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Abstract: Brittleness is important in the evaluation of the fracturing ability of shale reservoir and has a
significant impact on shale gas exploration and development. This paper discusses the characteristics
and controlling factors of brittleness of continental shale in the Da’anzhai Member of the Ziliujing
Formation of Lower Jurassic age in the northeast Sichuan Basin. Continental shale lithofacies and
their associations were grouped into four main rock types: clayey shale, silty shale, shell calcareous
clayey shale, and silty clayey shale, characterized by the high clay content and local enrichment of
carbonate minerals as a whole. Compared with the marine shale, the continental shale contained a
low content of siliceous minerals, a high content of carbonate minerals, and a large number of shell
limestone interlayers. Carbonate minerals play an important role in controlling the brittleness of
continental shale. The shale interlayers were mainly shell limestone interlayers with a thickness of
several centimeters and a large number of shell laminates with thicknesses of several millimeters
were also observed. The shell laminates were mainly filled with calcite. Due to the dissolution
process, a large number of bedding joints and corrosion joints were formed in the calcite shell layers.
In the interlayers with a high shell content, a large number of microfractures developed. The energy
consumption required for maintaining fracture expansion was lower after fracturing; the fractures
greatly improved the reservoir’s brittleness.

Keywords: continental shale; brittleness; mineral component; fracture; elastic parameter

1. Introduction

Shale oil and gas are widely distributed around the world and the large reservoirs of
shale oil and gas deeply affect the international political and economic backgrounds [1–4].
After the United States realized energy independence through the shale oil and gas rev-
olution, China also made great achievements in shale gas exploration and development
over the past five years. In 2020, the output of shale gas was nearly 2 × 1010 m3 and the
cumulative proven geological reserves of shale gas exceeded 2 trillion m3, displaying huge
potential [5–7]. In the continental basins widely distributed in China, many sets of shale
series with rich organic matter have developed, and continental shale oil and gas is an
important exploration field [8–12]. Recently, in the Fuling Area of northeastern Sichuan, an
industrial oil and gas flow was achieved, suggesting a key breakthrough in the exploration
of Jurassic continental shale oil and gas [13].

Brittleness is important in shale reservoir evaluation because it indicates the fracturing
performance of shale reservoirs and largely affects shale gas exploration and develop-
ment [14–16]. In the comprehensive evaluation of continental shale reservoir, brittleness
is an indispensable indicator. Compared with the marine shale in North America and

Minerals 2023, 13, 460. https://doi.org/10.3390/min13040460 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13040460
https://doi.org/10.3390/min13040460
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-4821-3331
https://doi.org/10.3390/min13040460
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13040460?type=check_update&version=2


Minerals 2023, 13, 460 2 of 16

China [17–21], the continental shale in China is characterized by the low content of siliceous
minerals, the high content of clay minerals, complex mineral composition, strong hetero-
geneity of reservoirs, the thinness of single layers, significant changes of lithology and
lithofacies, more developed fractures, and frequent interaction between shale and inter-
layers (such as sandstone and limestone) [22–26]. The evaluation system of marine shale
is not applicable to continental shale [27,28], so it is necessary to explore its complexity
and particularity and clarify the brittleness of continental shale. Therefore, the brittleness
evaluation method of continental shale gas reservoirs is significant in the exploration of
geological characteristics and enrichment mechanisms of continental shale gas as well as in
the geological evaluation of continental shale gas and continental strata.

In this study, with the shale series of the Da’anzhai Member of the Lower Jurassic
Ziliujing Formation in the Yuanba and Fuling Area in northeastern Sichuan as the research
object, lithofacies, mineral components, dynamic and static rock mechanical properties,
and diagenetic stages were explored to improve the understanding of the brittleness of
continental shale reservoirs and clarify the influences of minerals, fractures, and interlayers
on brittleness of continental shale. This study provides the basis for the optimization of
desert sections in geological engineering of continental shale reservoirs.

2. Geological Setting

The Jurassic System is widely distributed in the Sichuan Basin and the strata are
well developed. In the Early Jurassic period, a set of relatively stable shallow to semi-
deep lake facies shale systems was deposited [29]. The diverse interlayers in the shale
mainly included shell limestone (argillaceous) and siltstone (argillaceous). The thickness
center is located in the Langzhong–Liangping–Wanzhou Area (Figure 1) [30]. The TOC
content in shale ranges from 0.5% to 2.0% and the average TOC content is greater than 1%.
The type of organic matter is mainly Type II2 and the vitrinite reflectance (Ro) gradually
increases from southeast to northwest. Ro from eastern Sichuan to northeastern Sichuan
is generally greater than 1.3%, indicating the condensate wet gas stage. The Yuanba and
Fuling Areas are located in the northeast of the Sichuan Basin. The Yuanba Region is located
at the junction between the depression structure in the western Sichuan area and the uplift
structure in central Sichuan. The Fuling Area is located in the high and steep fold belt in
eastern Sichuan.
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according to GB/T 19145-2003. The reflectance of vitrinite was measured using the MSP200 
microphotometer according to the SY/T 5124-2012 standard. The whole rock mineral X-
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determined using the mercury porosimetry adsorption method according to the NB/T 

Figure 1. Sedimentary and distribution characteristics of the Jurassic Ziliujing Formation in the
Sichuan Basin.

3. Samples and Methods

The core and logging data in this study were collected from the continental shale
sequence in the Yuanba and Fuling Areas in the Sichuan Basin, China. Forty-six small core
samples with a length of about 50 mm and a width of about 25 mm were drilled from the
core. The logging data included conventional logging, array acoustic logging, element
logging (ECS), and electrical imaging logging data.

The samples were subjected to the analysis of organic carbon content, identification
of organic macerals, determination of helium porosity and permeability, whole-rock min-
eral analysis, argon ion polishing–scanning electron microscope analysis, pore structure
analysis, rock pyrolysis experiments (including field analysis), and a triaxial rock mechan-
ics experiment. The TOC test was conducted in the carbon and sulfur analyzer CS-230
according to GB/T 19145-2003. The reflectance of vitrinite was measured using the MSP200
microphotometer according to the SY/T 5124-2012 standard. The whole rock mineral X-ray
diffraction (XRD) analysis was carried out according to the SY/T6210-1996 standard with
an X’Pert Pro MPD X-ray diffractometer at Wuxi Institute of Petroleum Geology, Wuxi,
China. Porosity and permeability were measured, respectively, with a KX-07F porosity
instrument and a GDS-90F permeability instrument according to the GB/T 29172-2012
standard. Argon ion polishing–scanning electron microscope observation was carried out
with the Helios 650 scanning electron microscope according to the SY/T 5162-2014 standard
at Wuxi Institute of Petroleum Geology, Wuxi, China. The pore structure was determined
using the mercury porosimetry adsorption method according to the NB/T 14008-2015
standard. Rock pyrolysis was determined with a Rock-EVAL6 instrument according to the



Minerals 2023, 13, 460 4 of 16

GB/T 18602-2012 rock pyrolysis analysis method at Wuxi Institute of Petroleum Geology,
Wuxi, China. The triaxial compressive strength test of rock mechanics was conducted
with a TAW-2000 electro-hydraulic servo rock mechanics tester according to the ASTM
D2664-04 standard at Wuxi Institute of Petroleum Geology, Wuxi, China. The interpretation
of conventional logging data, array acoustic logging data, FMI resistivity imaging logging
data, and element logging data was conducted on the large logging processing and inter-
pretation software platform CIFLOG Version 2.1 developed by the Institute of Logging
and Remote Sensing Technology of the China Petroleum Exploration and Development
Research Institute.

4. Results and Discussion
4.1. Lithofacies and Mineral Fabric Characteristics
4.1.1. Lithofacies Characteristics

The fine identification and classification of continental shale lithofacies types is an
important basis for the evaluation of shale gas exploration and development potential. In
the previous studies on this area, the main factors considered in the lithofacies classification
scheme of Daanzhai Section were mineral fabric, TOC, and sedimentary structure. Accord-
ing to the report by Liu Zhongbao et al. [24], the three-step lithofacies division scheme
(Figure 2) of whole-rock mineral partition, TOC classification, and correction of mineral
and sedimentary structures was adopted in the study (I is a muddy (shale) rock area, II
is a mixed rock area, III is a sandstone area, and IV is a limestone (dolomite) rock area).
Based on the observations and descriptions of the cores of four typical drilling wells in the
Yuanba Area (Well XA and Well XB), Fuling Area (Well YA and Well YB), the whole-rock
mineral X-ray diffraction analysis, and rock slice identification analysis of 46 samples,
4 shale types (10 shale lithofacies) were determined as follows: clayey shale (high-carbon,
medium-carbon, and rich-carbon clayey shale), silty shale (low-carbon, medium-carbon,
high-carbon, and rich-carbon silty shale), clayey shell calcareous shale (medium-carbon and
high-carbon clayey shell calcareous shale), and silty clay shale (low-carbon and medium-
carbon silty clay shale). A large number of shell limestone interlayers in the lithofacies were
observed. Among them, high-carbon clayey shale (TOC: 0.59%~3.89%; average: 1.46%) and
low-to-medium-carbon silty sand shale were the most common shales (TOC: 0.20%~1.60%,
average: 0.89%), followed by high-carbon clayey shell calcareous shale (TOC: 0.45%~3.06%,
average: 1.29%) (Figure 3).
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In the Fuling Area, the shale lithofacies were dominated by medium- and high-carbon
clayey shale, followed by high-carbon clayey calcareous shale (Figure 4a–c). The shale
lithofacies in the Yuanba Area were mainly composed of medium- and high-carbon clayey
shale and mixed shale (Figure 4d–f).
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4.1.2. Mineral Fabric Characteristics

The ECS element logging data (Figure 5a) and the results of the whole-rock mineral
X-ray diffraction analysis (Figure 5b) showed that the mineral components of continental
shale in the Yuanba Area mainly included clay minerals and quartz, followed by calcite
and a small quantity of feldspar and mica. The clay mineral content (n = 46) ranged from
21.54% to 68.3% with an average of 48.29%. The total content of quartz and feldspar ranged
from 17.1% to 60.3% with an average of 35.69%. The carbonate mineral content ranged from
0 to 48.8% with an average of 12.57%. In general, the contents of clay mineral and quartz
were high and carbonate minerals were locally enriched. Continental shale in the Yuanba
and Fuling Areas was deposited in shallow and semi-deep lake environments of carbonate
rocks (Figure 1). Compared with the marine shale of the Wufeng Formation–Longmaxi
Formation (Figure 6a), the continental shale of the Da’anzhai Member had the lower
content of siliceous minerals and the highest content of carbonate minerals (Figure 6b).
The drilling data and rock slice identification results indicated that the enrichment of
carbonate minerals in the continental shale layer was ascribed to the existence of a large
number of local shell limestone interlayers. The minerals in the shell limestone mainly
included argillaceous calcite, bright calcite, argillaceous, and a large number of developed
microfractures (Figure 7).
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Figure 7. Characteristics of microfractures in the shell limestone interlayer. (a) A large amount of
calcite in the shell. (b) A large number of microfractures develop in the shell.

The continental shale series were deposited in shallow and semi-deep lake environ-
ments of carbonate rocks. Compared with the marine shale of the Wufeng Formation–
Longmaxi Formation, continental shale is characterized by the lower content of siliceous
minerals, higher content of carbonate minerals, frequent interlayers, and strong hetero-
geneity. Therefore, the evaluation of continental shale brittleness needs to focus on the
influences of the contents and distributions of carbonate minerals as well as shell limestone
interlayers on brittleness.

4.2. Characteristics and Influencing Factors of Shale Brittleness
4.2.1. Mineral Content

The brittleness of continental shale was affected by mineral content and mineral struc-
ture. The dynamic and static rock mechanical parameters of continental shale in Well XA
and their relationships with mineral content were analyzed with array acoustic wave and
ECS logging results. The content of felsic minerals showed a negative correlation with
Young’s modulus, whereas the content of carbonate minerals had a positive correlation with
Young’s modulus (Figure 8a,b). The results of the continental shale were the opposite of the
positive correlation between quartz and Young’s modulus of southern marine shale [31] and
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similar to that of the marine shale of the first member of the Shahejie Formation in Bonan
Sag, Bohai Bay Basin [32]. In addition, the content of felsic and carbonate minerals had a
good positive correlation with Young’s modulus (Figure 8c), indicating that the brittleness
of shale series rocks was mainly determined by the total content of carbonate and felsic
minerals. Therefore, the mineral brittleness index method based on mineral composition
and the elastic parameter method based on Young’s modulus and Poisson’s ratio [33,34]
were used to calculate the brittleness index Brit1 (felsic and carbonate minerals) and the
rock mechanical brittleness index Brit2 (average mechanical parameter) of continental shale
and analyze their relationships. The analysis results showed that the mechanical brittleness
index was correlated with the brittleness index of felsic and carbonate minerals (Figure 8d).
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4.2.2. Fractures

According to the previous results [35], the main component of continental shell was
calcite (Figure 9). In the early diagenetic stage of continental shale, some aragonite shells
were dissolved and precipitated at the edge of aragonite to form the first generation of
iron-free calcite cement. In the late diagenesis, rocks were dissolved and the dissolved
pores or corrosion fractures were produced in calcite and could be filled with clay min-
erals, organic matter, or the second generation of iron calcite cement. In addition, the
muddy calcite in the shell formed a large number of fine crystals or columnar calcite under
recrystallization action.
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of calcite.

Fracture development affected the size and anisotropy of rock mechanical parame-
ters [36,37] and the development of a large number of calcite bedding fractures. Dissolution
fractures in the whole continental shale played an important role in brittleness. The chemi-
cal properties of calcite were unstable. During the whole diagenetic stage of the Da’anzhai
Member, calcite experienced multiple stages and types of diagenesis actions, including dis-
solution, compaction, cementation, and recrystallization. Dissolution occurred in various
diagenetic stages. In the syngenetic and early diagenetic stages, atmospheric fresh water
could selectively dissolve the unstable components in dissolved rocks, such as aragonite,
to form dissolved pores. In the late diagenetic stage, calcite was unselectively dissolved
to form dissolved pores and fractures. The dissolution of calcite in the whole diagenetic
stage was beneficial to fracture development. After dissolution, the calcite-rich shell layer
formed a large number of bedding fractures and solution fractures (Figure 10), not only
provided a seepage channel for the flow of shale oil and gas, but also greatly improved the
brittleness and physical properties of the reservoir.
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4.2.3. Shell Interlayers and Lamina

On the basis of the identification results of shale lithofacies, interlayer lithofacies,
and the analysis results of lithologic profiles of typical drilling (logging) wells in different
regions, continental shale of Well XA was divided into medium-carbon silty shale with
argillaceous shell limestone, high-carbon clayey shale and clayey calcareous shale with
argillaceous shell limestone, and low-to-medium-carbon silty shale with argillaceous shell
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limestone and calcareous siltstone from bottom to top. The number of macro-scale shell
limestone interlayers (meter scale) reached 14 layers/94 m. Through the fine observations
and descriptions of cores in continental shale of the Well XA Member from Well XA and
the rock slice identification of shale samples, the large set of shale sections in the above
macro-scale lithofacies combination were observed to acquire the fine descriptions of the
micro-scale (1 mm to 1 cm) lithofacies combination. A large number of millimeter-to-
centimeter-scale shell calcareous laminae or bands were still developed in the single-layer
continuous shale in the macro-scale lithofacies combination. In the two coring cycles of
continental shale of the artesian well group of Well XA, more calcareous shell laminates
were also developed in clayey shale, clayey calcareous shale, and silty shale to varying
degrees, and the number of shell limestone interlayers reached 19 layers/5 m in clayey shale
(Figure 11). Shell interlayers played an important role in the brittleness of clayey shale.
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In order to more intuitively display the influences of shell interlayers (lamina) on
reservoir brittleness, based on FMI borehole wall micro-resistivity imaging data, conven-
tional logging curves, and logging data, different rock types and interlayers in continental
shale were identified. The FMI borehole wall micro-resistivity logging tool was equipped
with 192 microelectrodes on 8 plates. Each electrode had a diameter of 0.2 inches and an
electrode spacing of 0.1 inches. The vertical and horizontal (around the borehole wall)
resolution of the obtained electric imaging image was 0.2 inches (5 mm) [38], which was
enough to identify the grain size and shape of fine conglomerates. The strata of continental
shale mainly included grayish black mudstone and grayish black shale interbedded with
grayish brown shell limestone layer. The corresponding electrical imaging lithological
characteristics are summarized below (Figure 12). The conventional curve characteristics
of mudstone were similar to those of shale. The electrical imaging results were brownish
black to dark black with block characteristics and layered characteristics. Shale had a
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high natural gamma radioactivity level, high neutron flux value, and low resistivity. Its
electrical imaging results were brownish black to dark black with layered structures. The
conventional curve of limestone was characterized by the low natural gamma radioactivity
level, high density, and extremely high resistivity. The electrical imaging results were bright
yellow to white with layered and massive sedimentary structures.
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Shale samples with low and high shell contents in the study area (Figure 13) were
selected for triaxial compression tests. The stress–strain curve showed that the samples with
high shell content had multiple peaks and local serration characteristics compared with the
samples with low shell content. The ultimate compressive strength and residual strength
were lower and the slope of the post-peak elastic modulus was steeper (Figure 14d–f),
indicating that the samples with the higher shell content required lower energy to fracture
and maintain fracture expansion after fracturing [36]. Therefore, the increase in shell
content was more conducive to reservoir reconstruction. Through slice observations, it was
found that the curve characteristics might be ascribed to a large number of microfractures
developed in the shell interlayers (lamina) (Figure 7). Therefore, compared with the content
of felsic minerals, the content of calcareous played the more important role in controlling
the brittleness of continental shale.

The above descriptions indicated that a large number of shell interlayers (lamina) were
developed in the whole continental shale. Due to the development of a large number of
microfractures, the stress–strain curve of the interlayer section with a large number of shell
interlayers (lamina) or a high shell content generally showed the characteristics of multiple
peaks and local serration. The extreme compressive strength and residual strength were
low. The slope of the post-peak elastic modulus was steep and the energy consumption
required for maintaining the fracture development was lower. Therefore, compared with
the content of felsic minerals, the content of calcareous played the more important role in
controlling the brittleness of continental shale.
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4.3. Actual Case Analysis

The mineral brittleness index simulation results and mechanical brittleness index
model calculation results for Well XA in this study are shown in Figure 15, including
mineral brittleness index Brit1 (calcite, quartz, and dolomite), average brittleness index Brit2
of mechanical parameters, quotient Brit3 of mechanical parameters, and comprehensive
brittleness index Brit4 (average of Brit1 and Brit3). Compared with the brittleness index
obtained from mechanical experiments, Experimental Brit (1/2 of the sum of mechanical
parameters after standardization), Brit1 was relatively small and showed an insignificant
brittleness change, so it was unable to accurately indicate the position of the high brittleness
development stage. Brit2 was similar to Brit1 and showed the smallest overall brittleness.
Brit3 was the largest brittleness index and showed a significant brittleness change. However,
due to the complex stress conditions of the reservoir in the study area, the applicability
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of the results remain to be verified. Brit4 comprehensively considered the influences of
mineral and mechanical parameters. Compared with the first three brittleness indexes,
Brit4 was highly correlated with Experimental Brit, indicating that this evaluation method
was the most reasonable.
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The location of shell interlayers (lamina) and the density of the fractures of continental
shale in the Da’anzhai Member were identified, and the development depth was calculated
(the second track from the right in Figure 15). With the increase in the number of developed
interlayers (lamina) and the fracture density, the reservoir brittleness increased significantly.
Therefore, in the calculation of the brittleness index, the lamina and fractures should be
quantified and comprehensively considered.

The above analysis showed that individual brittle minerals or mechanical parameters
could not accurately represent the brittleness of a continental shale reservoir. The factors
such as shell interlayers (lamina) and fracture development should be comprehensively
considered for developing an applicable evaluation system of the brittleness and fracturing
of continental shale.

5. Conclusions

(1) The continental shale lithofacies and their association types included four main
rock types: clay shale, silty shale, shell calcareous clay shale, and silty clay shale,
which were characterized by the high clay content and local enrichment of carbonate
minerals.

(2) The brittleness of continental shale was affected by mineral content and mineral
structure. The continental shale in the Da’anzhai Member was deposited in shallow
and semi-deep lake environments of carbonate rocks. Compared with the marine
shale of the Wufeng Formation–Longmaxi Formation, the continental shale had a
lower content of siliceous minerals and higher content of carbonate minerals. The
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content of felsic minerals showed a weak influence on brittleness. The total content of
felsic and carbonate minerals largely determined the brittleness of shale.

(3) The continental shale contained a large number of shell laminates. The shell was
mainly filled with calcite. After dissolution, the calcite shell formed a large number
of bedding joints and corrosion joints. In the interlayers with a high shell content, a
large number of microfractures also developed.

(4) A large number of fractures developed in continental shale, making the energy con-
sumption required for maintaining fracture expansion after rock fracture and fractur-
ing lower, thus greatly improving the brittleness of the shale reservoir.

(5) The main control factors for the brittleness of continental shale and marine shale are
not consistent. Therefore, the lithology, interlayer type, shell content, and rock mechan-
ical properties should be fully considered in the establishment of the corresponding
brittleness and fracturing evaluation system of continental shale.
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