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Abstract: In order to study the effect of the change of MgO/Al2O3 on the viscosity and thermody-
namic properties of the chlorinated blast-furnace slag, the CaO-SiO2-MgO-Al2O3-TiO2-CaCl2 slag
system was taken as the research object, and the viscosity change rule of the chlorinated high-titanium
slag was studied by using the rotating cylinder method. The thermal stability of the chlorinated
high-titanium slag was quantitatively analyzed by calculating the extreme heat release rate (EHRS) of
the chlorinated high-titanium slag. At the same time, the qualitative and quantitative analysis of the
high-titanium slag containing chlorine was carried out by combining FTIR and Raman spectroscopy,
and the mechanism of the influence of MgO/Al2O3 on the viscous flow characteristics of the high-
titanium slag containing chlorine was revealed. The results show that when the alkalinity (R2) of the
fixed slag is 1.15, when MgO/Al2O3 is in the range of 0.40–0.66, the viscosity of the high-titanium slag
containing chlorine presents a significant decreasing trend with the gradual increase of MgO/Al2O3,
and the viscous flow activation energy of the slag decreases from 98.75kJ ·mol−1 to 95.21kJ ·mol−1.
The heat capacity and enthalpy change of slag decrease with the increase of MgO/Al2O3, but the
change rule of slag extreme heat release is opposite to that of heat capacity and enthalpy change.
When MgO/Al2O3 increases, the slag extreme heat release increases from 13.413 kJ to 15.172 kJ. The
content of simple structural units Q0 and Q1 of silicate tetrahedron in the slag gradually increases,
the content of complex structural units Q2 and Q3 gradually decreases, and the average amount of
non-bridging oxygen decreases from 1.94 to 1.79, indicating that Al2O3 acts as a network maker in
the internal network structure of the slag. The increase of MgO/Al2O3 destroys the complex silicate
tetrahedron structure in the slag, reducing the degree of polymerization of the slag silicate network. In
addition, the transmissivity of [SiO4]4− tetrahedron, [AlO4]4− tetrahedron and T-O-T bond bending
vibration band in the slag shows a decreasing trend. Within the scope of the experiment, the increase
of MgO/Al2O3 can effectively improve the fluidity of the chlorine-containing blast-furnace slag and
improve the thermal stability of the chlorine-containing blast-furnace slag.

Keywords: chlorine-containing blast-furnace slag; viscosity; extreme heat release of slag; activation
energy; slag structure

1. Introduction

Vanadium-titanium magnetite (VTM) resources containing iron, vanadium, and ti-
tanium, as well as other available elements are abundant and mainly distributed in the
Panzhihua region of China [1]. Until now, the main method to utilize VTM has been the
blast-furnace (BF) ironmaking process. As the main raw materials, a lot of slag is produced
with TiO2 content of about 22 to 23 pct because the titanium component cannot be reduced
and then enters the slag phase. Meanwhile, with the development of iron and steel industry,
the structure of the enterprise and the raw and fuel conditions have a certain change. More
and more chlorine elements enter the ore and fuel of the blast furnace, and chlorine will be
absorbed by the blast-furnace slag, thus affecting its performance [2,3]. At present, in order
to reduce the low temperature reduction pulverization rate of sinter added as raw material,
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various iron and steel enterprises generally apply the technology of spraying calcium chlo-
ride on the surface of sinter, which leads to a sharp increase in the chlorine content of sinter
and changes the composition of blast-furnace slag [4]. The typical amphoteric oxide Al2O3
in the blast-furnace slag components has the functions of high slag viscosity, slow flow rate,
increased temperature drop and easy adhesion at high temperatures. Therefore, controlling
the amount of Al2O3 and finding a suitable magnesia-alumina ratio of blast-furnace slag
have become one of the research hotspots in the ironmaking industry [5].

A lot of research has been carried out domestically and internationally on the role
of MgO/Al2O3 in different slag systems. Jiao Kexin et al. [6] analyzed the viscosity, heat
capacity and enthalpy change of the CaO-SiO2-Al2O3-MgO slag system. The heat capacity
of slag increases with the increase of Al2O3, MgO/Al2O3 and alkalinity. With the increase
of Al2O3 content and MgO/Al2O3 content, the enthalpy change shows an upward trend.
On the contrary, the enthalpy change decreases with the increase of alkalinity. When the
slag heat is constant, the addition of Al2O3 will lead to a decrease in slag temperature and
increase in slag viscosity. Seok et al. [7] studied the viscosity of CaO-SiO2-Al2O3-MgO-FeO
slag system. When alkalinity and MgO content are constant, Al2O3 content and viscosity
increase. Feng Cong et al. [8] studied the influence of MgO/Al2O3 on the viscosity behavior
of MgO-Al2O3-TiO2-CaO-SiO2 slag system by using the rotating cylinder method, focusing
on the structural characteristics of the slag. When MgO/Al2O3 increases from 0.82 to 1.36,
the viscosity and activation energy (TiO2 content of 43% and CaO/SiO2 of 0.50) of the five
component slag system decrease, and the melting temperature first decreases, and then
increases. Moreover, when MgO/Al2O3 increases, O-Ti-O structure changes in the complex
silicate network, [AlO4]− tetrahedron structure depolymerizes into simple structural units,
the polymerization degree of titanium-containing slag decreases, and the fluidity of slag is
improved. Up to now, there are few basic studies on MgO/Al2O3 on chlorine-containing
BF titanium slag, and the influence mechanism of MgO/Al2O3 on chlorine-containing BF
titanium slag is not clear. At the same time, the change of slag composition causes the
change of heat capacity. Under the condition of stable heat supply of the blast furnace,
studying the relationship between MgO/Al2O3 and the heat release, as well as thermal
stability of slag, is of great significance for a smooth and stable operation of the BF.

In this study, the CaO-SiO2-MgO-Al2O3-TiO2-CaCl2 slag system viscosity is measured
by the rotating cylinder method. Qualitative and quantitative analyses of structural changes
in slag are carried out using Fourier infrared spectroscopy and Raman spectroscopy to
clarify the effect mechanism of MgO/Al2O3 on the viscous behavior of chlorine-containing
BF titanium slag. The effective heat release of slag (EHRS) is put forward to quantitatively
express the change in the thermal stability and provide theoretical guidance for optimizing
the fluidity and thermal stability of high-titanium-melting slag containing chlorine.

2. Experiment
2.1. Preparation of Slag Sample

Based on the composition of blast-furnace slag in a domestic iron and steel enterprise
(as shown in Table 1), the experimental scheme is designed to study the influence of the
variation of slag composition on the performance of chlorine-containing high-titanium
slag. The experiment is prepared with analytical pure reagents SiO2, CaO, MgO, Al2O3,
TiO2 and CaCl2. SiO2, CaO, MgO, Al2O3 and TiO2 are kept at 1000 ◦C for 5 h in a muffle
furnace to remove water, and CaCl2 is dried at 105 ◦C for 5 h. According to the proportion
set in Table 2, when the alkalinity (R2) of fixed slag is 1.15, w (Al2O3) is 11%–18%, w
(MgO) is 7.26% and MgO/Al2O3 is 0.40–0.66. A 250 g slag sample is weighed and placed
into a molybdenum crucible, which is then placed into a high-temperature box resistance
furnace, and heated at 1500 ◦C under the protection of argon gas and is held for 3 h to
ensure a more uniform slag composition. Water quenching is carried out immediately after
heat preservation to maintain the state under high temperature, and then the obtained
slag is dried and ground. The sample is ground to less than 200 mesh. After drying and
grinding, the sample is divided into three parts. In the first part, the components of the
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chlorine-containing high-titanium slag are analyzed by X-ray fluorescence spectrum, as
shown in Table 3, and the measured values are close to the experimental design values.
In the second part, the XRD results of samples cooled down rapidly with the change of
MgO/Al2O3, as shown in Figure 1. There is no fine spectral peak structure, and only a
large envelope peak exists, indicating that all the slag samples are of amorphous glass state
at high temperature. The last part is used to measure the viscosity of molten slag.

Table 1. Chemical composition of site slag in steel works (%).

CaO SiO2 MgO Al2O3 TiO2 Cl

28.86 25.14 7.17 13.87 21.75 0.16

Table 2. Composition ratio of chlorine-containing high-titanium slag.

Group
Number

Initial Composition/%
C/S MgO/Al2O3

CaO SiO2 MgO Al2O3 TiO2 CaCl2

1 27.12 23.60 7.26 18.00 22.02 2.00 1.15 0.40
2 27.66 24.06 7.26 17.00 22.02 2.00 1.15 0.42
3 28.19 24.53 7.26 16.00 22.02 2.00 1.15 0.45
4 28.73 24.99 7.26 15.00 22.02 2.00 1.15 0.48
5 29.80 25.92 7.26 13.00 22.02 2.00 1.15 0.56
6 30.33 26.39 7.26 12.00 22.02 2.00 1.15 0.61
7 30.87 26.85 7.26 11.00 22.02 2.00 1.15 0.66

Table 3. Composition ratio of chlorine-containing high-titanium slag after pre-melting.

Group
Number

Actual Composition/%

CaO SiO2 MgO Al2O3 TiO2 CaCl2

1 27.13 23.80 7.29 17.90 22.23 1.92
2 27.35 23.78 7.18 17.07 21.96 1.97
3 28.53 24.98 7.23 16.23 21.84 1.98
4 29.06 25.49 7.31 14.83 21.78 1.99
5 30.53 26.32 7.33 12.95 21.97 1.95
6 30.71 26.70 7.25 11.90 22.14 1.89
7 31.35 27.03 7.30 11.13 22.31 1.95
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Figure 1. XRD curves of the quenched samples.

2.2. Thermodynamic Calculation

The good fluidity of slag is one of the preconditions to maintain the normal operation
of blast-furnace smelting. The slag will inevitably be accompanied by heat loss in the flow
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process, which will lead to the increase of slag viscosity. In order to ensure the normal
production of the blast furnace, the slag viscosity should be controlled below 2.0 Pa·s [9]
during smelting. On the premise of ensuring the free flow of slag, the maximum heat
release it can bear reflects the thermal stability of slag. Therefore, the slag thermal stability
is quantified by slag extreme heat release [10]. Figure 2 shows the schematic diagram of
slag extreme heat release. The temperature corresponding to the slag viscosity value of
2.0 Pa·s is Ts, and EHRS is expressed as the heat loss during the period when the slag
tapping temperature (Tb) decreases to the minimum temperature (Ts). The larger the EHRS,
the more heat loss the slag can bear, and the better the thermal stability of the slag.
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Figure 2. The calculation process of the extreme heat release of slag.

In the thermodynamic calculation, the sample mass is set at 100 g, and the initial
conditions are 101.325 KPa and 298 K. According to the first law of thermodynamics,
when the pressure is constant, the enthalpy change of slag at a certain temperature is
approximately equal to the heat absorbed by the slag. The heat capacity (Cp), enthalpy
change (∆H) and EHRS (∆Q) of slag at 1823 K, 1793 K, 1763 K and 1733 K are calculated
according to formulas (1)~(11) [11].

CpCaO= 1.048− 2.046×104T−2 − 2.388T−1/2 + 1.836× 106T−3 (298–2845 K) (1)
CpSiO2

= 1.332− 5.903×104T−2 − 3.999T−1/2 + 8.181× 106T−3 (298–1996 K) (2)
CpMgO = 1.516− 1.541× 104T−2 − 7.349T−1/2+1.45× 104T−3 (298–3098 K) (3)
CpAl2O3 = −0.154 + 2.973× 10−4T + 4.899× 104T−2 − 1.099×103T−1 + 69.33T−1/2 (298–1200 K) (4)
CpAl2O3 = −7.724 + 6.461× 10−4T + 2.587× 106T−2− 1.496T×104T−1 + 6.56× 102T−1/2 (1200–2327 K) (5)
CpTiO2

= 0.975− 4.217× 104T−2+5.045× 106T−3 (298–2130 K) (6)
CpCaCl2

= −3.053+ 9.844× 10−4T+ 7.173× 104T−2− 1.617× 103T−1 + 1.387× 102T−1/2 (298–1045 K) (7)
CpCaCl2

= 0.507 + 2.646× 10−4T + 1.253× 103T−2 (1045–2000 K) (8)
Cp = ∑ miCpi (1045–2000 K) (9)
∆H =

∫ Ttr
298 CpidT+∆trHi +

∫ TM
Ttr

C′Pi(s)dT + ∆l
sHi +

∫ T
TM

C′Pi(l)dT (10)

∆HT = ∑ mi∆Hi (11)
where Cpi is the heat capacity of component i, J/g·K; I is CaO, MgO, SiO2, Al2O3, TiO2,
CaCl2 and other slag components, J/g·K; Cp is the heat capacity of slag at a certain tem-
perature, J/g·K; Mi is the mass of slag composition, g; ∆H is enthalpy change of slag at
specific temperature, J/g; ∆trHi is the enthalpy of the crystal phase transition of component
i at a specific temperature, J/g; ∆l

sHi is the melting enthalpy of component i at a specific
temperature, J/g; ∆HT is the enthalpy change of slag at a specific temperature, kJ; Ttr and
TM are crystal phase transition temperature and melting temperature, K, respectively; N
is the mass fraction of precipitated solid phase,%; and Cps is the heat capacity of solid
phase, J/g·K.

2.3. Viscosity Measurement

RTW-type melt physical property tester is used to measure the slag viscosity, as shown
in Figure 3. The experimental equipment is mainly composed of high temperature heating
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furnace, torque sensor, control cabinet and software system. In this study, the heating
element is U-shaped MoSi2, and the lower part of the furnace is equipped with a refractory
base. Pt-6% Rh and Pt-30% Rh thermocouples are used to control the temperature in the
furnace, and the measurement error is less than±2 K. The suspension rod and molybdenum
probe are suspended below the torque sensor, the motor drives the probe to rotate and
output signals, calculate and record the viscosity value.
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Determination of slag viscosity [12–14]: The molybdenum crucible-containing slag
samples was placed in the constant temperature zone at the upper part of the reaction
chamber base of the resistance furnace, and heated to 1773 K at the speed of 5 K·min−1

under the protection of argon gas. It has been proven that the molybdenum crucible does
not react with the slag system, so it has no effect on the experimental results [15]. The
furnace temperature is kept stable for 30 min to make the slag composition uniform. The
molybdenum ingot is then slowly dipped into the slag with its tip about 7 mm from the
bottom of the crucible and rotated at a constant speed of 100 rpm. Due to the volatilization
of chlorine during the viscosity test, the viscosity test is performed at a fixed temperature
(the temperature difference of each test is 10 K, the cooling rate is 3 K·min−1 and the
holding time is 10 min). Before each measurement, castor oil is calibrated to ensure the
accuracy of viscosity. The actual viscosity is the average viscosity at a fixed temperature
(measured twice at each fixed temperature, 200 s each time, 40 data points, the average
value taken). After each viscosity measurement, the sample is water quenched, dried and
fully ground before being sent for further testing.

2.4. Fourier Transform Infrared (FTIR) and Raman Spectroscopy

The slag structure is qualitatively analyzed by Fourier infrared spectroscopy. An
amount of 2.0 mg of quenching slag sample is mixed with 300 mg of potassium bromide
(KBr) and pressed into a film. The wave number range of the quenching slag sample is
recorded in the range of 400–4000 cm−1, the scanning time is set to 32 s, and the resolution
is set to 4 cm−1. The qualitative analysis of quenching slag sample structure is determined
by Raman spectrometer. At room temperature, a semiconductor laser source with excitation
wavelength of 532 nm is used to collect the Raman spectra of quenched samples in the
frequency range of 200–1600 cm−1. Gaussian function is used to deconvolute the Raman
spectrum, and the bridge oxygen number is calculated according to the relative area fraction
of the fitting curve.

3. Results and Discussion
3.1. Effect of MgO/Al2O3 on Viscosity of Chlorinated Blast-Furnace Slag

When the alkalinity is constant at 1.15, the MgO mass fraction is 7.26%, TiO2 mass frac-
tion is 22.02%, and Al2O3 mass fraction is 11%–18%. The viscosity of chlorine-containing
high-titanium slag (CaO-SiO2-MgO-Al2O3-CaCl2-TiO2) changes from 0.40 to 0.66 with
the ratio of MgO/Al2O3, as shown in Figure 4. At the same temperature, the increase of
MgO/Al2O3 reduces the slag viscosity. There may be three reasons for this. First of all, the
higher the proportion of Al2O3, the easier it is to generate high melting point compounds,



Minerals 2023, 13, 444 6 of 13

such as magnesium aluminum spinel (MgO·Al2O3) and calcium aluminate (CaO·Al2O3).
These high melting point compounds have strong crystallization ability, and a large number
of heterogeneous phases are generated. After crystallization, they will exist in the slag in
a solid state, which makes the internal structure of the slag more complex and worsens
the slag fluidity. Secondly, from a microscopic perspective, Al2O3 is an acid oxide that can
absorb free oxygen ions to form a four-coordinated aluminum oxide tetrahedron structure,
which supports the silicate network structure, enhances the complexity of the melt structure,
and increases the slag viscosity. In addition, with the increase of temperature, the influence
of MgOAl2O3 ratio on slag viscosity gradually weakens. When the temperature is 1733 K,
the MgO/Al2O3 ratio increases from 0.40 to 0.66, and the slag viscosity decreases by about
0.05 Pa · s. When the temperature is 1823 K, the MgO/Al2O3 ratio increases from 0.40 to
0.66, and the slag viscosity decreases by about 0.03 Pa · s. The increase of slag viscosity
means the deterioration of slag fluidity, which will also affect the stability and smooth
running of the blast furnace to a certain extent. Therefore, in order to better improve the
fluidity of the slag and maintain the smooth operation of the blast furnace, the proportion
of MgO/Al2O3 in the slag must be controlled to avoid excessive Al2O3 composition.
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Figure 4. Viscosity curves of high-titanium slag with different MgO/Al2O3.

3.2. Effect of MgO/Al2O3 on Viscous Flow Activation Energy of Chlorinated Blast-Furnace Slag

The resistance of slag in the viscous flow process is closely related to the slag struc-
ture [16–18]. Each particle in the slag is in a certain range of potential barrier, which must
be overcome by a certain amount of energy to activate the particles. The activation energy
is necessary for particle movement. The six-component slag system of high-titanium slag
containing chlorine is a typical silicate slag system, in which the silicon oxygen complex ion
is the main viscous flow unit in the slag. The change of slag composition is bound to affect
the existing form of silicon oxygen complexion, thus causing the change of slag viscosity.

The temperature dependence of viscosity is often expressed by the Arrhenius equation,
as shown in Equation (12):

η = Aexp
(

Eη

RT

)
(12)

The logarithm of Equation (1) is written as Equation (2), as shown in Equation (13):

lnη = lnA+Eη

(
1

RT

)
(13)

among which η is slag viscosity; A is the pre exponential factor; R is the gas constant
(8.314 J/mol · K); T is the thermodynamic temperature; and E η is viscous flow activation
energy. The activation energy of viscous flow is an important viscous characteristic of
slag melt. Viscous flow activation energy represents viscous flow barrier, and its change
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can reflect the change of slag structure or flow unit. This has been revealed in previous
studies [19].

Figure 5 shows ln when MgO/Al2O3 changes η and 1/T. As can be seen from the
figure, ln η is linear with 1/T. Calculate the viscous flow activation energy of slag with
the fitting line (R2 > 0.99), where InA and Eη/T are the intercept and slope of the fitting
line, respectively. The calculation results of viscous flow activation energy change with
MgO/Al2O3 are shown in Table 4. As MgO/Al2O3 increases from 0.40 to 0.66, the cor-
responding viscous flow activation energy decreases from 98.75 kJ/mol to 95.21 kJ/mol.
With the increase of the proportion of Al2O3, Al3+ combines with free oxygen ions to form
complex aluminum oxide tetrahedral structural units. In order to maintain charge balance,
Ca2+ is consumed for charge compensation, forming more complex structural units. The
friction resistance of slag becomes larger when flowing, which worsens the fluidity of slag.
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Figure 5. Variation of Lnη and 1/T with MgO/Al2O3 ratio.

Table 4. The calculated apparent activation energy of different slags.

MgO/Al2O3 Regression Equation Ea (kJ·mol−1)

0.40 y = 0.11878x − 9.3576 98.75
0.42 y = 0.11834x − 9.42055 98.39
0.45 y = 0.11794x − 9.41714 98.06
0.48 y = 0.11721x − 9.39418 97.45
0.56 y = 0.11635x − 9.31596 96.73
0.61 y = 0.11599x − 9.38374 96.43
0.66 y = 0.11452x − 9.3084 95.21

3.3. Effect of MgO/Al2O3 on Heat Capacity, Enthalpy Change and EHRS of Chloro-Containing
Blast-Furnace Slag

As shown in Figure 6, the slag heat capacity decreases linearly with the increase of
MgO/Al2O3 at a fixed temperature. This is consistent with the change in heat capacity.
This shows that the increase of MgO/Al2O3 in the slag, that is, the decrease of Al2O3
mass fraction, weakens the thermal stability of the slag. The heat absorbed by the slag will
increase when the temperature rises by 1 K. Therefore, in order to keep the slag temperature
stable, when using iron ore with low MgO/Al2O3, the heat supply of the blast furnace
should be appropriately increased to maintain the smooth running of the blast furnace.
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Figure 6. The heat capacity of slag with varying MgO/Al2O3.

It can be seen from Figure 7 that when the temperature is constant, the enthalpy
change of blast-furnace slag decreases linearly with the increase of MgO/Al2O3. When
MgO/Al2O3 is constant, the enthalpy change of slag is obviously increased with the
increase of temperature. This shows that increasing MgO/Al2O3 reduces blast-furnace
energy consumption, especially when the increase of blast-furnace coal injection and the
use of low-grade ore lead to the decrease of MgO/Al2O3 in slag, it is necessary to increase
the supply of blast-furnace fuel.
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Figure 7. The enthalpy change of slag with varying MgO/Al2O3.

Figure 8 shows the effect of MgO/Al2O3 on EHRS of high-titanium slag contain-
ing chlorine. The increase of MgO/Al2O3 obviously increases the slag EHRS value.
MgO/Al2O3 increased from 0.40 to 0.66, and EHRS increased from 14.83 kJ to 20.51 kJ. The
higher the EHRS value, the smaller the viscosity fluctuation caused by the change of slag
composition or temperature. Therefore, when using high alumina ore for blast-furnace
smelting, in order to maintain the stability of slag temperature and promote the stable
operation of the blast furnace, it is necessary to appropriately increase the coke ratio or fuel
ratio to maintain the smooth operation of the blast furnace.
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3.4. Infrared Spectral Analysis

The viscosity of melt is closely related to its structure. The influence of slag structure on
viscosity can be confirmed by FTIR spectrum analysis. As shown in Figure 9, MgO/Al2O3
decreases, and the center of [SiO4]4− tetrahedron vibration band shifts from 972 cm−1 to
998 cm−1, which indicates that the slag structure tends to be complicated. As the mass
fraction of MgO remains unchanged, the higher the content of Al2O3, the easier the Si-O
network structure is to polymerize. Al2O3 is an amphoteric oxide. In this experiment,
Al2O3 is an acid oxide. When Al2O3 is added in the initial stage, the viscosity increases
because it can absorb free oxygen ions to form a composite anion group as an acid oxide,
which increases the complexity of the slag structure. In addition, [AlO4]5− tetrahedron
vibration band gradually increases. This is because aluminum ions can replace tetrahedral
coordinated silicon ions to form [AlO4]5− tetrahedron. The valence state of aluminum ion is
different from that of silicon ion. In order to maintain the charge balance, metal cations are
required for charge compensation, thus increasing the complexity of slag structure. With
the further increase of Al2O3 content, aluminum no longer exists in tetrahedron instead
of silicon ion, but exists in [AlO6]9− octahedron as a network modifier. The change of
600–800 cm−1 band in FTIR spectrum also confirms this point. The results show that Al2O3
is a network-forming agent, that is, MgO/Al2O3 decreases and slag viscosity increases. This
is consistent with the experimental results of MgO/Al2O3 on slag viscosity in this paper.
In addition, the T-O-T bond vibration band strengthens with the decrease of MgO/Al2O3.
The formed [AlO4]5− tetrahedron and [SiO4]4− tetrahedron or [TiO2]4− tetrahedron are
connected with each other through T-O-T bond to form a more complex structure, further
increasing the complexity of the structure.
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3.5. Raman Spectral Analysis

Raman spectroscopy is used to quantitatively analyze the structural units of slag [20].
The Raman spectra of the slag are mainly concentrated in the high frequency region
(1200–800 cm−1) and low frequency region (800–600 cm−1). The origin software is used to
subtract the Raman spectral background, and the Gaussian function is used to deconvolute
the original Raman spectral curve and fit the minimum correction coefficient R2 > 0.99
to obtain the characteristic peak. In previous studies, according to the number of bridge
oxygen, the high frequency region of Raman spectrum can be deconvoluted into four
typical peaks: Q0 ([SiO4]4−, ~850 cm−1), Q1 ([Si2O7]6−, 910–930 cm−1), Q2 ([SiO3]2−

chain, ~980 cm−1) and Q3 ([Si3O9]6− ring, ~1050 cm−1). Qn represents the degree of
polymerization of the slag, and n is the amount of bridging oxygen in the silicate tetrahedron
structure. In addition, according to Mysen et al. [21], bands located at 600–650 cm−1,
~720 cm−1, and 820–850 cm−1 are assigned to Ti-O and O-Ti-O and Ti-O-(Ti or Si).

As shown in Figure 10, with the increase of MgO/Al2O3, the peak position in the
Raman spectrum gradually moves to a lower wave number. Q0 and Q1 structural units
are relatively reduced, Q2 structural units are relatively increased, Ti-O-(Ti or Si) structural
units are increased, and Al-O-Al bonds are reduced. This shows that the slag structure
is simplified. Al2O3 is an amphoteric oxide, which can play a role as a network builder
when the slag is acidic, forming complex anion groups with free oxygen ions, thus making
the slag structure more complex. When the slag is alkaline, it can play the role of network
modifier to destroy the Si-O network structure and reduce the slag viscosity. Obviously,
in this slag system, Al2O3 is an acid oxide, and Al3+ is dissociated to participate in the
formation of [AlO4]5− tetrahedron structure. Moreover, due to the charge compensation
effect, metal cations such as Ca will compensate the missing charge of Al3+ in the formation
of four coordinated aluminum oxide tetrahedron structure, so the increase of MgO/Al2O3
makes the structural unit of the melt simpler to some extent.

In order to semi quantitatively analyze the influence of MgO/Al2O3 on each structural
unit of slag, the relative area fraction of the fitting curve of each structural unit is calculated,
and Qn

Si (relative mole fraction) is calculated according to the relative area fraction (Ai) of Si
structural unit and the corresponding amount of bridge oxygen. The results are shown in
Figure 11 through Equation (14):

Xi = (Ai/Si)/(∑3
i=0 Ai/Si) (14)

Here, Xi, Ai and Si represent the relative mole fraction of Qn
Si, the area of Gaussian

function fitting curve and the Raman scattering coefficient of Qn
Si, respectively.

It can be seen from Figure 11 that the relative mole fraction of Q1 gradually increases,
the relative mole fraction of Q2 gradually decreases, and the relative mole fraction of Q0

slightly increases. This shows that the number of simple structural units in silicate structure
increases, and the melt is not easy to polymerize. At the same time, with the increase of
MgO/Al2O3, the relative area fraction of Al-O-Al vibrational bands in the 500–550 cm−1

band decreased significantly. In the slag, the number of aluminum-oxygen composite
anions connected by bridging oxygen and silica tetrahedron is reduced, the complex Si-O-
Al composite anions are depolymerized, and the complexity of the internal structure of the
slag is reduced.

It can be seen from Figure 12 that with the increase of MgO/ Al2O3 from 0.40 to 0.66,
the average number of BOs/Si decreases from 1.94 to 1.79. Therefore, Al2O3 plays a role
in increasing the degree of polymerization in blast-furnace slag. Al2O3 acts as a network-
forming agent in the network structure, connecting simple anion groups through bridging
oxygen, which makes the slag structure more complex, improves the polymerization
degree of the slag structure, and worsens the fluidity of the slag. Therefore, the increase of
MgO/Al2O3 improves the fluidity of slag, which is consistent with the measured results of
slag viscosity.
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Figure 10. Raman spectra of slag with varying MgO/Al2O3: (a) MgO/Al2O3 = 0.40; (b)
MgO/Al2O3 = 0.48; (c) MgO/Al2O3 = 0.56; (d) MgO/Al2O3 = 0.66.
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Figure 11. Relative area fractions of each band of chlorine-containing high-titanium slag.
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Figure 12. Influence of MgO/Al2O3 on average (BOS/Si).

4. Conclusions

(1) MgO/Al2O3 reduces slag viscosity, viscous flow activation energy and melting
temperature [7]. With the increase of temperature, the effect of MgO/Al2O3 on slag viscosity
gradually weakened. When the alkalinity is 1.15, the ratio of MgO/Al2O3 increases from
0.40 to 0.66, the viscosity of high-titanium slag containing chlorine decreases, and the
activation energy of viscous flow decreases from 98.75 kJ·mol−1 to 95.21 kJ·mol−1. The
reduction of slag viscosity optimizes the fluidity of slag.

(2) With the increase of MgO/Al2O3, the slag heat capacity and enthalpy change
gradually decrease. When MgO/ Al2O3 is fixed, the heat capacity and enthalpy of slag
decrease significantly with increasing temperature. The slag EHRS gradually increases with
the increase of MgO/Al2O3. The influence of heat fluctuation in the furnace on the slag
temperature is weakened, and the influence on viscosity is also smaller, which improves
the slag stability.

(3) The increase of MgO/Al2O3 makes the center of [SiO4]4− tetrahedral vibration
zone shift from 998 cm−1 to 972 cm−1, and the slag structure tends to be simple. With
the increase of MgO/Al2O3, the average number of BOs/Si decreased from 1.94 to 1.79.
Al2O3 plays the role of network-forming agent in the network structure, and the increase
of MgO/Al2O3 improves the fluidity of slag [8].
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