.44 | 43.09 | 22.78 | |

Porous stone | - | 20 | 1,000,000 | 0.20 | - | - |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Song, A.; Pineda-Contreras, A.R.; Medina-Cetina, Z.
Modeling of Sand Triaxial Specimens under Compression: Introducing an Elasto-Plastic Finite Element Model to Capture the Impact of Specimens’ Heterogeneity. *Minerals* **2023**, *13*, 498.
https://doi.org/10.3390/min13040498

**AMA Style**

Song A, Pineda-Contreras AR, Medina-Cetina Z.
Modeling of Sand Triaxial Specimens under Compression: Introducing an Elasto-Plastic Finite Element Model to Capture the Impact of Specimens’ Heterogeneity. *Minerals*. 2023; 13(4):498.
https://doi.org/10.3390/min13040498

**Chicago/Turabian Style**

Song, Ahran, Alma Rosa Pineda-Contreras, and Zenon Medina-Cetina.
2023. "Modeling of Sand Triaxial Specimens under Compression: Introducing an Elasto-Plastic Finite Element Model to Capture the Impact of Specimens’ Heterogeneity" *Minerals* 13, no. 4: 498.
https://doi.org/10.3390/min13040498