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Abstract: Campiglia Marittima (hereafter Campiglia) has a long record of attracting interest on its ore
deposits that have been intermittently exploited from the Copper Age to the late XX century. Since
the XIX century, Campiglia has been a key locality for the debate on skarn-forming processes due to
the presence of mining activities ensuring access to ever new rock exposures. The pioneering study
of vom Rath and the comparison with attractive chemical model (e.g., Korzhinskii’s theory) in the
XX century made Campiglia a “classic” example of skarn ore deposit, from the causative intrusion
to the marble host rock. In recent years, detailed field investigations integrated by petrographic,
geochemical, and isotopic analyses revealed a more complex and stimulating geological history.
The Campiglia skarn was later intruded by mafic magma causing textural reworking and chemical
redistribution as well as the reverse telescoping process with Fe-Cu sulfides overprinting previously
formed Pb-Zn ore. This work aims to trace the evolution of the scientific thinking on the Campiglia
ore deposit by comparison with existing skarn-forming models and, ultimately, shows that the
current skarn-forming model(s) cannot fully explain the textural and geochemical features of the
Campiglia skarn.

Keywords: Campiglia Marittima; ore deposit; skarn

1. Introduction

The geological heritage of Tuscany is one of the most varied, studied, and rich in
history across Italy, from both the industrial and scientific point of view, representing an
area of active research and educational training for Italian and foreign scientific institutions.
Some localities are known worldwide for having sparked scientific debate on the formation
of geothermal/hydrothermal fluids and mineral deposits since the XIX century. Some
prominent examples are undoubtedly the Larderello–Travale geothermal field, the Elba
Island Fe deposits, and the Monte Amiata Hg district.

Geologists need to be able to walk, map, and sample key outcrops in order to update
theories on ore-forming events. Unfortunately, the Italian and international scientific
community has lost many key outcrops due to the extensive closure of mining activities
in Italy in the second half of the XX century; additionally, the scientific interest for ore-
forming processes declined in this period. In Tuscany, prime examples are the closure (and
consequent flooding) of several mines that were sites of major scientific breakthroughs in
the last century (e.g., Campiano, Niccioleta, Fenice Capanne) and “gyms” for the training
of many generations of geologists.

The present paper aims to describe a locality that has “survived” this fate, the
Campiglia skarn system. It traces the evolution of scientific thinking through the works of
authors that studied the igneous rocks and the related skarn deposits, stressing the role of
accessibility for the development of new scientific scenarios on ore-forming processes.
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2. Geological Setting and Past Mining Activities

Campiglia is located in the internal side of the Apennine chain, at the northern end
of the Tyrrhenian Sea (Figure 1a). The current geological setting derives from the relative
movements of the Sardinia–Corsica block and the Adria microplate, belonging to the
European and African plates, respectively. The convergence between these plates began in
the Late Cretaceous leading to Oligocene–Miocene continental collision ([1] and references
therein). After the collision, the rollback of the Adria slab caused the eastward retreat of the
subduction zone due to the eastward migration of the compressional front. The continental
collision produced a stack of tectonic units, listed as follows from the top: 1. Ligurian
Units, representative of the Ligure–Piemontese oceanic basin and related sedimentary
covers; 2. Subligurian Units, mainly formed by sandstones and shaly-calcareous deposits;
3. Tuscan Units, representative of the former proximal side of the Adria continental margin
deformed at shallow (Tuscan Nappe) to deeper structural levels ([1,2] and reference therein).
Lithospheric extension followed the eastward migrating compressional front [3], generating
a strongly thinned continental crust in southern Tuscany (20 to 25 km [4]) associated with
magmatic activities traditionally known as the Tuscan Magmatic Province (TMP [5]).
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Figure 1. (a) Location of Campiglia in the northern Apennine chain. (b) Schematic geological map of
Temperino–Lanzi area showing the main mining tunnels and historic buildings (e.g., Middle Age:
Rocca San Silvestro; Renaissance: Palazzo Lanzi, Case Caprareccia; XIX-XX century: Palazzo Gowett, Earle,
Le Marchand, and Gowett shafts).

The TMP consists of a series of crustal anatectic and mantle-derived intrusive and/or
volcanic centers distributed on SW–NE lineaments that show a decreasing age moving
northeastward (e.g., [6]), spatially and temporally correlated with the extensional phase
(e.g., [7–13]). The magmatic activity led to HT-LP metamorphism in the host rocks, as-
sociated together with hydrothermal activities still active today [14], metasomatic rocks,
and related ore deposits (e.g., Campiglia [15]; Castel di Pietra [16]; Elba Island [17,18];
Larderello [19]; Gavorrano [13]; Giglio Island [20]).
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The Campiglia area is characterized by a N–S trending wedge-shaped horst delimited
by high-angle extensional and strike-slip faults [8,21]. The horst is mainly made of Mesozoic
carbonate formations of the Tuscan Nappe surrounded by Jurassic–Eocene ophiolitic-flysch
rocks (Sub-Ligurian and Ligurian Units; Figure 1). The vertical displacement recorded
by the lateral horst faults is of the order of a thousand meters causing juxtaposition, of
the deeper formations of the Tuscan Nappe with the overlying Sub-Ligurian and Ligurian
Units. The Campiglia area has been repeatedly affected by magmatic and hydrothermal
events (e.g., [22]).

Campiglia is located in the center, both spatially and temporally, of the TMP in which
several late Miocene–Pliocene plutonic, subvolcanic, and volcanic rocks were emplaced
about 1 Ma [23]. Ore deposits and metasomatic rocks are spatially associated with mag-
matic bodies and they are exploited for different commodities such as Sn, Fe, Cu, Pb,
Zn, and Ag. The exploitation dates back at least to the Copper Age and then developed
intermittently during the first Millennium BCE, the Middle Ages, the Renaissance, the
Industrial Revolution, and up until the 1970s ([24–27] and references therein). At present,
a mine for raw ceramic materials is still active, exploiting the K-altered Botro ai Marmi
granite [28]. This area was partly protected by local government, with the establishment of
the Parco Archeominerario di San Silvestro [26,29], which includes several closed mines
(e.g., the Temperino and Lanzi mines; Figure 1), that were once exploiting Fe-Cu-Zn-Pb(-Ag)
skarn orebodies.

3. The Pioneering Studies on Campiglia Skarn Deposit

This section, far from providing an exhaustive review of the papers published on
this area, is reporting on the contribution of studies on Campiglia ore deposit to the main
advancements on hypotheses and models for skarn-forming processes. In this framework,
the XIX century was a challenging scientific period worldwide. The growing demand for
metals promoted a renewed interest for ore exploration and exploitation stimulating the
scientific discussion on ore-forming processes (see [30]). Furthermore, the mining activities
eased access to surface and underground rock exposures, ultimately sparking the scientific
debate. In Tuscany, the resuming of mining activities started after the Congress of Vienna
in 1815, attracting the best European mining scientists and engineers [31].

For sake of clarity, we will use the term “skarn” throughout the text, although at that
time of some authors the term was not yet in use. In fact, Törnebohm [32] used the term
“grönskarn” to describe pyroxene-garnet rocks in an Fe deposit in Sweden for the first time
in 1875 and it will become of common usage much later.

The first description of the Campiglia skarn was proposed by Paolo Savi [33,34] based
on the observations performed at the “Cava del Piombo”, a Renaissance abandoned Pb-
Zn(-Ag) mine still visible today near Rocca San Silvestro (Figure 1). Savi described texture
and mineralogy of the skarn silicates and ore phases without proposing interpretations
on timing and genesis of mineral formation. After Savi, Friedrich Hoffmann visited the
abandoned works of Campiglia in 1830 providing a detailed description of skarn and
magmatic rocks and hypothesizing contemporaneous formation/emplacement [35].

The year 1841 was important, as it was when two companies directed by the French
geologists Amédée Burat and Henry Coquand re-started the exploration of the ore deposit.
At that time, the mines had been abandoned for several centuries and exploration activities
developed from the labyrinth of ancient tunnels, shafts, and voids. Coquand decided to
explore with a vertical shaft (Coquand Shaft, now Earle shaft) and a transverse vertical
section one of the Temperino skarn body. This section, known with the name of “Coquand
Section”, will influence scientific debate to the present day (Figure 2). In fact, Gerard vom
Rath, based on this outcrop, described for the first time in the world the internal miner-
alogical zoning in a metasomatic body (Figure 2b), a typical feature for skarn bodies [36].
Furthermore, he recognized two different types of magmatic rock theorizing that the mafic
porphyry represents the alteration of the felsic one. This misinterpretation, also due to the
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short time spent on the outcrop (as reported in [37]), will also condition the views of later
authors such as Lotti [38,39].

Finally, we want to include in the earliest scientific investigators of the Campiglia
ore deposit Alfred Bergeat. Bergeat, based on the same outcrops observed by the pre-
vious authors, proposed a detailed geological profile of the “Coquand Section” and an
innovative idea on metasomatic-hydrothermal and magmatic events [40]. In this view,
the hydrothermal-metasomatic event produced ilvaite and hedenbergite skarn bodies fol-
lowed by the emplacement of mafic porphyry responsible for the formation of sulfide
mineralization. The emplacement of felsic porphyry was the last event associated to the
formation of epidosite for hydrothermal interaction with the skarn bodies. This sequence
of events was not adopted by following authors, although correct, as it will be confirmed
over 100 years later.
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Figure 2. (a) Panoramic view of the Earle Shaft (Temperino mine) with schematic arrangement of
Earle skarn body and location of the “Coquand Section”. (b) First illustration of the “Coquand
Section” by vom Rath (modified from [37]). Abbreviations are referred to: M.—Marmor (marble);
Str.A.—Strahliger Augit (hedenbergite facies); A. p.—Augitporphyr (mafic porphyry); I.—Ilvait
(Ilvaite facies); Q. p.—Quarzporphyr (felsic porphyry). The numbers referred to the thickness of each
unit in feet. (c) Three-dimensional geological survey of the “Coquand Section” (modified from [41]).
The picture represents the most recent representation of this historical-scientific outcrop.

4. Campiglia as Reference Locality for Skarn Deposit

Campiglia became a reference locality for skarn-forming processes during the XX
century, when the interpretation on the sequence of magmatic/hydrothermal events and
the comparison with attractive chemical theory made it an exceptional case study.

Francesco Rodolico, largely impressed by the work of Goldschmidt [42], described
the temporal sequence that would be adopted by almost all later authors (e.g., [22,43–50]).
Rodolico considered the mafic porphyry the first intrusion, in the reverse sequence with
respect to Bergeat [40]. The mafic magma promoted the formation of ilvaite and hedenbergite
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skarn phases for metasomatism of the marble host-rock. The last magmatic event was
the emplacement of felsic porphyry [51]. Rodolico was the first author to clearly invoke a
direct genetic link between the emplacement of magmas (mafic porphyry), exsolution of
hydrothermal fluids, and formation of skarn.

In the 1940 and 1950s, Korzhinskii published, largely in Russian, several papers
developing the modern theory for metasomatic-forming processes. The ideas of Korzhinskii
will spread mainly from the 1960s onward, with the publication of “The Theory of Systems
with perfectly mobile components and processes of mineral formation” [52] and “The
Theory of Metasomatic Zoning” [53]. The later authors applied this theoretical approach
to discuss and explain the field and chemical data in skarn bodies (for a review see [36]).
In this framework, also the case of Campiglia will be used by various authors to test
Khorzinskii’s theory.

In 1970, Bartholomé and Evrard [47] refined the mineralogical zoning describing
an outward symmetric zoning sequence developed from the mafic porphyry toward the
marble by successive steps with magnetite, followed by ilvaite, and, finally, clinopyroxene
facies. These facies were produced by the change of fugacity of CO2 over time in agreement
with Khorzhinskii’s theory. In addition, they described that skarn silicates can often be
found an ilvaite–hedenbergite banded skarn zone. Burt [48,49] further elaborated the
zoning sequence, inserting a quartz zone between the hedenbergite facies and marble
(Figure 3). He defined a modified spatial-temporal evolution respect to [47] with the
simultaneous development of all the facies, with the inner facies continuously replacing
the outer ones. These results would be in agreement with chemical potential gradients set
up between iron and silica-rich solutions and marble host-rocks. Finally, Corsini et al. [22]
based on the [47] sequence, suggested that also the sulfides developed in sequential stages,
in which the Cu-Pb-Zn ore were produced after silicates with chalcopyrite early, followed
by sphalerite and late galena.
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Figure 3. (a) Schematic illustration of the “classical model” of Campiglia skarn-forming event. Silicate
stage is based on propagation reaction front model (modified from [36]) and mineralogical zoning [47].
Sulfide stage is based on [22] with spatio-temporal zoning of Fe-Cu sulfides (mainly pyrite, pyrrothite,
and chalcopyrite) and Pb-Zn sulfides (sphalerite, and galena). (b) Chemical potential diagram for
the Campiglia skarn (modified from [49]), based on Korzhinskii’s theory. Red arrow indicates the
successive skarn zones from the source toward the marble host-rock.

At this time, the field features (e.g., mineralogical zoning) and the sequence of
the magmatic-hydrothermal events, as well as the historical scientific significance make
Campiglia a “classic example” of a proximal exoskarn deposit (e.g., [54–56]) having all
the typical features of the skarn-forming model (Figure 3) [36]. The closure of the last
mining activities in 1979 resulting in the abandonment of the area, will make Campiglia a
destination for sporadic geological studies on ore deposits [50,57] and field trips [58].
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5. Campiglia: A New Skarn Model for the XXI Century

In the late XX century, mining and geological activities in Tuscany were headed to shut
down. Meanwhile, archeological investigations were developing (e.g., under the guidance
of Riccardo Francovich, University of Siena), with the first excavation campaign in 1984 of
Rocca San Silvestro, a medieval village of miners, eventually leading to the establishment
of the “Parco Archeominerario di San Silvestro” in 1996 [26,29]. The archeological-mining
park would be pivotal for the following scientific activities, including geological ones,
beginning with the signature in 2007 of the agreement between “Parchi Val di Cornia S.p.A.”
(park management public company), “Dipartimento di Scienze della Terra, Università di
Pisa”, and “Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche”. From
that moment, the Campiglia skarn would be the subject of a renewed geological interest
through detailed field, petrographic, geochemical, isotopic, and geochronological studies.
Furthermore, it is a customary stop for field trips on Tuscany ore deposits for Italian and
foreign universities as well as for tourists and laymen (e.g., [59]).

The detailed field investigation performed at the surface and in all the underground
levels of Temperino and Lanzi mines as well as in other minor mines (see [15]) started
in 2008, allowing collection of data that eventually led to discovering scenarios for skarn
formation significantly diverging from the classical exoskarn model. The reconstruction
of the relative sequence of magmatic-hydrothermal events, based on robust spatial rela-
tionships between skarn, mafic, and felsic porphyries (Figure 4) testifies that the skarn was
formed first, followed by emplacement of the magmatic units. The discovery of large pri-
mary skarn pockets filled by mafic porphyry (Temperino porphyry unit) is, to the author’s
knowledge, the first example in the world (Figure 5). Furthermore, two different types of
felsic magmatic rocks (i.e., Coquand and Ortaccio porphyry units) have been identified.
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based on geological survey and drill logs data. (b) Geological map of level 1—Le Marchand skarn
body (Temperino mine) showing the distribution of the three facies and the relationships with
magmatic rocks (following the methods reported in [15]).
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formation, a reaction reproduced also experimentally [60]. Furthermore, large volumes of 
skarn are formed by an alternance of primary millimetric to decimetric levels of ilvaite and 
hedenbergite (Figures 4 and 5c–e), with no evidence for reciprocal replacement. Ultimately, 
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ent velocities [36,49] can no longer be applied to the Campiglia skarn. 
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Figure 5. (a) Centimeter-size ilvaite crystal in skarn pocket associated with late quartz. (b) Euhedral
ilvaite in a skarn pocket filled by mafic Temperino porphyry after ilvaite growth (level 3—Earle body).
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of growth toward a pocket filled by late, low-temperature quartz (level 3—Earle body). (d) Same
sequence of (c) with a pocket filled by mafic Temperino porphyry (level 3—Earle body). Fe-Cu sulfide
veins and masses partially replacing primary skarn silicates. (e) Detail of the skarn sequence, with
alternate millimetric bands of ilvaite and hedenbergite. Late quartz and epidote veins cutting the
skarn. Yellow arrows indicate skarn mineral growth versors. See Figure 6 for location of images of
skarn pockets (c,d).
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Figure 6. (a) Geological map of the middle part of level 3-Earle body (Temperino mine; modified
from [15]). The main large primary skarn pockets are located inside the skarn body, as indicated by
the hatched areas. (b) Skarn mineral growth versors (blue arrows - number referred to plunge) and
traces of plane from which mineral growth versors diverge (blue lines - solid: well constrained plane
traces; dotted: inferred plane traces; modified from [15]). The main large primary skarn pockets are
located in the middle between two different planes at the contact between two skarn front units. In
this figure, only the central skarn units are colored (yellow, pale and bright red, and blue colors).
Note that some magmatic dykes cut the traces of plane from which mineral growth versors diverge.
(c) Close-up of the contact zone between two skarn propagation front units, with primary skarn
pocket (later filled by mafic porphyry); the skarn growth versors are centripetal with respect to
the pockets.

The mineralogical zoning has been considered since vom Rath [37] to be a distinctive
feature of the Campiglia skarn. Despite the intriguing bearings of zoning on the chemical
scenario (e.g., [49]), actually the Temperino skarn bodies are not mineralogically zoned,
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and most of the external zones are formed by either ilvaite or hedenbergite, as visible,
e.g., in the Coquand Section (Figure 2) [41], Level 3—Earle body [15], and Level 1—Le
Marchand body (Figure 4). The primary magnetite zone was not observed but, instead,
a magnetite and hedenbergite assemblage developed after ilvaite at the contact with the
mafic porphyry (Figure 5b,d). This reaction was triggered by the heat released by mafic
magma emplaced after skarn formation, a reaction reproduced also experimentally [60].
Furthermore, large volumes of skarn are formed by an alternance of primary millimetric
to decimetric levels of ilvaite and hedenbergite (Figures 4 and 5c–e), with no evidence
for reciprocal replacement. Ultimately, the model of propagation from the fluid source of
multiple reaction fronts travelling at different velocities [36,49] can no longer be applied to
the Campiglia skarn.

Further evidence for the lack of symmetrical skarn outward growth from a single
axial zone is provided by the spatial orientation of growth versors for skarn minerals. In
fact, the skarn developed outwards from multiple planes parallel to the skarn edges ([15];
Figure 6), while the large primary skarn pockets are in the central zone between two planes
(Figure 6b,c). These pockets represent the voids remaining after the metasomatic process.

The crystallization geometry mimics textures observed in epithermal chalcedony-quartz
veins (crustiform/comb/banded textures with vugs; e.g., [61]) and in agate [62,63], which
are interpreted as crystallization in an open space. More recently, a similar interpretation has
been proposed for other skarns (Serifos Island, Greece [64]; Madan ore field, Bulgaria [65])
prompting a reappraisal of metasomatic processes and their relations with tectonic activities,
including the potential for creating large fluid-filled cavities in the upper crust.

The textural evidence for ilvaite and/or hedenbergite replacement by sulfides (Fig-
ure 5b,d), skarn breccia cemented by sphalerite–galena, and chalcopyrite–pyrite–pyrrothite
veins in skarn, point to a late sulfide deposition after silicates, as also indicated by [22].
The sequence proposed by these authors follows a linear T-time evolution, from high-T
skarn silicates, toward chalcopyrite and the last low-T sphalerite–galena ore. However, the
Cu ores (Fe-Cu and Zn-Pb-Cu(-Ag) ore) are only associated to mafic Temperino porphyry
(Temperino mine), while in other skarn bodies (e.g., Cava del Piombo and Lanzi mines),
where igneous intrusions of Temperino porphyry are lacking, the Cu ore is also substan-
tially missing (<1 wt%) with only the Pb-Zn(-Ag) ore occurring. This evidence, integrated
by textural data, mine production records, and chemical analyses of drill hole samples
suggest that the Zn-Pb(-Ag) ore was developed before the addition of Cu related to mafic
Temperino intrusion. The overprinting of shallower, generally epithermal precious- and
base-metal mineralizations on early, usually deep-seated mineralizations (e.g., porphyry
type and Cu/Fe-skarn) is known as the telescoping process [66]. At Campiglia, a high-T
Fe-Cu ore overprints a low-T Zn-Pb sulfide assemblage, so that the ore sequence can be
defined as a reverse telescoping process. A similar scenario has been described in other
skarn deposits such as the Kamioka mine (Japan; [67]), Madan ore field (Bulgaria; [68]), and
Nikolaevsky Mine (Russia; [69]). Reverse telescoping may therefore have been an active
process also in other ore districts, although it remained undiscovered because late fluids
impacted the skarn leaving the magma behind; while at Campiglia, the causative magma
intruded the telescoped skarn. Additional evidence of T increase, related to late intrusion
of mafic magma in skarn, are (i) the magnetite and hedenbergite assemblage developed
after ilvaite at the contact with the mafic porphyry and (ii) the overgrowths of Mg-rich
pyroxene on early hedenbergite crystals [15].

Recently, the knowledge of the Campiglia magmatic-hydrothermal system benefited
from a detailed geochronological investigation [23]. The skarn ore-forming system devel-
oped in <250 ka, with the formation of the Campiglia skarn and the associated Zn-Pb(-Ag)
ore between ~5.38 and ~5.13 Ma while Fe-Cu ores formed at ~5.13 Ma, associated with the
emplacement of a mafic porphyry (5.130 ± 0.043 Ma). The felsic Coquand and Ortaccio
porphyry dykes emplaced in successive magmatic batches until ~4.74 Ma.
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6. Conclusions

Campiglia is a reference locality for scientists studying skarn deposits. Here, rock
exposures, both at the surface and underground, have stimulated the development of
modern skarn-forming models. However, the Campiglia “classic” example of proximal
exoskarn has been recently questioned, making Campiglia ore deposit a prime example
of a distal Pb-Zn(-Ag) skarn that underwent a reverse telescoping process related to the
late intrusion of mafic magma. The magma triggered several processes overprinting
primary skarn silicate (e.g., replacement, overgrowth), as well as a late Fe-Cu sulfide
deposition. Many other aspects are not explained by current skarn-forming theories and
still need investigation. These includes skarn textures such as banded skarn and large
primary pockets located in specific volumes of the skarn bodies at the contact between two
propagating fronts (see [15]).

In summary, the Campiglia ore deposit is a natural laboratory for developing and
testing theories on skarn formation (e.g., [36]), as was already perceived by vom Rath [37].
The opportunity to access rock exposures produced by mining activities and preserved
by the archeological-mining parks have been (and are) essential in the advancement of
knowledge on ore-forming systems. New generations of geologists will be trained on these
outcrops and will make a contribution to issues that are still not understood.
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