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Abstract: Studies on post-collisional magmatic rocks can provide key clues to researching the
crust–mantle interactions and the tectonic evolution of collisional orogenic belts. This study in-
vestigated a suite of newly discovered mafic intrusions in the middle of the East Kunlun orogenic
belt through integrated analysis of petrology, petrography, and zircon U–Pb dating. The data could
offer new insights into the generation of the Proto-Tethyan tectonic evolution. The result shows that
these mafic intrusions are mainly gabbro and diabase, formed in the Early Devonian, with zircon
U–Pb ages of 408.9 ± 2.0 Ma for gabbro and 411.1 ± 3.1 Ma for diabase. It consists of plagioclase,
pyroxene, and dark minerals, and a small number of calcite and chlorite. Diabase has a small amount
of amygdale. Their Na2O + K2O contents range from 3.47 wt.% to 5.45 wt.%, with Na2O/K2O ratios
from 1.39 to 3.09, suggesting that they are calc–alkaline rocks. These rocks have an Fe2O3

T content
of 7.68 wt.%–11.59 wt.% and Mg# of 50.58–59.48, belonging to the iron-rich and magnesium-poor
type. The chondrite-normalized rare earth elements show similar patterns that are characterized by
enrichment of light rare earth elements, with (La/Yb)N of 3.27–6.75 and no significant europium
anomaly, indicating the rocks are homogenous. The studied rocks are characterized by low contents
of compatible elements Cr and Ni, enrichment of large-ion lithophile elements such as Rb, U, Sr, and
Nd, and high-field-strength elements such as Nb, Ta, Zr, Hf, and Th. The mafic magma originated
from the partial melting of the enriched mantle and was assimilated and mixed with crust materials
during the process of migration. Based on the regional tectonic evolution, we interpret that the
Proto-Tethys Ocean had closed in the Early Devonian, and that the East Kunlun region was in a
post-collisional extensional tectonic setting.

Keywords: gabbro; diabase; geochemistry; Early Devonian; East Kunlun orogenic belt; Proto-Tethys

1. Introduction

The East Kunlun orogenic belt (EKOB), located in the northeastern part of the Ti-
betan Plateau, is an important part of the Central orogenic belt (Figure 1a). It is typi-
cally characterized by the development of two major tectonic–magmatic cycles associated
with the evolution of the Proto-Tethys and Paleo-Tethys. It is also an important site
for the study of the tectonic evolution of the Proto-Tethys and Paleo-Tethys in the East
Tethys tectonic domain [1–6]. The East Kunlun orogenic belt underwent two major mag-
matic periods, namely the Caledonian and the Hercynian–Indosinian, forming significant
tectonic–magmatic belts and witnessing the tectonic evolution of the Proto-Tethys and
Paleo-Tethys [7–19]. Mo et al. [20] developed a tectonic–magmatic framework for the Cale-
donian motion in the East Kunlun, which divided the Caledonian orogenic cycle in the
EKOB into four phases, namely, the ocean basin opening and expansion phase (579–518 Ma),
the subduction phase (508–450 Ma), the collisional and post-collisional phase (413–380 Ma),
and the post-orogenic collapse and uplift phase. The Proto-Tethys was formed during the
opening and expansion phase in the Early Cambrian [4–6,10,21–30], and the subduction
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and reduction of the Proto-Tethys in the East Kunlun region was mostly confined to the
late Early Cambrian–Early Silurian [31–38]. Previous studies have provided lots of infor-
mation on the opening, spreading, and subsidence of the ocean basin of the Proto-Tethys
in the East Kunlun region, but the understanding of its final closure and collisional and
post-collisional events are quite limited due to the lack of geochronology and geochemistry
evidence. Previously, most scholars considered the final closure and collisional events to
have occurred in the Late Silurian–Middle Devonian based on the identification of A-type
granites in this region [39,40]. However, a few mafic intrusions of this period have recently
been found, including the Early Devonian Lichotag mafic intrusions we discovered in the
EKOB. By conducting geochronological and geochemical studies on the Lichotag mafic
intrusions, we can provide important information on the tectonic–magmatic evolution
during the Late Caledonian–Early Hercynian in the EKOB and a basis for the evolution of
the Proto-Tethys in the EKOB.
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Figure 1. (a,b) Geotectonic location map. (c) Geological sketch of the Lichotag region in the EKOB
((a), modified from [41]; (b,c), after [42]).

2. Geological Background

The EKOB is divided into four major tectonic units: from north to south are the
Qimantag back-arc basin, the North Kunlun magmatic arc, the South Kunlun subduction–
accretionary mélange belt, and the Muzitag–A’nyemaqen ophiolite belt (Figure 1b). The
Lichotag mafic intrusions are located in the North Kunlun magmatic arc. The base of this
magmatic arc consists of the Precambrian, strongly metamorphosed Terran core mafic
intrusions, the Paleo–Mesoproterozoic Jinshukou Group and the Xiaomiao Formation,
and the Langyashan Formation. The epigenetic Uranian strata comprise mainly the Early
Carboniferous Dagangou Formation sedimentary rocks and the Late Devonian Yaksan
Formation terrestrial volcanic rocks (Figure 1c). The North Kunlun magmatic arc has
experienced complex and multiple magmatism, with magmatic rocks of different ages
and genesis. Magmatism was weak in the Cambrian–Early Silurian. In the Carboniferous–
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Triassic, magmatic activities associated with the closure of the Paleo-Tethys reached the
peak and formed the most widely distributed granites, followed by granites associated with
the collisional orogeny in the Late Silurian–Devonian (432–376 Ma) [7–19,31–40,43–51]. The
rocks are generally distributed in a NW direction, consistent with the regional structures,
suggesting that they are controlled by the regional tectonic evolution.

3. Petrography

The Lichotag mafic intrusions are located in the southeast of Golmud City of Qinghai
Province. The mafic intrusions are nearly oval in shape, about 6 km-long and 2 km-wide,
with a long axis in the east–west direction and intruded by Triassic granites (Figure 1c).
The mafic intrusions are mainly gabbro and diabase, and the boundaries between different
lithologies are not obvious, with most showing gradual transition (Figure 2). In this study,
gabbro (LQ03) and diabase (LQ04) samples were taken from fresh rock outcrops in the
Lichotag region for analysis.
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Figure 2. Photographs of the contact between Lichotag mafic intrusion in the EKOB.

The gabbro is dark gray–green and mainly consists of plagioclase (52%), pyroxene
(45%) (Figure 3a), and a small number of dark minerals (about 3%). Plagioclase is medium
to fine-grained and subhedral in shape. It develops Carlsbad–albite compound twinning
and albite twinning, mostly being labradorite. Pyroxene consists of subhedral, short
columnar, and hypidiomorphic–allomorphic grains of 0.4–3 mm in size, mainly medium to
fine grains. It is light brownish green with high positive reliefs and two groups of cleavages.
It is mostly augite and enstatite and often alters into chlorite, biotite, calcite, etc. Both
pyroxene and plagioclase are subhedral and formed simultaneously, representative of a
typical gabbro texture.

The diabase is dark gray–green and exhibits a typical diabase structure and almond
structure, as a whole. It consists of plagioclase (50%), pyroxene (43%) (Figure 3b), a small
amount of amygdale (6%) (Figure 3c,d), and dark minerals (1%). Plagioclase is subhedral
platy with mainly fine-grained particles of 0.1–0.48 mm in size. Polysynthetic twinning is
commonly developed. Pyroxene consists of subhedral, short columnar, and subhedral to
anhedral grains sized 0.04–0.25 mm, mainly slightly chloritized fine grains. The pyroxene
grains fill the triangular space formed by plagioclase, showing a typical diabase texture.
The core of amygdale is mostly filled with calcite and chlorite. The chlorite has undulose
extinction with abnormal indigo and rusty interference colors. Some secondary veins can
be seen cutting through the amygdale.
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Figure 3. Micrographs of Lichotag mafic intrusion in the EKOB. (a) Micrographs of gabbro (sample
LQ03). (b) Micrographs of diabase (sample LQ04). (c,d) Micrographs of amygdale in diabase (sample
LQ04). Pl = Plagioclase, Py = Pyroxene.

4. Analytical Methods
4.1. LA–ICP–MS Testing

Zircons were collected from gabbroic clasts in the Lichotag mafic intrusions. The
sampling locations of the two samples were 36◦6′47.7′′ N and 95◦18′59.3′′ E (Figure 1c).
The weight of each sample was 30 kg. Samples were cleaned and crushed to 80–100 mesh
for extraction of zircons by conventional heavy-liquid and electromagnetic separation.
Zircons were selected manually under a binocular microscope. Those with good crystal
shapes and high transparency without inclusions or cracks were chosen for analysis. The
selected zircons were embedded in epoxy resin and polished to expose their interiors. Then,
after using transmitted light and reflected light microscopy and cathodoluminescence (CL)
to reveal the internal structure of the zircons to help select the optimal testing site, we
performed laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS)
analysis on the properly chosen sites.

The CL, LA–ICP–MS, and micro-area U–Pb dating of zircon were completed at the
Testing Center of the Xi’an Institute of Geology and Mineral Resources. The experiment was
carried out by using an Agilent 7500 ICP–MS, a COMPex 102 ArF excimer laser (working
material ArF, wavelength 193 nm, 30 µm-diameter laser-beam spot, 20–40 µm depth of
ablation sample), of Lambda Physik company of Germany, and the Geolas 200 M optical
system of the Micro-Las company. In the experiment, He was used as the carrier gas and
NIST SRM 610, a synthetic silicate-glass reference material developed by the National
Institute of Standards and Technology, was used to optimize the instrument. The sampling
method used was single-point erosion, and the data-acquisition method was based on one
mass peak and one point-jumping peak. The reference standard sample was analyzed once
every six measuring-point determinations. Before and after the analysis of 12 zircons, NIST
SRM 610 was measured twice. Standard zircon 91500 was used as the external standard for
zircon age analyses, and Andersen’s 3D coordinate method was used to correct the ordinary
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lead. Element contents were determined against NIST SRM 610 as the external standard
and 29Si as the internal standard. The isotopic ratio and element content data were analyzed
using the ICPMS Data Cal software package (9.0 edition) [52]. The common lead correction
was conducted using the Andersen software (3.15 edition) [53], and Isoplot software
(3.0 edition) [54] was used for age calculation and concordia diagrams. The analytical
methods and instrument settings used were the same as those reported by Li et al. [55].

4.2. Geochemical Analyses

Six gabbro samples and six diabase samples were collected for chemical analysis.
The samples were analyzed at the Key Laboratory of Magmatism and Mineralization
Continental Dynamics, Ministry of Natural Resources, and the analytical data are shown
in Supplementary Table S2. The sample loss-on-ignition (LOI) ranged from 3.32 wt.%
to 4.11 wt.%, and some samples were affected by late alteration. The oxide content was
recalculated after normalizing the sample data by deducting the loss-on-ignition.

5. Results

The zircon U-Pb isotope data and whole-rock geochemistry for the Lichotag mafic
intrusions are listed in Supplementary Tables S1 and S2.

5.1. Zircon U-Pb Age

The CL image (Figure 4) shows that the zircons of the mafic intrusions are mostly
euhedral or subhedral equigranular or stubby. Zircons are roughly categorized into two
types. The first type has a homogeneous internal structure and clear oscillatory zoning,
with most of medium-width equigranular or short columnar. The sizes of zircon grains
in gabbro mostly range from 50 to 80 µm, with a few larger ones exceeding 100 µm,
while zircon grains in diabase mostly range from 40 to 70 µm, with a few larger ones
reaching 100 µm. All zircons show magmatic textures with Th/U ratios ranging from
0.02 to 1.74. The 206Pb/238U ages of 17 zircons from the gabbro range from 409.9 ± 4.28 Ma
to 412.1 ± 3.64 Ma, and all the data fall on the concordia (Figure 5b). Their weighted mean
age is 408.9 ± 2.0 Ma (MSWD = 0.49) (Figure 5c), representing an Early Devonian crystal-
lization age of the gabbro. The 206Pb/238U ages of six zircons of the diabase range from
403.9 ± 3.73 Ma to 416.9 ± 6.85 Ma, and the data fall near the concordia, showing lead loss
(Figure 5e). Their weighted average age is 411.1 ± 3.1 Ma (MSWD = 0.044) (Figure 5f), also
suggesting an Early Devonian crystallization age of the diabase. The other type of zircons
has obvious oscillatory bands, irregular morphologies, and diverse internal structures
(Figure 4). The 206Pb/238U ages range from 684.1 ± 5.7 Ma to 3005.4 ± 31.74 Ma, indicating
the complex origin of zircons, which were captured during the intrusion of gabbro and
diabase, probably from the Precambrian basement of the North Kunlun magmatic arc.

5.2. Major and Trace Element Geochemistry

Major rare earth elements (REE) and trace element data and calculated parameters for
the 11 representative samples are listed in Supplementary Table S2. All samples exhibit
relatively uniform major oxide compositions.

5.2.1. Major Elements

The gabbro and diabase samples belong to iron-rich mafic intrusions, with SiO2
content ranging from 47.31 wt.% to 54.95 wt.%, TiO2 content from 0.87 wt.% to 1.51 wt.%,
Al2O3 content from 15.91 wt.% to 20.84 wt.%, MgO content from 5.53 wt.% to 6.53 wt.%,
Mg# values from 50.58 to 59.48, and Fe2O3

T content from 7.68 wt.% to 11.59 wt.%. The
Na2O + K2O content of these rocks ranged from 3.47 wt.% to 5.45 wt.%, with an average
value of 4.54 wt.%. The Na2O/K2O ratio of 1.39 to 3.09 indicates its sodium-rich and
potassium-poor characteristics. In a Nb/Y-Zr/TiO2 plot (Figure 6a), the samples lie in the
tholeiite fields. In an AFM plot, the rocks fall into the calcium-base series region (Figure 6b).
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Microscopically, the diabase is mainly composed of calcic plagioclase, augite, and enstatite,
with a typical gabbroic structure (Figure 3b–d).
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In general, the rocks are enriched in titanium, iron, and sodium, and depleted in
magnesium and potassium. They belong to sodium-rich rocks, characterized by high iron
and low magnesium contents.

5.2.2. Rare Earth Elements and Trace Elements

The total content of REE (ΣREE) of gabbro and diabase ranges from 64.53 × 10–6 to
151.24 × 10–6. The chondrite-normalized REEs (Figure 7a) are characterized by obvious
light and heavy REE fractionation and enrichment of LREE, with LREE/HREE = 3.83–7.71,
(La/Yb)N = 3.27–6.75, δEu = 0.83–1.14, and no significant Europium anomaly. The prim-
itive mantle-normalized [57] spider diagram of trace elements shows that the rocks are
relatively enriched in Rb, U, Sr, and Nd, and relatively depleted in Nb, Ta, Ti, Zr, Hf, and
Th (Figure 7b), showing characteristics of Th > Ta and La > Ta. The rocks also have low Cr
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and Ni contents (20.4 × 10–6 to 154 × 10–6 and 12.9 × 10–6 to 37.7 × 10–6, respectively) and
Sr/Y ratios of 17.3–22.5.
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6. Discussion
6.1. Petrogenesis

The Mg# of gabbro and diabase samples is 50.46–59.48. The low contents of compatible
elements Cr and Ni suggest that the magma may not have undergone pyroxene stacking
crystallization. The rocks have high Rb and Sr content (0.16–0.22) and are relatively enriched
in Rb, U, Sr, and Nd, all of which show characteristics of the enriched mantle. The rocks have
low Ce/Y ratios (1.21 to 3.15, with a mean value of 1.99), indicating that they may be from
the spinel–garnet phase stability field [58]. In Figure 8a, most of the rock sample data fall in
the spinel and garnet lherzolite phase field (closer to the spinel lherzolite phase), with partial
melting of roughly 3% to 20%, suggesting that the mafic magma was probably derived from
the spinel lherzolite phase, and the magma source region is deeper than 80 km [59].

As the mantle-derived magma intruded into the crust, it usually underwent different
degrees of assimilation and mixing with the surrounding rocks. Zircon U–Pb dating results
show that both gabbro and diabase have captured zircons formed in Neoproterozoic and
Archaean (752–3005 Ma), which is the direct evidence of assimilation and mixing in this
region. In addition, the rocks have low TiO2 contents (<2 wt.%) and Zr/Nb (>13) [60,61].
Trace elements are characterized by Th > Ta, La > Ta, and depleted Nb and Ta. These results
suggest some impacts of continental-crust mixing during magmatic evolution [62]. The
(La/Nb)PM–(Th/Ta)PM diagram (Figure 8b) shows that the crust materials involved in
the miscibility are mainly from the upper crust, which is consistent with the Nb and Ta
depletion in the gabbro. It is well-known that high La/Sm values (>4.5) indicate strong
mixing of crust materials, while La/Sm < 2 indicates rarely mixed by crust materials [63].
Thus, the La/Sm values of 3.17–4.52 (with a mean value of 3.76) for the Lichotag mafic
intrusions indicate that the mafic magma underwent some mixing, but to a strong degree.
It should be noted that the mafic intrusions in this region are highly depleted in Nb and
Ta. While it is possible that this depletion is related to assimilation and mixing, there is
no clear correlation between the heterogeneity in assimilation and hybridization and the
prevalence of Nb and Ta depletion in the mafic intrusions. Therefore, this depletion may
also have been inherited from magma.

The gabbro and diabase are enriched in light rare earth elements (LREEs), showing
significant fractionation between LREEs and heavy rare earth elements (HREEs). They
are enriched in large ion lithophile elements such as Rb, U, Sr, and Nd, and relatively
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depleted in high-field-strength elements such as Nb, Ta, Zr, Hf, and Th. These features
show the geochemical characteristics of magmatic rocks in island-arc environments [64].
Fractional crystallization does not affect the partition coefficients of Th, Nb, Zr, and Yb in
the magma, so the ratios of these element pairs can also indicate the characteristics of the
source region. Gabbro and diabase have high Th/Yb ratios (1.06–1.91), and the samples
in the Nb/Yb–Th/Yb diagram (Figure 8c) all deviate significantly from the MORB–OIB
evolutionary line and fall in the intra-oceanic-arc and land margin-arc areas, suggesting
an island-arc-related environment. Meanwhile, all the samples in the Ta/Yb–Th/Yb di-
agram (Figure 8d) fall within the continental marginal-arc area, further suggesting that
the tectonic background of gabbro and diabase generation was closely related to the
island-arc environment.

In summary, we believe that the mafic magma originated from the partial melting of
the enriched mantle, and that the source region inherited the accumulation of metasomatic
fluids in the early oceanic subduction phase and was assimilated by the crust materials in
the process of upward intrusion.
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Nb/Yb–Th/Yb (c) [65], and Ta/Yb–Th/Yb (d) [67] in Lichotag mafic intrusion in the EKOB. MORB
stands for mid-ocean ridge basalts; N-MORB for normal MORB; E-MORB for enriched MORB; WPB
for within-plate basalt; OIB for ocean island basalts; OIT for ocean island tholeiitic; OIA for ocean
island alkaline; SHO for shoshonite; CAB for calc–alkaline basalts; ICA for island-arc calc–alkaline
basalts; IAT for island-arc tholeiitic; IAB for island-arc alkaline basalts.

6.2. Geotectonic Setting and Geological Significance

The East Kunlun region is an important part of the Central orogenic belt [1–6], and
studies have shown that the subduction of Neoproterozoic–Early Paleozoic Proto-Tethys
and subduction of the Late Carboniferous–Triassic Paleotethys Ocean are the two most
important orogenic events in this region, which have established the present-day tectonic
pattern of the East Kunlun region [1–15]. Therefore, the study of the Paleozoic tectonic
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evolution of the East Kunlun region is important for the study of the tectonic evolution of
the Proto-Tethys.

Petrological and geochemical studies of Lichotag mafic intrusion in the EKOB shows
a calc–alkaline series with Nb and Ta depletions, consistent with the characteristics of
mafic intrusions formed during a post-collisional extensional phase [62]. Magmatic rocks
formed in a post-collisional extensional environment exhibit geochemical characteristics of
island-arc magmatic rocks or active continental margin magmatic rocks. They are enriched
in Rb, U, Sr, Nd, etc., and depleted in Nb and Ta, characteristics of island-arc magmatic
rocks. In the Hf/3–Th–Ta diagram (Figure 9a), they fall into the continental margin-arc
calc–alkaline basalt region, showing the metasomatism of subduction fluids. They show
characteristics of volcanic-arc basalts in the Nb×2–Zr/4–Y diagram (Figure 9b) and fall
into a volcanic-arc basalt region in the Hf/3–Th–Nb/16 diagram (Figure 9c). Meanwhile,
they are clearly distinguished from N-type mid-ocean ridge basalts in the illustrated area.
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4–Y (b) [69], and Hf/3–Th–Nb/16 (c) [68] in the EKOB. Hf/3–Th–Ta diagram: A—depleted mid-ocean
ridge basalts, B—enriched mid-ocean ridge basalts and within-plate tholeiitic, C—within-plate tholeiitic,
D—volcanic-arc basalts. Nb × 2–Zr/4–Y diagram: AI—within-plate alkaline basalts, AII—within-plate
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basalts, D—depleted MORB and volcanic-arc basalts. Hf/3–Th–Nb/16 diagram: A—depleted MORB,
B—E-MORB and within-plate tholeiitic, C—within-plate tholeiitic, D—volcanic-arc basalts.

The East Kunlun Ocean is located between the Qaidam Block and the Bayan Hara
Block. Starting from Late Neoproterozoic, the East Kunlun Ocean Basin subducted along
the center of East Kunlun, forming the Cambrian–Ordovician Ayaikekumu Lake subduc-
tion accretionary complex, which contains ophiolitic mélange and the Cambrian Ocean
island–seamount volcanic–sedimentary assemblage. The subduction of the eastern section
of the ocean basin was slightly later than that of the western section along the Ayaikekumu
Lake, and the subduction accretionary complex belt was formed in the Early Paleozoic.
This subduction accretionary complex belt contains volcanic rocks, carbonates, sandstones,
and marbles, as well as tectonic slices of the Early Paleozoic in addition to ophiolitic
mélange, among which the volcanic rocks and carbonates may be the products of the
breakup of oceanic seamounts and islands [2,5,6,70]. With the continuous subduction of
the oceanic crust, a large number of arc magmatic rocks formed in the region, which are
mainly diorites and a few gabbroic rocks, such as high-Mg andesite (519 ± 4.2 Ma) [71] and
diorite (513.8 ± 2.9 Ma) [71] in the Lalung Gauri River region, diorite (510.4 ± 3 Ma) [72]
and ultramafic–mafic intrusions (509 ± 7 Ma) [73] in the DulanKeke sand region, and
Yaziquan diorite (480 ± 3 Ma) [74], Zhiyu North monzodiorite (464.6 ± 1.9 Ma) [72], Wang-
gaxiu gabbro (468 ± 2 Ma) [74], Ulan–Uzul biotite granite (457.5 ± 2.3 Ma) [75], Achaodun
quartz diorite (448.8 ± 3.9 Ma) [76], etc. In addition, some metamorphic events in this
region also indicate the existence of oceanic crust subduction. For example, the Qing-
shuiquan granulites of the central East Kunlun Suture Zone (507 Ma) were formed by
high-temperature and medium-pressure granulite facies metamorphism during the subduc-
tion of the oceanic lithosphere [77]. The Heiyun biotite feldspar gneisses of the Jinshukou
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Group in the southern part of Nomukhong were formed by island-arc-type low-pressure
amphibolite-granulite facies metamorphism in the north of EKOB at 460 Ma [78]. The Huxi-
aoqin mafic rocks (438± 2 Ma) [79] and the Qingshuiquan mafic veins (436.4 ± 1.2 Ma) [37]
with island-arc basalt characteristics in the central suture zone of East Kunlun represent
the most recent magmatic records of oceanic crust subduction in this region. Eclogites
are exposed along the Xiaozaohuo–Suhaitu–Xiarihamu–Laningzaohuo Belt of the EKOB,
with intermittent extensions of up to 20 km. These eclogites are mainly hosted in the
Neoarchean–Paleoproterozoic Baishahe Complex (Ar3Pt1B), with metamorphic ages of
436–415 Ma. The presence of terrigenous crust eclogites represents the closure of the central
East Kunlun Ocean Basin [37,40,80–83]. The prograde metamorphic age of eclogites is
436–415 Ma and its retrograde metamorphic age is 415–390 Ma. The former age was related
to the collisional extrusion environment, while the latter age corresponds to an extensional
environment, which also indirectly constrains the closure time of the central East Kunlun
Ocean Basin.

The ages of the granites and diorites associated with the continent–continent colli-
sion in the Qimantag region are 428.5 ± 2.2 Ma and 430.8 ± 1.7 Ma, respectively [84],
whereas A-type granites began to appear in the region at 430 Ma ± [85], consistent with
the timing of the high-pressure eclogite facies metamorphism at 428 Ma in the central East
Kunlun [80] and the medium-pressure amphibolite facies metamorphism at 427 Ma [8].
This indicates that the intensive continent–continent collisional period in the region started
to cease at 428 Ma and the post-collisional extension in the East Kunlun region contin-
ued into the Late Devonian. During this period, the magmatic rocks in the East Kunlun
region were mainly A-type granites, peraluminous–strongly peraluminous granites, Mg-
rich diorite, and gabbro. Bimodal intrusive rocks are widely developed in the region,
such as the A-type granite of Baiganhu (430–429 Ma) [86], the Ulan–Uzur monzogran-
ite (422.5 ± 1.6 Ma) [87], the Xiazhamu gabbro–norite (423 ± 1 Ma) [88], Hongqigou A-
type syenogranite (420 ± 3 Ma) [89], Balong diorite porphyrite (420 ± 3 Ma) [90], Yazigou
monzodiorite (415.5 ± 2.6 Ma) [91], Xiaoyuanshan gabbro (415 ± 16 Ma) [92], Wulong-
gou gabbro (410.3 ± 2.7 Ma) and alkali granite (410.5 ± 1.8 Ma) [93], Jinshukou diorite
(405 ± 3 Ma) [28], Binggou syenogranite (391 ± 3 Ma) [94], and Qimantag Kayakden Tag
district granodiorite (380.52 ± 0.92 Ma) [95]. All these formation ages are consistent with
the formation timeframe of 423–406 Ma for the extensional molasse construction of the
Yakshan Group [4,96]. All the above features suggest a typical post-collisional extensional
tectonic setting for the East Kunlun region.

Therefore, we believe that the Lichotag mafic intrusions are along with the contin-
uous subduction of the Proto-Tethys in the Late Caledonian. The subducting slab was
de-hydrated and replaced the overlying mantle wedge during the subduction process,
forming a locally enriched mantle end member with subduction components. After the end
of the Late Caledonian–Early Hercynian subduction, the enriched mantle end member was
dismantled and sunk in the post-collisional extensional environment. This then triggered
the partial melting and upwelling of the enriched lithospheric mantle with the characteris-
tics of subduction components to form the mafic magma [97–99]. The mafic magma was
assimilated during the upwelling process to form gabbro and diabase by intrusion into the
upper crust.

7. Conclusions

The comprehensive study of the Lichotag mafic intrusions in the EKOB based on
petrological, geochronological, and geochemical have led to the following conclusions:

(1) The Lichotag mafic intrusion was formed in the Early Devonian, with a zircon
U–Pb age of 408.9 ± 2.0 Ma (MSWD = 0.49) for gabbro and a zircon U–Pb age of
411.1 ± 3.1 Ma (MSWD = 0.044) for diabase.

(2) The chondrite-normalized curves of REEs in gabbro and diabase showed similar
patterns with enrichment of LREEs and insignificant europium anomaly. The rocks
are characterized by low contents of compatible elements Cr and Ni, high Rb and Sr
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contents, enrichment of large-ion lithophile elements such as Rb, U, Sr, and Nd, and
relatively depleted high-field-strength elements such as Nb, Ta, Zr, Hf, Th, etc. The
mafic magma originated from the enriched mantle and was assimilated by the upper
crust during magma ascent.

(3) The Lichotag mafic intrusions in the EKOB were formed in a post-collisional exten-
sional tectonic regime, indicating that the subduction of the Proto-Tethys ended in
the Early Devonian and the East Kunlun region was in a post-collisional extensional
tectonic environment.
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